Variables aléatoires finies Présentation

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Variables aléatoires finies Présentation"

Transcription

1 Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola Espérace mathématique d ue variable aléatoire fiie Variace et écart type d ue variable aléatoire fiie Ue utilisatio de l écart type... 6 Temps de lecture : 5 miutes par page avec la résolutio de l exercice.

2 . Défiitio élémetaire (tombola) Ue variable aléatoire est u ombre icou sur lequel o a deux types d iformatios : Type I Toutes les valeurs possibles de ce ombre. Type II Les probabilités de chacue de ces valeurs ou, pour importe quel itervalle, les probabilités de les situer das cet itervalle. Exemple : tombola Voici l ivetaire des valeurs possibles des 9 billets qui composet ue tombola : Valeur du billet e Euro Nombre de billets correspodat à la valeur X représete la valeur du billet (choisi au hasard) que vous allez acheter. X est ue variable aléatoire, les deux types d iformatios qui la coceret peuvet être résumés das le tableau suivat: (I) Valeur possible de X : x i 00 /9 50 3/9 0 5/9 0 00/9 Remarque importate (II) Probabilité correspodate: P(X= x i ) P (X = x ) + P(X = x ) + P(X = x 3 ) + P(X = x 4 ) =. P (X = xi ) = ici = 4. Exercice ) Calculer la probabilité pour que X soit au mois égale à 0. ) Calculer la probabilité pour que X soit au plus égale à 50. 3) Calculer la probabilité pour que X soit égale à mois de 50. 4) Calculer la probabilité pour que X soit égale à plus que 0.

3 3. Le prix de vete d'u billet de la tombola Questio Quel doit être le prix de vete d u billet pour que la recette permette de payer exactemet les gais (sas bééfice pour les orgaisateurs de la tombola), tous les billets état supposés vedus? Répose Il faut ecaisser, pour rembourser les billets, le capital suivat : 0 Euro 00+0 Euro 5+50 Euro 3+00 Euro. Il y 9 billets à vedre : le prix du billet est doc : (0Euro 00+0 Euro 5+50 Euro 3+00 Euro )/9 Ce qui s écrit : Euro O obtiet. 9 Remarque Les valeurs possibles de X sot e Euros: x = 0,x = 0,x3 = 50,x4 = 00 avec les probabilités correspodates: P (X = x ) =,P(X = x ) =,P(X = x 3 ) =,P(X = x 4 ) = Le prix de vete du billet e Euros est doé par : 4 x ip(x = xi ) O ote E (X) = xip(x = xi ). O a obteu : E(X) =. 9 E(X) est l'espérace mathématique de la variable aléatoire X représetat la valeur d'u billet de la tombola. Remarque O viet de calculer la moyee de la série statistique qui pred les valeurs (0, 0, 50,00) avec les effectifs respectifs (00, 5, 3,). C est la valeur moyee du billet. Exercice O décide de supprimer tous les billets valat 0 de la tombola de l'exemple. Calculer le prix de vete du billet pour cette ouvelle situatio.

4 4 3. Espérace mathématique d ue variable aléatoire fiie Lorsque l'esemble des valeurs possibles de la variable aléatoire est u esemble fii, la variable aléatoire est dite "fiie". Les valeurs possibles d ue variable aléatoire fiie X sot otées par exemple : x,x,...x P ( X = xi ) désige la probabilité pour X d'être égale à x i pour i =,,... Remarque importate. i O a toujours = P (X = xi) = Défiitio E (X) = x i P(X = x i ) = Ce ombre s appelle l espérace mathématique de la variable aléatoire X. Le prix du billet d ue tombola est l espérace mathématique de la variable aléatoire qui est défiie par cette tombola. Remarque Souvet les valeurs possibles de X sot otées x 0,x,x,...x : P (X = xi ) = et E(X) = xip(x = xi 0 0 Vocabulaire Espérace mathématique se dit parfois : Moyee, valeur prévisioelle, etc. Exercice 3 Voici ue variable aléatoire X (les caractéristiques sot réuies das le tableau suivat) : i Valeur possible de X : x i P(X= x i ) ) Doer la valeur de P (X = 6) ) Calculer l espérace mathématique de X.

5 5 4. Variace et écart type d ue variable aléatoire fiie Soit X ue variable aléatoire dot les valeurs possibles sot désigées par x,x,..., x. Défiitio (Variace) La variace de X est le réel positif V(X) calculé de la maière suivate : V (X) = ] [xi E(X) P(X = xi). Formule de la Variace V(X) = x i P(X = x i ) [E(X)] Vérificatio de la Formule de la Variace V(X) = [ ] [xi E(X) ] P(X xi ) xi xie(x) E(X) = = + P(X = xi ) = [ ] xi P(X = xi ) E(X) xip(x = xi ) + E(X) P(X = xi ) O sait que: x i P(X = x i ) = E(X) et P(X = x i ) =. Doc:V(X) = P(X E(X) E(X) [ E(X) ] xi = xi ) + et V(X) = P(X [ E(X) ] xi = xi ). Défiitio (Ecart type) L'écart type de X est le réel positif : σ (X) = V(X). Exercice 4 Calculer l'écart type de la variable aléatoire défiie das l'exercice 3.

6 6 5. Ue utilisatio de l écart type Voici l ivetaire des valeurs possibles des billets de deux tombolas dot le prix de vete des billets est le même : ère tombola Valeur du billet e Euro ème tombola Nombre de billets correspodat à la valeur Valeur du billet e Euro Nombre de billets associés L espérace mathématique de la variable aléatoire X représetat les valeurs possibles du billet de la ère tombola est : E (X) = = L espérace mathématique de la variable aléatoire Y représetat les valeurs possibles du billet de la ème tombola est : E (Y) = = = Le prix du billet est le même pour les deux tombolas proposées : E(X)=E(Y). Commet choisir? Le calcul de la variace (ou de l écart type) doe u critère de choix. Vocabulaire Das l ambiace des jeux de hasard, ou das la prise de décisio e aveir icertai, l écart type est souvet appelé «risque», ou «risque prévisioel». Le risque est u critère de choix, il doit doc être calculé. La ouvelle tombola est plus attrayate mais elle est plus risquée, cela se traduit par le fait que l écart type de la ouvelle tombola est plus grad que celui de la première. Exercice 5 Calculer la variace et l écart type pour les variables aléatoires représetat les prix des billets des deux tombolas précédetes. Vérifier que la ème tombola est plus risquée.

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

PROBABILITÉS. Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans!.

PROBABILITÉS. Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans!. PROBABILITÉS E 654, Blaise Pascal (63 ; 66) etretiet avec Pierre de Fermat (60 ; 665) des correspodaces sur le thème des jeux de hasard et d'espérace de gai qui les mèet à exposer ue théorie ouvelle :

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

Probabilités élémentaires

Probabilités élémentaires 1. Exemple... p2 4. Lois de probabilité... p7 2. Vocabulaire... p4 5. Variables aléatoires... p8 3. Espaces probabilisés fiis... p4 Copyright meilleuremaths.com. Tous droits réservés 1. Exemple Probabilités

Plus en détail

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne 1 lois usuelles 11 Loi Biomiale B(, p) q = 1 p p(x = k) = C k p k q k Espérace E(X) = p Variace : V ar(x) = pq Écart type : σ = pq 12 Loi de Poisso P(λ) : loi de Poisso de paramètre λ > 0 : X(Ω) = N λ

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

Résumé : Probabilités Niveau : Bac Sciences de l informatique Réalisé par : Prof. Benjeddou Saber

Résumé : Probabilités Niveau : Bac Sciences de l informatique Réalisé par : Prof. Benjeddou Saber Résumé : Niveau : Bac Scieces de l iformatique Réalisé par : Prof. Bejeddou Saber Tableau récapitulatif sur le déombremet: Type du tirage : Simultaé Successif sas remise Successif avec remise U tirage

Plus en détail

Estimation de paramètres

Estimation de paramètres CHAPITRE 8 Estimatio de paramètres 1. Distributio des moyees des échatillos Das ce chapitre, ous étudieros commet est distribué la moyee de tous les échatillos de taille possibles d ue certaie populatio.

Plus en détail

Éléments de correction de la feuille d exercices # 3

Éléments de correction de la feuille d exercices # 3 Uiversité de Rees L SVE Probabilités et statistiques aée 25-26 Élémets de correctio de la feuille d exercices # 3 Exercice Exemple de loi discrète Soit X ue variable aléatoire discrète preat les valeurs

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Expérience aléatoire - modélisation - langage des probabilités

Expérience aléatoire - modélisation - langage des probabilités T.S Probabilités coditioelles L 5 I Expériece aléatoire - modélisatio - lagage des probabilités Ue expériece aléatoire est ue expériece liée au hasard. Les mathématiques itervieet pour apporter u modèle

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

Quelques notions élementaires de probabilités et statistiques

Quelques notions élementaires de probabilités et statistiques Chapitre 6 Quelques otios élemetaires de probabilités et statistiques 6.1 Probabilités U uivers Ω est u esemble modélisat les réalisatios possibles d ue expériece. U esemble A P(Ω) modélise la otio d évéemet

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

B E et Bi Bj pour i j et si A est un evenement de E alors p(a) p(a B ) p(a B )... p(a B ) p(b ) p(a /B ) p(b ) p(a /B )... p(b ) p(a /B ).

B E et Bi Bj pour i j et si A est un evenement de E alors p(a) p(a B ) p(a B )... p(a B ) p(b ) p(a /B ) p(b ) p(a /B )... p(b ) p(a /B ). Rappel : (E,p(E),p) est u espace probabilisé fii. O a: p(e), p( ), p(a) p(a), p(a B) p(a) p(b) p(a B) Probabilité coditioelle : A et B sot deux évèemets tels que p(b). p(a B) p(a / B) et doc p(a B) p(b)

Plus en détail

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1.

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1. Statistiques iféretielles Pierre-Heri WUILLEMIN Licece d Iformatique Uiversité Paris 6 Itroductio Soit ue populatio de taille N sur laquelle o observe ue propriété, dot o veut calculer moyee µ et de variace

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

Lois normales et autres lois dérivées

Lois normales et autres lois dérivées Lois ormales et autres lois dérivées - Lois ormales a) - Défiitio O dit qu'ue variable aléatoire réelle X suit la loi ormale (ou gaussiee) de paramètres et, otée N ( ; ), si elle admet pour desité la foctio

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

Techniques d enquête

Techniques d enquête Sodage aléatoire simple Techiques d equête Exercice 1 Sur les 500 élèves de M1 de l Uiversité d Auverge, o veut coaître la proportio P qui souhaitet faire u Master à Clermot-Ferrad. Parmi les 150 élèves

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice 1 - Loi d u dé truqué - Deuxième aée - 1. X pred ses valeurs das {1,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque

Plus en détail

SESSION 2012 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2012 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 202 BACCALAURÉAT TECHNOLOGIQUE Scieces et Techologies de la Gestio Commuicatio et Gestio des Ressources Humaies MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficiet : 2 Dès que le sujet lui est

Plus en détail

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim NOM : Termiale S- ABC S3 ludi ovembre 06 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie. Le sujet est composé de 5 eercices idépedats.

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne :

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne : I. Itroductio. LOIS NORMALES. Voici quelques exemples de courbes proveat de la vie quotidiee : La répartitio du QI das la populatio Le poids d ue populatio de chatos Répartitio des coscrits e 1907 Age

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

Convergence en loi. Théorème de la limite centrale.

Convergence en loi. Théorème de la limite centrale. Uiversité Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 10 (semaie du 2 au 6 décembre 2013 Covergece e loi. Théorème de la limite cetrale. Covergece e loi 1. Soiet (X N ue

Plus en détail

Bac Blanc de Mathématiques T STMG

Bac Blanc de Mathématiques T STMG Nom : Préom : Classe : Bac Blac de Mathématiques T STMG Mars 2014 Les 4 exercices ci-dessous sot idépedats. L utilisatio d ue calculatrice persoelle est autorisée. Vous utiliserez cet éocé de 4 pages e

Plus en détail

Chapitre II: Notions sur les fautes et les erreurs.

Chapitre II: Notions sur les fautes et les erreurs. Chapitre II: Notios sur les fautes et les erreurs. Chapitre II: Notios sur les fautes et les erreurs.. Gééralités Mesurer c'est l'actio de comparer ue gradeur (quatité) par rapport à ue gradeur de même

Plus en détail

Calcul des probabilités 2 (M-2.1)

Calcul des probabilités 2 (M-2.1) Calcul des probabilités (M-.) I. Probabilités sur u esemble fii. Défiitios Défiitio Ue expériece aléatoire est ue expériece dot il est impossible de prévoir l issue (mais o coaît toutes les issues possibles)

Plus en détail

TD 4 : Variables aléatoires discrètes

TD 4 : Variables aléatoires discrètes MA40 : Probabilités TD 4 : Variables aléatoires discrètes Exercice Soit N u etier aturel supérieur ou égal à.. Motrer les égalités suivates : N k k N N + ) N k k N N + ) N + ). Ue ure cotiet ue boule blache

Plus en détail

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3 Tests Chapitre Table des matières 1 Pricipe d u test 1 11 Défiitios 1 Méthode géérale 3 Test de coformité à u paramètre 3 1 Test de coformité à ue moyee 3 Test de coformité à ue proportio 4 3 Test d homogééité

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

Echantillon : Collection d'individus prélevés dans la population statistique.

Echantillon : Collection d'individus prélevés dans la population statistique. SONDAGE (ECHANTILLONNAGE) POPULATION STATISTIQUE N idividus possédat ue modalité yi de la (ou des) variable(s) y ( i N) PARAMETRES valeur cetrale dispersio corrélatio µ σ² ρ moyee variace coef. corr. ECHANTILLON

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

CH V : Variables aléatoires - généralités

CH V : Variables aléatoires - généralités CH V : Variables aléatoires - gééralités I. Notio de variable aléatoire réelle Soit (Ω, A ) u espace probabilisable. O dit que X est ue variable aléatoire réelle défiie sur (Ω, A ) si : (i) X est ue applicatio

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

CHAPITRE 4 Paramètres d'une série statistique

CHAPITRE 4 Paramètres d'une série statistique Cours de Mathématiques Classe de secode Statistiques CHAPITRE 4 Paramètres d'ue série statistique A) Diverses sortes de séries statistiques 1) Défiitio Ue série statistiques est u esemble de ombres, représetat

Plus en détail

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h.

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h. Coceptio : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES mai 07, de 8 h à h La présetatio, la lisibilité, l orthographe, la qualité de la rédactio, la clarté et la précisio des raisoemets etrerot pour ue part

Plus en détail

Covariance et ajustement affine par la méthode des moindres carrés

Covariance et ajustement affine par la méthode des moindres carrés Uiversité de Poitiers - 205-206 A. Moreau Algèbre - Géométrie M MEEF Covariace et ajustemet affie par la méthode des moidres carrés Das tout le documet, la lettre désige u etier aturel o ul. Les deux parties

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

Utilisation en modélisation. Régression linéaire

Utilisation en modélisation. Régression linéaire Utilisatio e modélisatio Régressio liéaire La régressio est l ue des otios basiques de la statistique et de l aalyse des doées. Gééralemet, le problème cosiste à décrire la dépedace etre deux variables

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

POLYNESIE Série S Juin 2001 Exercice

POLYNESIE Série S Juin 2001 Exercice OLYNESIE Série S Jui 00 Exercice gros rouges et 3 petits rouges Ue boîte cotiet 8 cubes : gros verts et petit vert petit jaue U efat choisit au hasard et simultaémet 3 cubes de la boîte (o admettra que

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

STATISTIQUES. En première les statistiques étudiées étaient à une seule variable ; en terminale l étude porte sur deux variables statistiques

STATISTIQUES. En première les statistiques étudiées étaient à une seule variable ; en terminale l étude porte sur deux variables statistiques Tle ES Statistiques H. Kereïs STATISTIQUES E première les statistiques étudiées étaiet à ue seule variable ; e termiale l étude porte sur deu variables statistiques 1. Nuage de poits, poit moe et covariace

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

STATISTIQUES - ESTIMATION

STATISTIQUES - ESTIMATION STATISTIQUES - ESTIMATION I Echatilloage et estimatio : itroductio O se situe ici das 2 domaies des statistiques qui sot ceux de l «échatilloage» et de l «estimatio». Ces 2 domaies ot des cotextes d applicatio

Plus en détail

Introduction aux théorèmes limites et aux intervalles de confiance

Introduction aux théorèmes limites et aux intervalles de confiance Chapitre 5 Itroductio aux théorèmes limites et aux itervalles de cofiace Objectifs du chapitre. Savoir approcher ue loi biomiale par ue loi de Poisso ou ue loi ormale. 2. Savoir approcher ue loi e appliquat

Plus en détail

Lycée de Souassi DEVOIR DE SYNTHESE N 3 08/05/2009 SECTIONS : 4 éme Scieces Expérimetales EPREUVE : Mathématiques DUREE : 3 heures PROFESSEUR : Mr FLIGENE Wissem EXERCICE N : (3 poits) Pour chacue des

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

9 0 6 Variables aléatoires discrètes

9 0 6 Variables aléatoires discrètes BCPST2 9 5 0 6 Variables aléatoires discrètes Exercice 1: Loi de Poisso 1 ) Soit X ue variable aléatoire discrète. O ote XΩ) = {x ; N}. O pose, pour tout de N : p = PX = x ) et s = p k. O découpe l'itervalle

Plus en détail

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3 3- Lois de distributio discrètes -1 Chapitre 3 : Lois de distributio discrètes 3.1 Loi de Berouilli...1 3. Loi Biomiale...1 3.3 Loi géométrique... 3.4 Loi de Pascal (loi égative biomiale)...3 3.5 Loi hypergéométrique...4

Plus en détail

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite.

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite. ECG JP A 00-00 F. FRANZOSI & A. WENGER http://math.aki.ch 5. Défiitio et gééralités Défiitio : Ue suite réelle est ue applicatio de * N das R, doc si U est ue telle suite, o aura : U : N * R U ( ) U U

Plus en détail

ANOVA avec un facteur aléatoire

ANOVA avec un facteur aléatoire Chapitre 7 ANOVA avec u facteur aléatoire Jusqu à maiteat, o a supposé que les modalités du facteur étudié ot été choisies parce qu elles étaiet itrisèquemet itéressates. Le modèle à effets fixes porte

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

stratégie au jeu de pile ou face

stratégie au jeu de pile ou face page 4 stratégie au jeu de pile ou face par M. Régis o tter eau, M. Laure t ottereau, M. Bejami Reaud, M. Fraçois Pitie, élèves de S du lycée Buffo de Paris ( 7 ), établissemet jumelé avec le lycée La

Plus en détail

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

Correction de l exercice 1

Correction de l exercice 1 IUT Orsa Iformatique S3 Correctio de l exercice. Ω est l esemble des résultats possibles de l experiece aléatoire lacer u dé à faces : Ω {,, 3,,, }, et Ω.. Si k Ω sort, le gai du jeu est k euros. Doc la

Plus en détail

TD10. Loi des grands nombres, théorème central limite.

TD10. Loi des grands nombres, théorème central limite. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD10. Loi des grads ombres, théorème cetral limite. 1. Soit (U ) 1 ue suite de variables aléatoires

Plus en détail

Correction du devoir Surveillé 6 : Probabilités

Correction du devoir Surveillé 6 : Probabilités S www.wicky-math.fr.f DS - Probabilités Correctio du devoir Surveillé : Probabilités Exercice. ROC Démotrer le théorème suivat : ( poits) Théorème : La probabilité de la réuio de deux évéemetsaetb est

Plus en détail

Je choisis donc de situer ce dossier en Terminale ES, anciens et nouveaux programmes.

Je choisis donc de situer ce dossier en Terminale ES, anciens et nouveaux programmes. Dossier 9 : Exemples de traitemet d ue série statistique à deux variables umériques. Etude du uage de poits associé : poit moye, corrélatio liéaire, ajustemet affie, droite de régressio. Rédigé par Cécile

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

Amérique du Nord. Terminale S mai 2014

Amérique du Nord. Terminale S mai 2014 Termiale S mai 2014 Amérique du Nord 1 Exercice 1 (5 poits) Das cet exercice, tous les résultats demadés serot arrodis à 10 3 près Ue grade eseige de cosmétiques lace ue ouvelle crème hydratate Partie

Plus en détail

2. Espace de probabilité fini équilibré

2. Espace de probabilité fini équilibré 36 2. Esace de robabilité fii équilibré Esace de robabilités fii équilibré (résumé)...37 Esace de robabilités fii équilibré (défiitio)...38 Le modèle de Maxwell-Boltzma...39 Les ragemets de objets discerables

Plus en détail

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1.

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1. Cours 5 Idépedace 1 Das le cours précédet, ous avos vu que la variable Y était idépedate de la variable X si ses distributios coditioelles e fréquece sot égales ; das ce cas e effet, la mesure de X sur

Plus en détail

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE MATTHIEU KOWALSKI 1. INTRODUCTION La démarche statistique cosiste à observer ue expériece aléatoire das le but de mieux coaître ses caractéristiques.

Plus en détail

est dite arithmétique lorsqu il existe un nombre réel r (appelé raison) tel que, pour tout n de, on ait : un+ 1 = un

est dite arithmétique lorsqu il existe un nombre réel r (appelé raison) tel que, pour tout n de, on ait : un+ 1 = un LGL Cours de Mathématiques 007 C Suites arithmétiques ) Défiitio Défiitio 3 : Ue suite ( ) u est dite arithmétique lorsqu il existe u ombre réel r (appelé raiso) tel que, pour tout de, o ait : u+ = u +

Plus en détail

14. Suites, séries et limites 14.1 Définir une suite Définition explicite

14. Suites, séries et limites 14.1 Définir une suite Définition explicite 4. Suites, séries et limites 4. Suites, séries et limites 4. Défiir ue suite Défiitio eplicite Défiitio récursive 4. Calculer u terme d ue suite préalablemet défiie u terme plusieurs termes 4.3 Défiir

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2.

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2. BAC BLANC DE MATHEMATIQUES EN TM et TM2. L ordre des exercices a pas d importace. La clarté de la rédactio et des raisoemets iterviedrot pour ue part importate das l appréciatio des copies. La calculatrice

Plus en détail

Synthèse de cours PanaMaths Introduction au calcul matriciel

Synthèse de cours PanaMaths Introduction au calcul matriciel Sythèse de cours PaaMaths Itroductio au calcul matriciel Défiitios Notio de matrice O appelle «matrice de dimesio p» ou «de type (, p )» u tableau de ombres réels comportat liges et p coloes ( et p sot

Plus en détail

Contrôle du vendredi (45 minutes) 1 ère S1. II. (3 points) (E). Résoudre dans l équation sin 3x

Contrôle du vendredi (45 minutes) 1 ère S1. II. (3 points) (E). Résoudre dans l équation sin 3x 1 ère S1 Cotrôle du vedredi --01 ( miutes) Préom et om : ote : / 0 II ( poits) 1 Résoudre das l équatio si (E) Il est pas demadé d écrire l esemble des solutios I ( poits) f e foctio de cos et si O doera

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Aée uiversitaire 2014 2015 L2 Écoomie Cours de B. Desgraupes Méthodes Statistiques Séace 11: Tests d adéquatio II Table des matières 1 Test de Kolmogorov-Smirov

Plus en détail

Chapitre 11 Loi binomiale. Table des matières. Chapitre 11 Loi binomiale TABLE DES MATIÈRES page -1

Chapitre 11 Loi binomiale. Table des matières. Chapitre 11 Loi binomiale TABLE DES MATIÈRES page -1 Chapitre Loi biomiale TABLE DES MATIÈRES page - Chapitre Loi biomiale Table des matières I Exercices I-................................................ I-................................................

Plus en détail

1 Définition et premiers exemples

1 Définition et premiers exemples Master Eseigemet Aalyse 1 2015-2016 Uiversité Paris 13 Devoir maiso d aalyse Le but de ce petit problème est d étudier les foctios covexes. À partir de la défiitio géométrique, o démotrera les propriétés

Plus en détail

LES MOINDRES CARRÉS. Table des matières. 1. Justification de la méthode des moindres carrés

LES MOINDRES CARRÉS. Table des matières. 1. Justification de la méthode des moindres carrés LES MOINDRES CARRÉS OLIVIER CASTÉRA Résumé. La méthode des moidres carrés repose sur u fodemet probabiliste sérieux. Table des matières 1. Justificatio de la méthode des moidres carrés 1 2. Caractéristiques

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EXAMEN PROBATOIRE D ADMISSION DES ETRANGERS DANS LES ECOLES DE FORMATION D OFFICIERS EPREUVE DE MATHEMATIQUES DUREE DE L EPREUVE : 4 Heures Matériel autorisé : Calculatrice Circulaire 9986 du 6 ovembre

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail