Quelques inégalités classiques

Dimension: px
Commencer à balayer dès la page:

Download "Quelques inégalités classiques"

Transcription

1 Quelques iégalités classiques O se propose de motrer, sous forme d exercices, quelques iégalités classiques. Les preuves de ces iégalités e écessitet que quelques coaissaces élémetaires.. Exercices classiques et mois classiques L iégalité suivate est souvet utilisée. Exercice. Motrer que pour tous réels positifs a, b o a : Das quel cas l égalité est-elle réalisée? Solutio. Il suffit de remarquer que : ab a + b. a b = a ab + b 0 l égalité état réalisée si, et seulemet si, a = b. E e déduit la suivate. Exercice. Motrer que pour tous réels strictemet positifs a, b o a : Das quel cas l égalité est-elle réalisée? a + b ab. Solutio. Cette iégalité s écrit : a b a + b et l égalité état réalisée si, et seulemet si, a = b. Exercice.3 Motrer que :. pour tous réels positifs a et b o a a + b a + b ; 3

2 4 Quelques iégalités classiques. pour tous réels a et b o a a b a b. O étudiera les cas d égalité. Solutio.3. O a : a + b = a + b a + ab + b a + b ce qui équivaut à a + b a + b puisque toutes les quatités mises e jeux sot positives. L égalité est réalisée si, et seulemet si, a + b = a + ab + b, ce qui équivaut à a = 0 ou b = 0.. E utilisat la questio précédete, o a : { a = a b + b a b + b b = b a + a a b + a doc : ce qui équivaut à : a b a b a b a b a b. Exercice.4. Motrer que pour tous réels x, y o a : x + y 4xy.. Motrer que pour tous réels strictemet positifs a, b, c, o a b + c c + a a + b 8abc. 3. E déduire que a + b + c a + b + 9. c Solutio.4. Pour tous réels x, y o a :. Doc, pour a, b, c positifs : et b + c c + a a + b 8abc. 3. E otat S = a + b + c, o a : x + y 4xy = x y 0. b + c c + a a + b 4bc4ca4ab = 8 a b c b + c c + a a + b = S a S b S c = S 3 a + b + c S + ab + bc + ac S abc = ab + bc + ac S abc 8abc soit : ab + bc + ac S 9abc

3 Exercices classiques et mois classiques 5 et divisat par abc > 0, o obtiet : a + b + a + b + c 9. c O peut aussi utiliser les iégalités etre moyees harmoique, géométrique et arithmétique paragraphe.4 : 3 a + b + c 3 abc a + b + c 3 qui doe directemet : a + b + a + b + c 9. c Exercice.5 O se propose de gééraliser les résultats l exercice précédet. O se doe u etier et des réels strictemet positifs a,, a.. Détermier le ombre de couples i, j d etiers tels que i < j.. Motrer que, pour tout etier, o a : i<j a i a j = a k. 3. Motrer que : i<j a i + a j a k. Solutio.5. L esemble de ces couples est : E = {,,, 3,,,,, 3,,,,,, } et le ombre d élémets de E est : = pour i fixé etre et il y a i possibilités pour j.. O procède par récurrece sur. Pour =, o a : a i a j = a a i<j et supposat le résultat acquis au rag, o a : i<j + a i a j = i<j a i a j = a k a a a + = i= + a i a + a k

4 6 Quelques iégalités classiques 3. Pour i < j, o a : et : ce qui doe : i<j a i + a j 4 i<j a i + a j 4a i a j. a i + a j i<j a i a j = a k a k Pour =, o a l iégalité a + a a a et pour = 3, o retrouve l exercice précédet. 4. E utilisat les iégalités etre moyees harmoique, géométrique et arithmétique paragraphe.4, o peut gééraliser la deuxième iégalité de l exercice précédet. De : a k a k o déduit que : a k a k a k. O peut aussi utiliser l iégalité de Cauchy-Schwarz paragraphe. pour écrire que : = ak a k. ak a k Exercice.6 Motrer que pour tous réels a, b, c, o a b c + c a + a b abc a + b + c. Solutio.6 O a : 0 a b c + b a c + c a b = b c + c a + a b abc a + b + c Exercice.7 Motrer que pour tous réels strictemet positifs a, b, c, o a :. Quad y-a-t il égalité? ab a + b + bc b + c + ca c + a a + b + c. Solutio.7 Pour x, y réels strictemet positifs, o a : xy x + y x + y 4 qui est équivalet à x + y 4xy = x y 0. Il e résulte que : ab a + b + bc b + c + ca c + a a + b + b + c + a + c = a + b + c

5 Exercices classiques et mois classiques 7 Exercice.8 Soit x, x,, x des réels das [0, ]. Motrer que : Solutio.8 Notos : u = x k x k. x k et v = x k. Pour =, o a u = v. Supposat le résultat acquis au rag et teat compte de x + 0, o a : u + = u x + x k x + x k x + + x + puisque tous les x k sot positifs. + x k x k = v +. Exercice.9 Motrer que si a a a > 0 et b b b > 0, alors : k b k a k b k. a Solutio.9 O procède par récurrece sur. Pour =, o a l égalité a b = a b. Supposos le résultat acquis au rag. O se doe deux suites croissates a k k + et b k k + de réels positifs. O a : + + a k b k = k b k a + +a + b k + b + a k + a + b + + a k b k + a + b k + b + a k + a + b + et l iégalité : a k b k + a k b k sera réalisée si : soit si : a + b k + b + a k + a + b + a k b k + + a + b + a + b k + b + a k a k b k + a + b +

6 8 Quelques iégalités classiques ou : ou : ou : qui est bie vérifiée. a + b k + b + a k a k b k + a + b + a + a k b k b + a + a k b + b k a + a k 0. L iégalité de Cauchy-Schwarz Pour tout etier, o ote x, x,, x les coordoées d u vecteur x de R. U tel vecteur sera oté x = x i i. L iégalité de Cauchy-Schwarz se démotre classiquemet comme suit. Exercice.0 O se doe u etier, des réels strictemet positifs ω, ω,, ω et o désige par ϕ la foctio défiie sur R R par : x, y R R, ϕ x, y = ω k x k y k O associe à cette foctio ϕ la foctio q défiie sur R par : x R, q x = ϕ x, x = ω k x k. Exprimer, pour tout réel t et tous vecteurs x, y das R la quatité q x + ty e foctio de t, ϕ x, y, q x et q y.. Rappeler à quelle coditio portat sur les réels a, b, c, le réel a état o ul, u polyôme de degré, P t = at + bt + c, est à valeurs positives ou ulles. 3. E remarquat que pour x, y fixés das R \ {0}, la foctio : P : t q x + ty est polyomiale de degré, motrer l iégalité de Cauchy-Schwarz : ω k x k y k ω k x k ω k yk Préciser das quel cas l égalité est réalisée. 4. E déduire l iégalité de Mikowski : ω k x k + y k Préciser das quel cas l égalité est réalisée. ω k x k + ω k y k

7 L iégalité de Cauchy-Schwarz 9 Solutio.0 Laissée au lecteur. O peut aussi démotrer simplemet cette iégalité, das le cas où tous les ω k valet, comme suit. Exercice.. Motrer que pour tous réels x, y, o a : xy x + y.. O se doe u etier, des réels x,, x o tous uls et des réels y,, y o tous uls. O ote A = x k et B = yk. a Motrer que pour tout etier k compris etre et, o a : x k y k B A x k + A B y k. b E déduire l iégalité de Cauchy-Schwarz : x k y k Solutio. x k yk.. Résulte de x y = x + y xy 0 pour tous réels x, y.. Comme les x k [resp. les y k ] e sot pas tous uls, o a A > 0 et B > 0. xk a Preat x, y = A, y k das l iégalité précédete, o a : B x k y k A B x k A + y k B et multipliat cette iégalité par AB > 0, o e déduit que x k y k B A x k + A B y k. b E additioat ces iégalités, o obtiet : x k y k B x k + A yk A B avec x k = A et yk = B, ce qui doe : x k y k B A A + A B B = AB = x k yk.

8 0 Quelques iégalités classiques Exercice. O se doe u etier et des réels x,, x tous o uls. Motrer que :. E déduire que : Solutio. x k k x k L iégalité de Cauchy-Schwarz ous doe : = x k x k ecore équivalet à l iégalité proposée. x k x k. Preat x k = k pour tout k compris etre et, o e déduit que : k k et avec k = + +, o e déduit que : 6 k Exercice.3 Motrer que pour tout etier, o a : k k Solutio.3 L iégalité de Cauchy-Schwarz ous doe : k k k k avec k = + et k = k k + +, ce qui doe : =

9 Iégalité de Beroulli.3 Iégalité de Beroulli Exercice.4 Motrer que pour tout réel a > et tout etier aturel, o a + a + a iégalité de Beroulli. Préciser das quel cas l égalité est réalisée. Solutio.4 Pour = 0 ou =, o a + a = + a pour tout réel a. O suppose doc que. O désige par P la foctio polyomiale défiie par : P x = x x = x x +. O a P = 0 et, e posat x = a +, il s agit de motrer que P x > 0 pour tout x D = R +, \ {}. Avec P x = x > 0 et : P + x = P x + x x = P x + x x k > P x pour tout et tout x D, le résultat se déduit par récurrece sur. Ue autre démostratio cosiste à remarquer que pour tout x ]0, [ [resp. x ], + [], o a P x = x < 0 [resp. P x > 0]. La foctio P est strictemet décroissate sur ]0, [ et strictemet croissate sur ], + [ avec P = 0, ce qui implique P x > 0 pour tout x D. O peut aussi écrire que pour tout x D o a : k=0 P x = x x = x x k k=0 k = x x j > 0. j=0 Pour et a 0, cette iégalité peut se motrer très facilemet e utilisat la formule du biôme de Newto comme suit : + a = Ca k k Ca Ca = + a. k=0 L iégalité de Beroulli peut être gééralisée comme suit. Exercice.5 Pour tout etier, o désige par D la partie de R défiie par : D = ], 0[ ]0, + [. Motrer que : a = a,..., a D, + a k > + a k. Solutio.5 E posat x k = + a k pour tout etier k compris etre et et : = ]0, [ ], + [

10 Quelques iégalités classiques il s agit de motrer que : Avec : x = x,..., x, P x = x k x k + > 0. P x = x x x + x + = x x > 0 pour tout x D si x ]0, [ alors x et x sot strictemet égatifs et si x ], + [ alors x et x sot strictemet positifs et : P + x, x + = x + x k + P x > P x pour tout x, x + D + le résultat se déduit par récurrece sur..4 L iégalité de Cauchy Pour tout etier et tout x = x,..., x R +,, o ote respectivemet : A x = x k, G x = x k = x k, H x = les moyees arithmétique, géométriques et harmoiques des réels x,..., x. Pour =, o a A x = G x = H x = x pour tout réel o ul x. O suppose doc das ce qui suit que. Remarque. O a : où y = x k. k H x = A y Le théorème qui suit va ous permettre de comparer ces trois moyees. x k Théorème. Cauchy Pour tout etier, et tout -uplet de réels strictemet positifs x,, x, o a : x k x k avec égalité si, et seulemet si, x = = x. Démostratio. E utilisat la stricte cocavité de la foctio l sur R +,, o a : l G x = l x k l x k = l A x, l égalité état réalisée si, et seulemet si tous les x i sot égaux. E utilisat la croissace stricte de la foctio exp, o déduit que G x A x, l égalité état réalisée si, et seulemet si tous les x i sot égaux. Pour = o retrouve l iégalité x x x + x coséquece de la positivité de x x.

11 L iégalité de Cauchy 3 Corollaire. Pour tout etier, et tout -uplet de réels strictemet positifs x,, x, o a : H x G x A x l ue des égalités H x = G x ou G x = A x état réalisée si, et seulemet si, tous les x i sot égaux. Démostratio. E utilisat la remarque., o a : H x = A y G y = G x A x. L égalité H x = G x équivaut à A y = G y soit à l égalité de tous les x i. Exercice.6 Déduire l iégalité de Beroulli de celle de Cauchy. Solutio.6 Pour a > et a 0, o a : ou ecore + a > + a. + a = A,,..., + a > G,,..., + a = + a L iégalité de Cauchy peut aussi se motrer sas référece à la stricte cocavité de la foctio l comme suit : tout d abord o motre l iégalité G x A x pour les etiers de la forme = p e procédat par récurrece sur p, puis o e déduit le cas gééral. Cette démostratio, due à Cauchy, est détaillée avec l exercice qui suit. Exercice.7. Motrer que, pour tout x = x, x R +,, o a G x A x, l égalité état réalisée si, et seulemet si, x = x.. Soit = p avec p et x = x,..., x doé das R +,. O défiit y = y,..., y et z = z,..., z das R +, par : y k = x k + x k = A x k, x k z k = k = p x k x k = G x k, x k, soit : x + x y =, x 3 + x 4,..., x + x z = x x, x 3 x 4,...,. x x Motrer que A x = A y et G x = G z. 3. O suppose que = p avec p et que l iégalité de Cauchy est vérifiée avec so cas d égalité pour = p. a E utilisat la questio précédete, motrer que G x A x. b Étudier le cas d égalité das l iégalité précédete. 4. Si est u etier supérieur ou égal à, o désige par p u etier aturel o ul tel que < p et o défiit le vecteur y = y k k p das R +, p par : { xk si k, y k = A x si + k p.

12 4 Quelques iégalités classiques a Exprimer G p y et A p y e foctio de G x et A x. b Déduire de ce qui précède le théorème de Cauchy das le cas gééral. Solutio.7. Pour =, o a : G x + x x x x + x x = x x = = A x x x l égalité état réalisée si, et seulemet si, = 0, ce qui équivaut à x = x.. Pour = p avec p, o a : A x = x + x + x 3 + x x + x p 3. et : soit : G x = p = p A p x k, x k = A y. p p G x = x k x k = G x k, x k, p p p G x k, x k = G x k, x k = G z a E utilisat l hypothèse de récurrece, o a : avec : G x = G z A z A z = p G p x k, x k p A p x k, x k = A y le cas = et A y = A x, ce qui doe G x A x. b Avec : G x = G z A z A y = A x, o déduit que si l égalité G x = A x est réalisée, o a alors d ue part A z = A y, soit : p A x k, x k G x k, x k = 0 avec A x k, x k G x k, x k 0 pour tout k compris etre 0 et, ce qui équivaut à A x k, x k = G x k, x k et e coséquece x k = x k le cas d égalité pour = pour tout k compris etre 0 et et d autre part G z = A z qui équivaut à l égalité de tous les z k = x k x k l hypothèse de récurrece avec z k = x k = x k. Les x k sot doc tous égaux si G x = A x. La réciproque est évidete.

13 L iégalité de Cauchy 5 4. a O a : soit : et : p G p p y = y k = x k p k=+ A x = G x A x p, G p y = G x p A x p p p A p y = p y k = x k + p k=+ A x = A x + p A x = p A x, soit A p y = A x. b E utilisat l iégalité G p y A p y et les calculs précédets, o obtiet : G x p A x p = G p y A p y = A x, qui etraîe G x A x. L égalité état réalisée si, et seulemet si, tous les y k, et doc tous les x k, sot égaux. Les exercices qui suivet ous doet quelques exemples d utilisatio des iégalités etre moyees harmoiques, géométriques et arithmétiques. Exercice.8 Soit x u réel o ul. Motrer, sas utiliser la foctio l et e utilisat l iégalité de Cauchy, que la suite u = u défiie par :, u = + x est strictemet croissate à partir d u certai rag. Solutio.8 Pour x = 0, la suite u est statioaire sur. Pour x R, il existe u etier aturel o ul x tel que x + x > 0 pour x > 0, x = et pour x < 0 predre x > x = x. E otat x = E x +, où E désige la foctio partie etière, o a + x > 0 pour tout x et : avec : G + = u + = + x + = + x + x + = G +, + x,..., + x G + < A + = A +, + x,..., + x comme x 0, o a + x et l iégalité de Cauchy est stricte, et : A + = + + x x + = + + x = + x + = u +. O a doc u + < u + + pour tout x, ce qui équivaut à u < u + pour tout x puisque la foctio t t + est strictemet croissate. La suite u x est doc strictemet croissate.

14 6 Quelques iégalités classiques Exercice.9 Motrer que : + < k= k < Solutio.9 L iégalité G x < A x pour x = + = qui doe + < H = k + k k= k. De même l iégalité G x < A x pour x = qui doe H < = + k k + < < < H , 3, 4 3,, + s écrit : k + k = + k, 3, 3 4,, s écrit : + k k + = k + = H + +

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015 Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir

Plus en détail

RECHERCHE DE CLIENTS simplifiée

RECHERCHE DE CLIENTS simplifiée RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2. Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE

Plus en détail

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce

Plus en détail

?,i- ' ^/mmmmmm. CACU ^..""'V ii\teimmies EîiiEsmmii ''?A y? K 1^ 1 - r Par le Moyede Formules Algébriques ) v-^' ET A 'AIDE DES OGARITHMES.../v:?i.'?Xi:: F, X, BURQUE, Ptr. Professeur de MatJu'matiques,

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Une action! Un message!

Une action! Un message! Ue actio! U message! Cotact Master est u service exclusif de relaces automatiques de vos actes vers vos cliets, par SMS, messages vocaux, e-mails, courrier... Il se décleche lorsque vous réalisez ue actio

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Chaînes de Markov. Arthur Charpentier

Chaînes de Markov. Arthur Charpentier Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.

Plus en détail

MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB

MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB MUTUELLE D&O MUTUELLE D&O Copilote de votre saté AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyace CRC CRIS CRPB-AFB DOMISSIMO-Assuraces DOMISSIMO-Services FONGECFA-Trasport IPRIAC MUTUELLE D&O OREPA-Prévoyace

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *)

RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *) RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *) *) Uiversité de Blida Faculté des scieces Départemet de Mathématiques. BP 270, Route de Soumaa. Blida, Algérie. Tel &

Plus en détail

Statistique Numérique et Analyse des Données

Statistique Numérique et Analyse des Données Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques

Plus en détail

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

Le chef d entreprise développe les services funéraires de l entreprise, en

Le chef d entreprise développe les services funéraires de l entreprise, en Le chef d etreprise développe les services fuéraires de l etreprise, e assurat lui-même tout ou partie des activités de vete et e ecadrat directemet le persoel techique et commercial et d exploitatio.

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

Tempêtes : Etude des dépendances entre les branches Automobile et Incendie à l aide de la théorie des copulas Topic 1 Risk evaluation

Tempêtes : Etude des dépendances entre les branches Automobile et Incendie à l aide de la théorie des copulas Topic 1 Risk evaluation Tempêtes : Etude des dépedaces etre les braches Automobile et Icedie à l aide de la théorie des copulas Topic Risk evaluatio Belguise Olivier Charles Levi ACM Guy Carpeter 34 rue du Wacke 47/53 rue Raspail

Plus en détail

One Office Voice Pack Vos appels fixes et mobiles en un seul pack

One Office Voice Pack Vos appels fixes et mobiles en un seul pack Uique! Exteded Fleet Appels illimités vers les uméros Mobistar et les liges fixes! Oe Office Voice Pack Vos appels fixes et mobiles e u seul pack Commuiquez et travaillez e toute liberté Mobistar offre

Plus en détail

Quand BÉBÉ VOYAGE. Guide pratique sur les précautions à prendre

Quand BÉBÉ VOYAGE. Guide pratique sur les précautions à prendre Quad BÉBÉ VOYAGE Guide pratique sur les précautios à predre Vous partez bietôt pour u log voyage avec votre jeue efat. Quelques précautios sot à predre avat, pedat le déplacemet et durat votre séjour.

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

Sommaire Chapitre 1 - L interface de Windows 7 9

Sommaire Chapitre 1 - L interface de Windows 7 9 Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18

Plus en détail

Télé OPTIK. Plus spectaculaire que jamais.

Télé OPTIK. Plus spectaculaire que jamais. Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise

Plus en détail

Logiciel de synchronisation de flotte de baladeurs MP3 / MP4 ou tablettes Androïd

Logiciel de synchronisation de flotte de baladeurs MP3 / MP4 ou tablettes Androïd easylab Le logiciel de gestio de fichiers pour baladeurs et tablettes Visualisatio simplifiée de la flotte Gestio des baladeurs par idividus / classes / groupes / activités Activatio des foctios par simple

Plus en détail

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction A ew adaptive operator of fusio par Fraçois DELMOTTE LAMIH, Uiversité de Valeciees et du Haiaut-Cambrésis, Le Mot Houy, BP 3, 5933 Valeciees CEDEX 9 fdelmott@flore.uiv-valeciees.fr résumé et mots clés

Plus en détail

COMMENT ÇA MARCHE GUIDE DE L ENSEIGNANT 9 E ANNÉE

COMMENT ÇA MARCHE GUIDE DE L ENSEIGNANT 9 E ANNÉE GUIDE DE L ENSEIGNANT 9 E ANNÉE TROUSSE PÉDAGOGIQUE 9 E ANNÉE Le préset Guide de l eseigat, qui accompage la trousse pédagogique COMMENT ÇA MARCHE : PRODUCTION D ÉLECTRICITÉ 9 e aée a été coçu à l itetio

Plus en détail

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de

Plus en détail

Principes et Méthodes Statistiques

Principes et Méthodes Statistiques Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............

Plus en détail

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014 Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

Donnez de la liberté à vos données. BiBOARD. www.biboard.fr

Donnez de la liberté à vos données. BiBOARD. www.biboard.fr Doez de la liberté à vos doées BiBOARD www.biboard.fr Le décisioel pour tous Le décisioel évolue. L etreprise quelle que soit sa taille, a besoi de piloter so activité à l aide d outils simples, fiables,

Plus en détail

Comment les Canadiens classent-ils leur système de soins de santé?

Comment les Canadiens classent-ils leur système de soins de santé? Novembre Les sois de saté au Caada, c est capital bulleti o 4 Commet les Caadies classet-ils leur système de sois de saté? Résultats du sodage iteratioal du Fods du Commowealth sur les politiques de saté

Plus en détail

Initiation à l analyse factorielle des correspondances

Initiation à l analyse factorielle des correspondances Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique

Plus en détail

Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller

Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller Les solutios mi-hypothécaires, mi-bacaires de Mauvie Guide du coseiller 1 2 Table des matières Itroductio... 5 La Baque Mauvie...5 Le compte Mauvie U...5 Le compte Sélect Baque Mauvie...5 1. Les solutios

Plus en détail