Information mutuelle et partition optimale du support d une mesure de probabilité

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Information mutuelle et partition optimale du support d une mesure de probabilité"

Transcription

1 Informaton mutuelle et partton optmale du support d une mesure de probablté Bernard Coln et Ernest Monga Département de Mathématques Unversté de Sherbrooke Sherbrooke JK-R (Québec) Canada Résumé. À l ade de la noton d nformaton mutuelle entre varables aléatores, on propose de construre une partton optmale du support d une mesure de probablté. lus précsément, on propose d e ectuer une dscrétsaton smultanée de l ensemble des composantes d un vecteur aléatore, qu conserve le plus possble la dépendance stochastque entre les varables. On présentera quelques exemples. Mots-clés : Dvergence, nformaton mutuelle, codage optmal. Abstract. Based on the noton of mutual nformaton between the components of a random vector, we construct an optmal quantzaton of the support of ts probablty measure. More precsely, we propose a smultaneous dscretzaton of the whole set of the components of the random vector whch takes nto account, as much as possble, the stochastc dependence between them. Examples are presented. Keywords. Dvergence, mutual nformaton, optmal quantzaton. Résultats généraux. Informaton mutuelle Les résultats c-dessous découlent de la noton de dvergence généralsée et de ses prncpales proprétés telles qu ntrodutes et énoncées dans Csszár [5], [6], Al et Slvey [3] et Zaka et Zv [4]. Les mesures de dvergence usuelles sont celles ntrodutes par Kullback, Lebler, Hellnger, ans que celles assocées aux dstances en varaton et du (vor Goël [8], Adhkar et Josh [], Aczél et Daróczy [], ans que Rény []). Sot (; F; ) un espace probablsé et soent X ; X ; :::; X k k varables aléatores dé nes sur et à valeurs dans les espaces mesurés (X ; F ; ) = ; ; :::; k. Désgnons par X ;X ;:::;X k = X et par =k = X les mesures de probablté dé nes sur l espace produt =X =k ; =F =k ; = =k et représentant respectvement les mesures de probablté conjonte et produt des mesures de probablté margnales, des varables X ; X ; :::; X k et que l on supposera absolument

2 contnues par rapport à la mesure produt = =k =. On appelle nformaton mutuelle entre les varables X ; X ; :::; X k, la quantté dé ne par Z I ' (X) = 0 d X Nk A d d = X! ko Z X = = '! f Q=k Q =k = f = f d, où ' est une foncton convexe quelconque de R + nf0g dans R et où, avec les notatons habtuelles, f et Q =k = f désgnent respectvement les denstés des mesures de probablté X ;X ;:::;X k et =k = X par rapport à la mesure produt. arm les nombreuses proprétés de l nformaton mutuelle (vor nsker [0], Mc Elece [9], Csszár [5], Gavurn [7]), la suvante sera utle pour la sute : S pour tout j = ; ; :::; k les fonctons g j de =X =k ; =F =k dans (Yj ; G j ) sont mesurables, on a, en posant Y j = g j (X ; X ; :::; X k ) : I ' (Y ; Y ; :::; Y k ) I ' (X ; X ; :::; X k ). Cette dernère proprété, plus connue sous le nom de data-processng theorem, montre que toute transformaton portant sur les varables ntales, entraîne, en général, une perte d nformaton.. Fonctonnelle d nformaton mutuelle Étant donné que les mesures margnales découlent de la mesure conjonte, l nformaton mutuelle peut être vue comme une fonctonnelle J() de cette dernère où : Z! Q=k J( X ) = = f (x ) ' f (x ; x ; :::; x k ) Q =k = f d (x ) S J() admet des dérvées de Gâteaux en dans la drecton Q jusqu à l ordre m +, où et Q appartennent à une famlle de mesures de probablté dé nes sur un espace (; F) donné, on montre que sous les condtons habtuelles (Ser ng []) on a : J(Q) J() = l=m l= l! d lj(; Q ) + d m+ (m + )! dt J( + t (Q )) j m+ t où 0 t Dans le cas où la mesure de probablté Q est une estmaton n de, l expresson cdessus permet de dédure le comportement asymptotque de J ( n ), de l étude de celu du reste R m;n donné par : R m;n = J( n ) J() l=m l= l! d lj(; n ) = J( n ) J() V m;n

3 On montre alors que (von Mses [3], Ser ng []) s le premer terme non nul du développement de Taylor de la fonctonnelle J est le terme lnéare, on a : p n (J( n ) J()) L! N 0; J; où J; ne dépend que de J et de, et donc J(n ) p! J(). Informaton mutuelle et codage optmal. Cadre général Sot X une mesure de probablté pour laquelle le support S est de la forme : S = =k = [a ; b ] (la représentaton unforme de X sous la forme d une copule dé ne sur [0; ] k, permet en e et de se ramenrer à ce cas). our tout = ; ; :::; k : a = x 0 < x < ::: < x n = b, désgnera une partton ;n de [a ; b ], en n éléments f j = [x j ; x j [ : j = ; ; :::; n g et on notera par, la partton produt du support de X engendrée par la famlle des pavés de R k de la forme : =k = j. our tout = ; ; :::; k; on consdère la varable aléatore étagée, dé ne sur [a ; b ], et dont la mesure de probablté est donnée par = X j r=k r6== [a r ; b r ] : j = ; ; :::; n On a : I ' (X) I ' où = ; ; :::; k, pour toute partton ;n de [a ; b ] 8. La mesure de probablté conjonte du vecteur aléatore est donnée par = X =k = j pour tout j ; j ; :::; j k. L expresson I ' (X) I ' représente la perte d nformaton mutuelle due à la transformaton. S n ; n ; :::; n k sont xés on désgnera par n la famlle des parttons de [a ; b ] en n ntervalles dsjonts j et on notera par la famlle des parttons du support de X donnée par : := =k n = = =k = ;n : ;n n 8 = ; ; :::; k La mesure n ayant pour expresson : n = X =k = j 8 j ; j ; :::; j k on aura, sous des condtons générales (Ser ng []) : I ' p! I' (X) lorsque n! 8 = ; ; :::; k:. Exstence d une partton optmale Les nombres n ; n ; :::; n k étant donnés et la famlle étant précsée, le problème d optmsaton à résoudre se présente sous la forme : supi ' ; ; :::; k 3

4 La foncton I ' ; ; :::; k des varables xj pour = ; ; :::; k et j = ; ; :::; n étant contnue et dé ne sur le compact de R =k = (n ) de la forme : S = =k =S ;n où S ;n est, pour tout = ; ; :::; k, le sous-ensemble de R n donné par : a = x 0 x ::: x n x n = b, l exste au mons un élément ~ de tel que : I ' ~ ; ~ ; :::; ~ k = max I ' ; ; :::; k ce qu entraîne l exstence d au mons une partton telle que I ' (X) I ' ( ~ ) sot mnmum. On peut montrer de plus que le pont de S correspondant à ~ appartent à S..3 Exemples A n de smpl er la présentaton on tratera seulement du cas de deux varables aléatores X ; X. Les solutons ont été obtenues à l ade des méthodes décrtes dans Zoutendjk [5] ou encore Bertsekas [4]. Exemple : Soent la foncton ' (t) = (t ) et une mesure de probablté dé ne sur [0; ] dont la densté est donnée par : f (x ; x ) = (x + x ) I [0;] (x ; x ) pour laquelle on a : I (t ) (X ; X ) = 9:70 3. our p = q = 3, on trouve pour soluton : x = x = : ; x = x = :54. Les mesures et ; = (symétre entre x et x ) sont données par : [0; :[ [:; :54[ [:54; ] ; [0; :[ :008 :0346 :0895 [:; :54[ :0346 :0774 :687 [:54; ] :0895 :687 :358 = :349 :807 :5840 D où : I (t ) ; = 70 3 qu représente 7% de l nformaton mutuelle ntale. A ttre de comparason, on a pour une partton régulère (classes de même largeur) et pour une équpartton (classes de même fréquence) : reg ; reg [0; :3333[ [:3333; :6666[ [:6666; ] [0; :3333[ :0370 :0740 : [:3333; :6666[ :0740 : :48 [:6666; ] : :48 :85 reg = reg : :333 :4444 4

5 equ ; equ [0; :4574[ [:4574; :7583[ [:7583; ] [0; :4574[ :0957 :5 :4 [:4574; :7583[ :5 :00 :08 [:7583; ] :4 :08 :08 equ = equ :3333 :3333 :3333 avec : I (t ) reg ; reg = 5:440 3 et I (t ) equ ; equ = 5:60 3, sot respectvment 56% et 58% de I (t ) (X ; X ). Exemple : Sot X = (X ; X ) E () ( ) un vecteur dont la densté de probablté est donnée par : f(x ; x ) = e x x + (e x + e x e x x ) I R (x ; x ), + La copule assocée C (u ; u ) a pour densté : c(u ; u ) = [+ ( u ) ( u )]I [0;] (u ; u ) ) our = :75 ; p = 4; q = 5 et ' = (t ), on obtent la partton optmale suvante : [0; :[ [:; :4[ [:4; :6[ [:6; :8[ [:8; ] ; [0; :5[ :075 :0388 :0500 :06 :075 [:5; :5[ :045 :0463 :0500 :0537 :0575 [:5; :75[ :0575 :0538 :0500 :046 :045 [:75; ] :075 :063 :0500 :0387 :075 = 5:60 (sot 89:9% de I (t avec : I (t ) ; classes de R + est donné par le produt des parttons : ) (X ; X )). Le chox optmal de [0; :3[; [:3; :5[; [:5; :96[; [:96; :609[; [:609; [, pour X et [0; :9[; [:9; :69[; [:69; :38[; [:38; [; pour X ) our = :75 ; p = 4 et q = 6 et ' = t ln t, l vent : [0; :59[ [:59; :37[ [:37; :500[ [:500; :673[ [:673; :84[ [:84; ] ; [0; :4[ :00 :089 :0377 :0458 :056 :057 [:4; :500[ :0345 :0390 :049 :0458 :0476 :0478 [:500; :757[ :0478 :0476 :0459 :049 :0390 :0344 [:757; ] :057 :056 :0458 :0376 :089 :00 avec I t ln t ; = :930 (90% de I t ln t (X ; X )). References [] Aczél, J. and Daróczy, Z. (975), On measures of nformaton and ther characterzatons, Academc ress New York. 5

6 [] Adhkar, B. and Josh, D.D. (956), Dstance Dscrmnaton et Résumé exhaustf, ublcatons de l Insttut de Statstque de l Unversté de ars, [3] Al, S.M. and Slvey, S.D. (966), A general class of coe cents of dvergence of one dstrbuton from another, J.Roy.Statst.Soc., B.8, 3-4. [4] Bertsekas, D.. (999), Nonlnear rogrammng nd Ed, Athena Scent c, Belmont, Mass. [5] Csszár, I. (967), Informaton-type measures of d erence of probablty dstrbutons and ndrect observatons, Studa Scentarum Mathematcarum Hungarca,, [6] Csszár, I. (97), A class of measures of nformatvty of observaton channels, erodca Mathematca Hungarca, Vol (-4), 9-3. [7] Gavurn, M.K. (963), On the value of Informaton, Vestuk Lenngrad Unversty Seres, 4, Translaton (968), Selected Translatons n Mathematcal Statstcs and robablty, 7 (968), [8] Goël,.K. (98), Informaton measures and Bayesan Herarcchal Models, Departement of Statstcs, urdue Unversty, West Lafayette, Techncal Report, # 8-4. [9] McElece, R.J. (977), The theory of nformaton codng, Encyclopeda of mathematcs and ts applcatons, Addson Wesley. [0] nsker, M.S. (964), Informaton and nformaton stablty of random varables and processes, Holden-Day.. [] A. Rény, A. (96), On measures of entropy and nformaton, roceedngs of the Fourth Berkeley Symposum of Mathematcal Statstcs and robablty, Vol, Berkeley : Unversty of Calforna ress, [] Ser ng, R.J. (980), Approxmaton Theorems of Mathematcal Statstcs, Wley, New York. [3] von Mses, R. (947), On the asymptotc dstrbuton of d erentable statstcal functons, Ann. Math. Statst., 8, [4] Zaka, J. and Zv, M. (973), On functonnals satsfyng a data-processng theorem, IEEE Transactons, IT-9, [5] G. Zoutendjk, G. (960), Methods of feasble drectons, Elsever, Amsterdam and D. VanNostrand, rnceton, N.J. 6

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

Les nombres premiers ( Spécialité Maths) Terminale S

Les nombres premiers ( Spécialité Maths) Terminale S Les nombres premers ( Spécalté Maths) Termnale S Dernère mse à jour : Mercred 23 Avrl 2008 Vncent OBATON, Ensegnant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document de

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire IFT575 Modèles de recherche opératonnelle (RO 7. Programmaton non lnéare Fonctons convees et concaves Sot et deu ponts dans R n Le segment de drote jognant ces deu ponts est l ensemble des ponts + λ( -

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes Snthèse de cours PanaMaths (Termnale S) L ensemble des nombres complees Défntons n pose tel que = 1 { } L ensemble des nombres complees, noté, est l ensemble : z /(, ) = + Le réel est appelé «parte réelle

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Introduction. 1. le modèle de survie de COX utilisé par O. Brandmeyer dans son stage de Master 2 IMOI au Centre de Médecine Préventive de Nancy ;

Introduction. 1. le modèle de survie de COX utilisé par O. Brandmeyer dans son stage de Master 2 IMOI au Centre de Médecine Préventive de Nancy ; Introducton Le groupe de Bo-Statstque a eu une actvté soutenue en 2006-2007. Cette dernère s est concrétsée par des réunons de petts groupes de traval autour de thèmes de recherche partculers et par la

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

Mémento de théorie de l information

Mémento de théorie de l information Mémento de théore de l nformaton Glles Zémor 6 octobre 204 0 Rappels de probabltés Espaces probablsés. Un espace probablsé (Ω, P ) est un ensemble Ω mun d une mesure de probablté P qu est, lorsque Ω est

Plus en détail

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010.

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010. Master 1ère année de Mathématques Analyse Numérque - Projet A rendre au plus tard le jour de l examen fnal, en Janver 2010. CMI, Unversté de Provence Année 2009-2010 Ce qu vous est demandé : Rédger les

Plus en détail

Modèles stochastiques. Chaîne de Markov en temps continu

Modèles stochastiques. Chaîne de Markov en temps continu odèles stochastues Chaîne de arkov en temps contnu Dans le chapître précédent sur les chaînes de arkov, les moments (temps) t etaent dscrets ( t =,, ). antenant, nous allons analyser des stuatons où les

Plus en détail

L'INDUCTION ON5WF (MNS)

L'INDUCTION ON5WF (MNS) 'IDUCTIO ème parte / O5WF (MS) Dans la ère parte de cet artcle, nous avons vu qu'un courant électrque donnat leu à un champ magnétque (expérence d'oersted). ous avons ensute vu comment Faraday, après avor

Plus en détail

Support Vector Machines (SVM)

Support Vector Machines (SVM) Ecoe Centrae de Lyon Cours: SVM Support Vector Machne Séparateurs à Vastes Marges Par : Lmng Chen Lmng.chen@ec-yon.fr 9/03/007 Ecoe Centrae de Lyon Support Vector Machnes SVM Une méthodooge d nférence

Plus en détail

T.P. 5 Exercice 1 Distribution normale

T.P. 5 Exercice 1 Distribution normale T.P. 5 Exercce 1 Dstrbuton normale Connassances préalables : Buts spécfques : Outls nécessares : Noton de moyenne, varance et écart type. Acquérr la noton de dstrbuton normale et ses caractérstques. Paper,

Plus en détail

T.P. 5 Exercice 1 Distribution normale

T.P. 5 Exercice 1 Distribution normale T.P. 5 Exercce 1 Dstrbuton normale Corrgé Connassances préalables : Buts spécfques : Outls nécessares : Noton de moyenne, varance et écart type. Acquérr la noton de dstrbuton normale et ses caractérstques.

Plus en détail

Analyses de sensibilité et Recalage de modèles thermiques spatiaux à l aide d algorithmes génétiques.

Analyses de sensibilité et Recalage de modèles thermiques spatiaux à l aide d algorithmes génétiques. Analyses de sensblté et Recalage de modèles thermques spataux à l ade d algorthmes génétques. Approches stochastques et Industre 2&3/02/2006 F.JOUFFROY/A.CAPITAINE Plan de la présentaton Contexte Modélsaton

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

Exercices sur la géométrie plane

Exercices sur la géométrie plane Eercces sur la géoétre plane Sot un trangle équlatéral et M un pont ntéreur au trangle n note H, K, L les projetés orthogonau respectfs de M sur les tros côtés éontrer que la soe MH + MK + ML est constante

Plus en détail

La décomposition en valeurs singulières: un outil fort utile

La décomposition en valeurs singulières: un outil fort utile La décomposton en valeurs sngulères: un outl fort utle Références utles: 1- Sonka et al.: sectons 3.2.9 et 3.2.1 2- Notes manuscrtes du cours 3- Press et al: Numercal recpes * Dernère révson: Patrck Hébert

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

) = n. ) = 2n. D - Inférence Statistique - Estimation et Tests d hypothèses 5. Tests du Khi-deux (non paramétrique) Loi du Chi-deux (χ 2 n

) = n. ) = 2n. D - Inférence Statistique - Estimation et Tests d hypothèses 5. Tests du Khi-deux (non paramétrique) Loi du Chi-deux (χ 2 n 5. Tests du Kh-deux (non paramétrque) Lo du Ch-deux (χ n ) à n degrés de lberté (ddl) S X 1, X,..., X n, sont n varables ndépendantes, suvant toutes une lo normale N (0,1), la varable χ n = X 1 + X + +

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

ANALYSE DE LA VARIANCE. Pierre-Louis GONZALEZ

ANALYSE DE LA VARIANCE. Pierre-Louis GONZALEZ ANALYSE DE LA VARIANCE Perre-Lous GONZALEZ ANALYSE DE LA VARIANCE Introducton Comparason des moyennes de pluseurs populatons Interprétaton statstque de résultats recuells à l ade d une stratége d expérmentaton

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

Méthode de Vogel Modifiée pour la résolution du problème de transport simple

Méthode de Vogel Modifiée pour la résolution du problème de transport simple Appled Mathematcal Scences, Vol. 5, 2011, no. 48, 2373-2388 Méthode de Vogel Modfée pour la résoluton du problème de transport smple Salmata G. Dagne Département de Mathématques Unversté Chekh Anta Dop,

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Chaptre 9 Corrélaton et régresson lnéare 1. La corrélaton lnéare Chap 9. 1. La corrélaton lnéare. La régresson lnéare 1.1) Défntons L étude statstque d'une populaton peut porter smultanément sur pluseurs

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (!

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (! Courant alternatf Dr F. Raemy La tenson alternatve et le courant alternatf ont la représentaton mathématque : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Une résstance dans un crcut à courant

Plus en détail

Introduction à l Analyse de Données Longitudinales

Introduction à l Analyse de Données Longitudinales Introducton à l Analyse de Données Longtudnales Pr Roch Gorg roch.gorg@unv-amu.fr SESSTIM, Faculté de Médecne, Ax-Marselle Unversté, Marselle, France http://sesstm-orspaca.org http://optm-sesstm.unv-amu.fr/

Plus en détail

Chapitre 5: La programmation dynamique

Chapitre 5: La programmation dynamique Chaptre 5: La programmaton dynamque. Introducton La programmaton dynamque est un paradgme de concepton qu l est possble de vor comme une améloraton ou une adaptaton de la méthode dvser et régner. Ce concept

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

publicitaires Section 4. Oligopole et stratégie publicitaire 1) Dépenses publicitaires et stratégie concurrentielle 3) Oligopole et dépenses d

publicitaires Section 4. Oligopole et stratégie publicitaire 1) Dépenses publicitaires et stratégie concurrentielle 3) Oligopole et dépenses d Secton 4. Olgopole et stratége publctare 1) Dépenses publctares et stratége concurrentelle 2) Monopole et dépenses d publctares 3) Olgopole et dépenses d publctares 1) Dépenses publctares et stratége concurrentelle

Plus en détail

Partie I: Différences finies avec centrage partiel

Partie I: Différences finies avec centrage partiel U. PARIS VI et ÉCOLE POLYTECHNIQUE 7 anver 04 Spécalté Probablté et Fnance du Master de Scences et Technologe EXAMEN DU COURS ANALYSE NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES EN FINANCE verson 03/0/04

Plus en détail

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent CHAPITRE V Formes dfférentelles sur les varétés I. Espace tangent Sot M une varété dfférentable de dmenson n et U = (U, ϕ ) I un atlas de M. On note par ϕ j := ϕ ϕ 1 j le dfféomorphsme entre les ouverts

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

Détection et suivi de visages par Support Vector Machine robustes aux changements d échelle

Détection et suivi de visages par Support Vector Machine robustes aux changements d échelle Détecton et suv de vsages par Support Vector Machne robustes au changements d échelle Lonel CARMINATI Drectrce de Thèse : Jenny Benos-Pneau Projet Analyse et Indeaton Vdéo lcarmna@labr.fr http://www.labr.fr/recherche/imageson/aiv/

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

ÉCHANTILLON REPRÉSENTATIF (D UNE POPULATION FINIE) : DÉFINITION STATISTIQUE

ÉCHANTILLON REPRÉSENTATIF (D UNE POPULATION FINIE) : DÉFINITION STATISTIQUE ÉCHANTILLON REPRÉSENTATIF (D UNE POPULATION FINIE) : DÉFINITION STATISTIQUE ET PROPRIÉTÉS Léo Gervlle-Réache, Vncent Coualler To cte ths verson: Léo Gervlle-Réache, Vncent Coualler. ÉCHANTILLON REPRÉSENTATIF

Plus en détail

Banque d exercices pour le cours de "mise à niveau" de statistique de M1 AgroParisTech

Banque d exercices pour le cours de mise à niveau de statistique de M1 AgroParisTech Banque d exercces pour le cours de "mse à nveau" de statstque de M1 AgroParsTech Instructons pour les exercces 1. Lorsque ren n est précsé, on suppose que la dstrbuton étudée est gaussenne. Pour les exercces

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA)

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Unversté d Orléans Econométre des Varables Qualtatves Chaptre 3 Modèles à Varable Dépendante Lmtée Modèles Tobt Smples et Tobt Généralsés Chrstophe Hurln

Plus en détail

Cours 2. Méthode des différences finies Approche stationnaire

Cours 2. Méthode des différences finies Approche stationnaire Cours Méthode des dfférences fnes Approche statonnare Technque de dscrétsaton en D Constructon du système Prse en compte des condtons aux lmtes Noton de convergence Extenson au D Verson 09/006 (E.L.) NF04

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

gaussien pour l analyse de sensibilité d une sortie spatiale d un code de calcul

gaussien pour l analyse de sensibilité d une sortie spatiale d un code de calcul Utlsaton du métamodèle processus gaussen pour l analyse de sensblté d une sorte spatale d un code de calcul Applcaton à un code de transport hydrogéologque ologque Amandne Marrel Thèse effectuée au LMTE

Plus en détail

DÉCOMPOSITION ATOMIQUE DES ESPACES DE BERGMAN

DÉCOMPOSITION ATOMIQUE DES ESPACES DE BERGMAN Publcacons Matemàtques, Vol 39 (1995), 285 299. DÉCOMPOSITION ATOMIQUE DES ESPACES DE BERGMAN F. Symesak Abstract The am of ths paper s to establsh the theorem of atomc decomposton of weghted Bergman spaces

Plus en détail

MODELISATION DES PROCESSUS LINEAIRES

MODELISATION DES PROCESSUS LINEAIRES MDELISATIN DES PRCESSUS LINEAIRES Dans un premer temps, nous ne consdérons que des processus partculers, supposés notamment statonnare. Cec permet de présenter un certan nombre d'outls dans un cadre relatvement

Plus en détail

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B 1 ère S1 ontrôle du mard 1 janver 01 ( heures 0) Le barème est donné sur 0. Parte B Pour la fabrcaton d un lvre, un mprmeur dot respecter sur chaque page des marges de cm à drote et à gauche, cm en haut

Plus en détail

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles La fournture de bens et facteurs publcs en présence de ménages et d entreprses mobles Pascale Duran-Vgneron évrer 007 Le modèle On suppose un pays drgé par un gouvernement central ayant compétence sur

Plus en détail

Analyse Statistique cas des petits nombres

Analyse Statistique cas des petits nombres Analyse Statstque cas des petts nombres Jérôme Govnazzo - CEBG govnaz@cenbg.np3.fr Ecole Jolot-Cure Segnosse 008 Analyse statstque cas des petts nombres I. Introducton II. Calcul des probabltés concepts

Plus en détail

UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL

UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL Yohan KABLA ECP - 3 EME ANNEE MAP SMF UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL 5 MAI NOVEMBRE 00 MAITRES DE

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Proposition d'une solution au problème d initialisation cas du K-means

Proposition d'une solution au problème d initialisation cas du K-means Proposton d'une soluton au problème d ntalsaton cas du K-means Z.Guelll et L.Zaou, Unversté des scences et de la technologe d Oran MB, Unversté Mohamed Boudaf USTO -BP 505 El Mnaouer -ORAN - Algére g.zouaou@gmal.com,

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle Mrors spérques Doptres spérques Nous allons mantenant aborder des systèmes optques un peu plus complexes, couramment utlsés pour produre des mages. Nous allons commencer par étuder un mror spérque de façon

Plus en détail

Comparaison de méthodes d ajustement d une distribution de Weibull à 3 paramètres sur une base de données de mesures de ténacité

Comparaison de méthodes d ajustement d une distribution de Weibull à 3 paramètres sur une base de données de mesures de ténacité Comparason de méthodes d ajustement d une dstrbuton de Webull à 3 paramètres sur une base de données de mesures de ténacté M. Marquès, N. Pérot, N. Devctor Laboratore de Condute et Fablté des Réacteurs

Plus en détail

Méthodes d étude des circuits linéaires en régime continu

Méthodes d étude des circuits linéaires en régime continu Méthodes d étude des crcuts lnéares en régme contnu Cadre d étude : n réseau électrque (ensemble de dpôles électrocnétques relés par des conducteurs flformes de résstance néglgeable) consttue un crcut

Plus en détail

CHAPITRE 2. La prévision des ventes

CHAPITRE 2. La prévision des ventes CHAPITRE La prévson des ventes C est en foncton des prévsons de ventes que l entreprse détermne la producton, les achats et les nvestssements nécessares. La prévson des ventes condtonne l ensemble de la

Plus en détail

Soutien : Modèle de Potts mars 2015

Soutien : Modèle de Potts mars 2015 Année 04 05 Physque Statstque hors équlbre et transtons de phase Souten : Modèle de Potts mars 05 On onsdère une varante du modèle d Isng, dte de Potts, dans laquelle les N degrés de lberté (qu on appellera

Plus en détail

Organisation et optimisation des données pour l apprentissage de structure d un réseau bayésien multi-entités

Organisation et optimisation des données pour l apprentissage de structure d un réseau bayésien multi-entités Organsaton et optmsaton des données pour l apprentssage de structure d un réseau bayésen mult-enttés 1 1 3 H. Bouhamed, A. Reba,. Lecroq, M. Jaoua 1 3 Laboratore d'informatque, du ratement de l'informaton

Plus en détail

Ecole Nationale d Ingénieurs de Brest. Module Qualité et Fiabilité. Les Plans d Expériences

Ecole Nationale d Ingénieurs de Brest. Module Qualité et Fiabilité. Les Plans d Expériences Notes de cours Ecole Natonale d Ingéneurs de Brest Module Qualté et Fablté Les Plans d Expérences Cours proposé par M. Parenthoën année 2002-2003 enb c mp2003....... 1 Plan du cours Plans d Expérences

Plus en détail

Estimateurs MCD de localisation et de dispersion: définition et calcul. Fauconnier Cécile Université de Liège

Estimateurs MCD de localisation et de dispersion: définition et calcul. Fauconnier Cécile Université de Liège Estmateurs MCD de localsaton et de dsperson: défnton et calcul Fauconner Cécle Unversté de Lège Plan de l eposé 2 Introducton: Pourquo les estmateurs robustes? Estmateur MCD : défnton Algorthmes appromatfs

Plus en détail

10.1 Inférence dans la régression linéaire

10.1 Inférence dans la régression linéaire 0. Inférence dans la régresson lnéare La régresson lnéare tente de modeler le rapport entre deux varables en adaptant une équaton lnéare avec des données observées. Chaque valeur de la varable ndépendante

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

Modèle de régression linéaire: cas bivarié

Modèle de régression linéaire: cas bivarié U. Pars Ouest, M1 - Cours de Modélsaton Applquée Modèle de régresson lnéare: cas bvaré Laurent Ferrara Févrer 017 Sot varables contnues X et Y. On observe les untés epérmentales : (, y ), pour = 1,, n.

Plus en détail

Équations différentielles et systèmes dynamiques. Jean-Christophe yoccoz, membre de l institut (Académie des sciences), professeur

Équations différentielles et systèmes dynamiques. Jean-Christophe yoccoz, membre de l institut (Académie des sciences), professeur Équatons dfférentelles et systèmes dynamques Jean-Chrstophe yoccoz, membre de l nsttut (Académe des scences), professeur enseignement Cours : Quelques aspects de la théore des systèmes dynamques quaspérodques

Plus en détail

Evaluation des actions

Evaluation des actions Akrem ISCAE archés nancers : Evaluaton des actons Evaluaton des actons Secton I : Dénton hypothèses et notatons I-- La noton d un act nancer -a- Dénton Un act nancer est tout ben qu un nvestsseur désre

Plus en détail

Statistiques. A) Vocabulaire. B) Caractéristiques de position et de dispersion.

Statistiques. A) Vocabulaire. B) Caractéristiques de position et de dispersion. Statstques A) Vocabulare. Poulaton et ndvdu : La oulaton est l ensemble des ndvdus sur lequel vont orter les observatons. Caractère : Le caractère est la rorété étudée. Le caractère est qualtatf s l n

Plus en détail

Projection démographique

Projection démographique Projecton démographque DESS de démographe: 4-5; Master de démographe (M3) : 5-6 Master de démographe (M3) : 6-7 Manuels Henry, Lous Perspectves démographques. e édton, revue et augmentée. INED, 973. G.Casell,

Plus en détail

I. Fonctionnalités du tableur

I. Fonctionnalités du tableur Olver Coma Macro MRP pour Excel Decembre 1999 I. Fonctonnaltés du tableur I.1. Feulle «Nomenclature «Le tableur propose pluseurs optons à l ouverture du fcher. Cnq boutons apparassent à drote de la feulle

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs Combnason de dres d'experts en élctaton de los a pror. Applcaton à un modèle doseréponse pour Lstera chez la sours. Exposé ApplBugs ISABELLE ALBERT 8 / / 03 INTRODUCTION Cet exposé présente une parte du

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation)

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation) GENESS - Generalzed System for mputaton Smulatons (Système généralsé pour smuler l mputaton) GENESS est un système qu permet d exécuter des smulatons en présence d mputaton. L utlsateur fournt un ensemble

Plus en détail

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés Electrcté II : égmes snusoïdaux et transtores and transent crcut analyss Fasccule d'exercces de Travaux Drgés 5 cours / Séances de TD / 5 séances de TP égmes snusoïdaux Nombre de séances de TD prévues

Plus en détail

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University Économétre 5 e édton Annexes : exercces et corrgés Wllam Greene New York Unversty Édton françase drgée par Dder Schlacther, IEP Pars, unversté Pars II Traducton : Stéphane Monjon, unversté Pars I Panthéon-Sorbonne

Plus en détail

Indicateurs de compétitivité- prix et de performances à l exportation

Indicateurs de compétitivité- prix et de performances à l exportation Décembre 2009 Indcateurs de compéttvté- prx et de performances à Méthodologe Les ndcateurs présentés dans ce document vsent à mesurer en temps réel l évoluton des parts de marché des prncpaux exportateurs

Plus en détail

Mathématiques appliquées à la gestion - TESTS PARAMÉTRIQUES ET NON PARAMÉTRIQUES

Mathématiques appliquées à la gestion - TESTS PARAMÉTRIQUES ET NON PARAMÉTRIQUES IMBS3 - ISCID-CO, ste de Dunkerque, 2015/2016 Mathématques applquées à la geston - TESTS PARAMÉTRIQUES ET NON PARAMÉTRIQUES Fche de Mathématques 3 - Test d ajustement du χ 2. 1 Introducton Certans tests

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

4.5 Intégration Numérique

4.5 Intégration Numérique 4.5 Intégraton Numérque Les ntégrales qu survennent du calcul des matrces élémentares de radeur A k et de masse M k ou du vecteur élémentare r k = (r k ) où r k = fϕ k dx, Ω k sont, avec l'excepton des

Plus en détail

Analyse des Performances des Systèmes CPL par le Biais de la Fonction de Transfert du Réseau Électrique Domestique

Analyse des Performances des Systèmes CPL par le Biais de la Fonction de Transfert du Réseau Électrique Domestique Analyse des Performances des Systèmes CPL par le Bas de la Foncton de Transfert du Réseau Électrque Domestque S. Khedmallah*, L. Boufenneche*, M. Chouk*, H. Blla*, A/H. Bendakr*, et B. Nekhoul* *Laboratore

Plus en détail

Approche de codage conjoint source canal pour l optimisation d une transmission vidéo MPEG-2 sur ADSL

Approche de codage conjoint source canal pour l optimisation d une transmission vidéo MPEG-2 sur ADSL Approche de codage conjont source canal pour l optmsaton d une transmsson vdéo MPEG- sur ADSL M. Zwngelsten-Coln, M. Gharb, M. Gazalet IEMN-DOAE UMR CNRS 85 Unversté de Valencennes Le Mont Houy 59313 Valencennes

Plus en détail

Chapitre 1: Les choix du consommateur Chapitre 4 du livre de Perloff

Chapitre 1: Les choix du consommateur Chapitre 4 du livre de Perloff Chaptre : Les chox du consommateur Chaptre 4 du lvre de Perloff. La contrante budgétare (CB. Introducton. L ensemble budgétare.3 Le taux margnal de transformaton (TMT du consommateur.4 Effets de changements

Plus en détail

Chapitre 2 : Energie potentielle électrique. Potentiel électrique

Chapitre 2 : Energie potentielle électrique. Potentiel électrique 2 e BC 2 Energe potentelle électrque. Potentel électrque 12 Chaptre 2 : Energe potentelle électrque. Potentel électrque 1. Traval de la orce électrque a) Expresson mathématque dans le cas du déplacement

Plus en détail

Ajustement affine par les moindres carrés

Ajustement affine par les moindres carrés 1. Nveau Termnales STG et ES Ajustement affne par les mondres carrés 2. Stuaton-problème proposée Introducton à la méthode des mondres carrés. 3. Support utlsé Tableur et calculatrce. 4. Contenu mathématque

Plus en détail

Méthode des résidus pondérés

Méthode des résidus pondérés Produt propre d un opérateur Méthode des résdus pondérés Ecrture d un opérateur u avec Ω les coordonnées spatales x, y, z p dans Ω Pour un opérateur lnéare u u u u avec α, β des nombres quelconques Pour

Plus en détail

L ensemble des modalités ou des classes des modalités de X

L ensemble des modalités ou des classes des modalités de X Module statstque et probabltés_ parte 2 Zahra ROYER B _ Etude des dstrbutons d un caractère quanttatf : Sans perte de généralté : à la place de varable statstque, on va utlser le terme courant chez les

Plus en détail

Factorisation. Résolution de

Factorisation. Résolution de Factorsaton LU Pour smpl er la présentaton de l'algorthme, on ne va pas tenr compte d'éventuelles permutatons, n de l'ntalsaton des lu() de Sclab c. help lu. Note la commande permutatons, Factorsaton LU

Plus en détail

2. Loi de propagation des erreurs (cas simples)

2. Loi de propagation des erreurs (cas simples) Lycée Blase-Cendrars/Physque/Labos/DC///04 Labos de physque : Mesures - Propagaton d erreurs - Mesures répéttves - Statstques. Prncpe de la mesure en physque Une mesure est toujours mprécse. La précson

Plus en détail

Exercices Électrocinétique

Exercices Électrocinétique ercces Électrocnétque alculs de tensons et de courants -21 éseau à deu malles Détermner, pour le crcut c-contre, l ntensté qu 1 2 traverse la résstance 2 et la tenson u au bornes de la résstance 3 : 3

Plus en détail