A) Forme algèbrique d un nombre complexe.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "A) Forme algèbrique d un nombre complexe."

Transcription

1 A) Forme algèbrique d u ombre complexe. Théorème Il existe u esemble, oté,de ombres appelés ombres complexes, tel que : cotiet ; est mui d ue additio et d ue multiplicatio pour lesquelles les règles de calcul sot les mêmes que das ; Il existe das u ombre o réel, oté i, vérifiat i = - 1 ; Tout ombre complexe s écrit de faço uique sous la forme ( dite algèbrique ) : = a + i b où a et b sot des réels. Défiitios - Le réel a est appelé partie réelle de et est oté Re(). - Le réel b est appelé partie imagiaire de et est oté Im(). - Si b = 0 alors = a + 0i est oté = a et est u réel. - Si a = 0 alors = 0 + ib est oté = ib et est appelé imagiaire pur. - Le complexe 0 + 0i oté 0 est à la fois réel et imagiaire pur. Premières coséqueces a, b, a, b sot des réels a + i b = a + i b ( a = a et b = b ) a + i b = 0 ( a = 0 et b = 0 ) Opposé d u complexe Si = a + i b avec a et b réels alors o appelle opposé de le complexe oté tel que : - = - a + i ( - b ) 1

2 B) Represetatio géométrique d u ombre complexe Le pla est rapporté au repère orthoormal direct (O ; u ; v ) Défiitios Soit le complexe = a + i b, a et b réels. - Le poit M(a;b) est appelé le poit image de. b M() O le ote souvet M(). v V() - Le vecteur V (a;b) est le vecteur image de. O le ote souvet V(). O u a - Le complexe est l affixe du poit M et l affixe du vecteur V. O le ote souvet M ou V. Affixe d u vecteur AB affixe( AB) = affixe (B) affixe (A) B( B ) O ote souvet : AB B A A( A ) Propriétés Pour tous vecteurs U et V et tout réel, U V U V U U e particulier : U U Affixe du milieu d u segmet Si I est le milieu du segmet [AB] alors I A B

3 C) Cojugué d u ombre complexe Défiitio O appelle cojugué du complexe = a + i b, a et b réels, le complexe oté et défii par : = a i b. Iterprétatio géométrique b M(a + i b) Les images de deux complexes cojugués O a sot symétriques par rapport à l axe des abscisses (appelé souvet axe des réels). - b M (a i b) Remarque: + = Re() et - = i Im(). Théorèmes Soit u ombre complexe. est réel si et seulemet si = est imagiaire pur si et seulemet si = - Propriétés Pour tous complexes et : ' ' et ' ' Ces résultats s étedet à ue somme algébrique de termes. ' ' Ces résultats s étedet à u produit de termes : pour tout etier aturel, 1 1 si 0. ' ' si 0 Si = a + i b avec a et b réels alors = a + b doc pour 0, soit 1 a b si (a ;b) (0 ;0), o a i. C est la a b a b a b méthode utilisée pour écrire sous forme algébrique u iverse ou u quotiet. 3

4 D) Module et argumets d u ombre complexe o ul. Défiitio Soit u ombre complexe o ul d image M das le pla mui d u repère orthoormal direct (O ; u ; v ), et soit (r, ) u couple de coordoées polaires du poit M das (O; u ). - le réel r est appelé module de et oté ; - le réel est appelé argumet de et oté arg(). O a doc : = r = OM arg() = = u, OM [ ] Remarques Le complexe 0 a pour module 0 mais a pas d argumet. Tout complexe o ul a ue ifiité d argumets. Si est l u d eux, tout autre argumet de est de la forme + K, K. O écrit alors : arg() = [mod ] ( ou simplemet [ ] ). Coséqueces Si = a + i b avec a et b réels alors a b. Le module de tout réel x est la valeur absolue de x. réel o ul équivaut à arg() = 0 [ ]. imagiaire pur o ul équivaut à arg() = [ ]. Soit u complexe o ul : 4

5 E) Formes trigoométriques d u ombre complexe o ul. Théorème Soit = a + i b, avec a et b réels, u complexe o ul. Si = r et si arg() = [mod ] alors a = r cos et b = r si Défiitio Soit u ombre complexe o ul de module r et dot u argumet est. L écriture = r ( cos + i si ) est appelée forme trigoométrique de. Relatios de passage etre forme algébrique et formes trigoométriques. Forme algébrique = a + i b a et b réels r = a b ; a b cos et si r r a rcos et b rsi Formes trigoométriques r cos isi Egalité de deux complexes Deux complexes o uls sot égaux si et seulemet si ils ot le même module et des argumets égaux modulo. Théorème Si rcos isi avec r 0, alors r et = arg() [ ] 5

6 F) Propriétés des modules et argumets. Propriétés des modules Pour tous complexes et : = 0 = 0. ou ' ' ( iégalité triagulaire ) ' ' 1 1 ' ' et si 0. Le module d u produit de ombres complexes est égal au produit des modules de ces complexes. E particulier : pour tout etier aturel,. Propriétés des argumets Pour tous complexes o uls et arg( ) = arg() + arg( ) [ ] 1 arg = arg() [ ] arg ' = arg( ) arg() [ ] La première propriété s éted au produit de ombres complexes o uls. E particulier : pour tout etier aturel, arg arg() [ ] Formule de Moivre Pour tout réel et tout etier aturel, (cos isi ) cos( ) isi( ) 6

7 G) Formes expoetielles d u ombre complexe o ul. Défiitio Pour tout réel o pose : e i cos i si. Alors, si est u ombre complexe o ul de module r et dot u argumet est, o appelle forme expoetielle de l écriture : r e i. Règles de calcul sur les formes expoetielles ' et sot des réels quelcoques, r et r sot des réels > 0. i i i ' re r'e (r r' et ' [mod ] ) re i re i (re i ) re i( ) re i re i ' rr'e i( ') 1 1 e i re r r'e i ' r' e i( ' ) r e i r re i r e i, pour tout de Formules d Euler Pour tout réel : cos e i e i et si e i e i i 7

8 Equatio du secod degré à coefficiets réels das a b c 0, a réel 0, b et c réels. Le réel = b 4 a c est le discrimiat de l équatio. Si > 0 alors l équatio admet deux solutios réelles b b 1 et a a Si = 0 alors l équatio admet ue solutio rélle double b a Si < 0 alors l équatio admet deux solutios complexes cojuguées b i b i 1 et a a Remarque : das tous les cas a b c a( )( ) 1 H) Distaces et agles orietés Logueur d u segmet [AB] AB = B A Mesure de l agle u,ab A et B état deux poits disticts u,ab arg (mod ) B A Mesure de l agle CA, CB 8

9 Coséqueces Les poits A, B et C état trois poits disticts : - les poits A, b et C sot aligés si, et seulemet si, arg B - C 0 - A C [ ] - les droites (CA) et (CB) sot perpediculaires si, et seulemet si, - B C arg - A C [ ]. I) Trasformatios du pla. Homothétie de cetre et de rapport K. Soit le poit d affixe ω et k u réel o ul. Le poit M d affixe tel que ω = k ( ω) est l image du poit M d affixe par l homothétie de cetre et de rapport k. 9

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1.

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1. Nombres complexes TS 1. Nombre complexe Représetatio Défiitio u ombre complexe est u ombre de la forme x + i y, où x et y sot deux ombres réels et i est u ombre imagiaire vérifiat i = 1. L esemble des

Plus en détail

B(z B ) A(z A ) Les nombres complexes

B(z B ) A(z A ) Les nombres complexes 1 Les ombres complexes I) Forme algébrique d u ombre complexe. Théorème Il existe u esemble, oté c,de ombres appelés ombres complexes, tel que : ccotiet r ; c est mui d ue additio et d ue multiplicatio

Plus en détail

Fiche 6 : Nombres complexes

Fiche 6 : Nombres complexes Nº : 3006 Fiche 6 : Nombres complexes Pla de la fiche I - Esemble des ombres complexes II - Nombre complexe cojugué III - Module et argumet IV - Les différetes écritures d u ombre complexe o ul V - Equatio

Plus en détail

des nombres complexes

des nombres complexes Esmbl ds ombrs complxs I. Form algébriqu d u ombr complx. Théorèm Il xist u smbl, oté,d ombrs applés ombrs complxs, tl qu : cotit ; st mui d u additio t d u multiplicatio pour lsqulls ls règls d calcul

Plus en détail

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications.

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications. DOCUMENT 14 Racies -ièmes d u ombre complexe. Racies de l uité. Applicatios. Das u documet précédet, o a itroduit le corps des ombres complexes afi que tout ombre réel ait ue racie carrée. O va voir ici

Plus en détail

Chapitre 2 Nombres Complexes Exercices

Chapitre 2 Nombres Complexes Exercices Chapitre Nombres Complexes Exercices I. Ciril, F. De Lepie, F. Duffaud, C. Peschard Exercice 1 Mettre chacu des ombres complexes suivats sous la forme a + ib, a R et b R. 1 i, 1 1 + i i, 1 + i 1 i, + 5i

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Nombres complexes. 1 Introduction 1

Nombres complexes. 1 Introduction 1 Uiversité de Provece 2009-2010 Licece MI 1ère aée-s1 Mathématiques géérales I Nombres complexes Table des matières 1 Itroductio 1 2 Gééralités 1 2.1 Opératio sur les complexes.....................................

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007 Durée : 4 heures Correctio du baccalauréat S Nouvelle-Calédoie ovembre 007 EXERCICE 1 Commu à tous les cadidats 4 poits 1 Avec z = x+ iy, z+ z = 9+i x+ iy+ x iy = 9+i x+ iy = 9+i et par ideticatio x =,

Plus en détail

Les nombres complexes

Les nombres complexes Les ombres complexes -Itroductio Ils ot été itroduits au 6 ème siècle par des mathématicies italies de la Reaissace pour doer du ses à certaies équatios algébriques Par exemple : Bombelli e 57 est ameé,

Plus en détail

MPSI Nombres complexes

MPSI Nombres complexes MPSI Nombres complexes Exercice 1: Résoudre das C l équatio 4 + 6 3 + 9 2 + 100 = 0 Exercice 2: 1 Motrer que si π 5 = 5 5 2 Détermier l esemble des poits M d affixe tels que = 2 i Exercice 3: Soit ABC

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EXAMEN PROBATOIRE D ADMISSION DES ETRANGERS DANS LES ECOLES DE FORMATION D OFFICIERS EPREUVE DE MATHEMATIQUES DUREE DE L EPREUVE : 4 Heures Matériel autorisé : Calculatrice Circulaire 9986 du 6 ovembre

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

< p 2. b a a = bq et r = 0 r 0 bq < a < b(q+1)

< p 2. b a a = bq et r = 0 r 0 bq < a < b(q+1) DIVISIBILITE DANS Z - DIVISION DES ENTIERS - b divise a lorsqu il existe u etier k tel que a = kb O dit que a est multiple de b ; b est diviseur de a. Pour tout etier relatif (Z) a, b, c o a : -, a, -

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

Sommaire. 2. Séries réelles ou complexes. Méthodes : L essentiel ; mise en œuvre

Sommaire. 2. Séries réelles ou complexes. Méthodes : L essentiel ; mise en œuvre 1. Espaces vectoriels ormés A. Normes et distaces............. 8 B. Étude locale des applicatios Cotiuité..... 19 C. Cotiuité des applicatios liéaires....... 25 D. Espaces vectoriels ormés de dimesio fiie...

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009 CH 1 Géométrie : Complexes 4 ème Sciences Septembre 009 A. LAATAOUI I. INTRODUCTION ET DEFINITION Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et 3 et a pour racine et

Plus en détail

Fiche Diagonalisation des Matrices 2x2

Fiche Diagonalisation des Matrices 2x2 Fiche Diagoalisatio des Matrices x MOSE 1003 4 Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice

Plus en détail

Feuille d exercices: Calcul matriciel.

Feuille d exercices: Calcul matriciel. Feuille d exercices : Calcul matriciel : Exercice 2 3 ) Soit A = 0 0, motrer que A est la matrice das la 2 6 base caoique de R 3 d ue projectio dot o precisera le oyau et l image 2) Doer la matrice das

Plus en détail

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES ) PUISSANCES D'EXPOSANTS REELS A ) La otatio a Si est u etier aturel, la otatio a a u ses pour tout réel a Das le cas où est u

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Corrigé. Exercice 1 : (5 points)

Corrigé. Exercice 1 : (5 points) Corrigé Exercice : (5 poits) Pour les questios. et. o doera les résultats sous forme de fractios et sous forme décimale par défaut à 0 3 près. U efat joue avec 0 billes, 3 rouges et 7 vertes. Il met 0

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Chapitre VI : Complexes (1) Forme algébrique

Chapitre VI : Complexes (1) Forme algébrique Forme algébrique. Ensemble des nombres complexes. Notion de nombres complexes Théorème l existe un ensemble, noté, appelé ensemble de nombres complexes qui possède les propriétés suivantes : R l addition

Plus en détail

Fiche N 8 : Matrices.

Fiche N 8 : Matrices. Lycée Paul Gaugui CPGE-EC1 Aée 014/015 Fiche N 8 : atrices Gééralités sur les matrices atrices : Défiitios O appelle matrice à liges et p coloes tout tableau rectagulaire de ombres réels à liges et p coloes

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9 BACCALAUREAT BLANC 2014 LYCEE DES ILES SOUS LE VENT SERIE S EPREUVE DE MATHEMATIQUES Durée : 4h Coefficiet : 7 ou 9 La calculatrice est autorisée, mais est pas échageable de cadidat e cadidat. La qualité

Plus en détail

Année : (Cayley Hamilton) «Pour inventer, il faut penser à côté.» (Paul Souriau)

Année : (Cayley Hamilton) «Pour inventer, il faut penser à côté.» (Paul Souriau) 1 Niveau : Termiale S Spé Maths Titre Cours : Matrices, Matrices carrées Evolutio de processus Aée : 2014-2015 (Cayley Hamilto) «Pour iveter, il faut peser à côté.» (Paul Souriau) I. Défiitio 1. Défiitio

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points)

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points) ère S Cotrôle du vedredi 4-4-04 (30 miutes) Préom et om : Note : / 0 I ( poits) O cosidère la figure ci-cotre où ABC est u triagle isocèle e A O ote H le projeté orthogoal du poit C sur la droite (AB)

Plus en détail

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire :

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire : Nombres complexes 1 Ensemble des nombres complexes 1.1 Forme algébrique d un nombre complexe Théorème Admis 1. Il existe un ensemble, noté C, d éléments appelés nombres complexes, tel que : C contient

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

Nombres complexes Forme algébrique

Nombres complexes Forme algébrique Nombres complexes Forme algébrique I) Forme algébrique d un nombre complexe 1) Définitions On admet l existence d un nombre, noté dont le carré est égal à On appelle alors nombre complexe tout nombre de

Plus en détail

Pépinière académique de mathématiques Stage des 24 et 25 février 2011 Élèves de terminale présentés par leurs établissements au Concours général

Pépinière académique de mathématiques Stage des 24 et 25 février 2011 Élèves de terminale présentés par leurs établissements au Concours général Pépiière académique de mathématiques Stage des 4 et 5 février 0 Élèves de termiale présetés par leurs établissemets au Cocours gééral Orgaisatio géérale et emploi du temps Jeudi 4 février 0 heures à h

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique.

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique. Suites 6 AU CŒUR DE LA TOILE Objectif Notios utilisées Traduire, à l aide d ue suite, u processus géométrique itératif et redre compte de so évolutio. Mettre e place les premiers pricipes d étude d ue

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Cours de terminale S Les nombres complexes

Cours de terminale S Les nombres complexes Cours de terminale S Les nombres complexes V. B. et S. B. Lycée des EK 20 décembre 2014 Définition Vocabulaire Conséquences Définition Il existe un ensemble, noté C, d éléments appelés nombres complexes,

Plus en détail

I ECRITURE FRACTIONNAIRE

I ECRITURE FRACTIONNAIRE LES FRACTIONS OBJECTIFS : Compredre l écriture fractioaire Simplifier les fractios Additioer des fractios Soustraire des fractios 5 Multiplier des fractios 6Diviser des fractios I ECRITURE FRACTIONNAIRE

Plus en détail

Version du 28 novembre 2016 (20h06)

Version du 28 novembre 2016 (20h06) CHAPITRE 3. SYSTÈMES DE RCES......................................... - 3.1-3.1. Vecteurs caractéristiques d u système de forces............................... - 3.1-3.1.1. Défiitio.....................................................

Plus en détail

Concours PT2004 Maths I-B. partie A

Concours PT2004 Maths I-B. partie A ocours PT2 Maths I-B Même si le suet e l a pas posé o utilisera : 8 2 M r (R) = I r partie a b x y ax + bz. Si = 2 S c d 2 et B = 2 S z t 2 o a B = cx + dz ay + bt cy + dt Les coe ciets de B sot sommes

Plus en détail

DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Techique Bamako I- Foctio dérivable e u poit : Nombre dérivé d ue foctio e u poit : a Défiitio : O dit qu ue foctio f est dérivable

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Eocés Nombres complexes Nombres complexes Exercice 6 [ 03458 ] [correctio] Soiet z 0 C et r > 0 tels que z 0 r. O ote C le cercle das C de cetre z 0

Plus en détail

Présentation du programme et des épreuves 6

Présentation du programme et des épreuves 6 SOMMAIRE Présetatio du programme et des épreuves 6 Algos à foiso 8 2 Le raisoemet par récurrece 3 Les suites géométriques 2 4 Ce qui est importat pour ue suite 4 5 Ce qu est la limite d ue suite 6 6 Détermier

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières Chapitre A1 - Nombres - récurreces - Sommes Table des matières 1 Esembles de ombres 2 1.1 Déitios................................................... 2 1.2 Itervalles d'etiers..............................................

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Généralités 1.1 Définitions................................................. 1. Règles de calcul dans C.........................................

Plus en détail

Exponentielle complexe, fonctions trigonométriques, nombre π

Exponentielle complexe, fonctions trigonométriques, nombre π 5 Expoetielle complexe, foctios trigoométriques, ombre π 5. Rappels sur la foctio expoetielle réelle Si o suppose coue la foctio logarithme l défiie sur ]0, + [ comme la primitive ulle e de la foctio x,

Plus en détail

Groupes monogènes, groupes cycliques. Exemples

Groupes monogènes, groupes cycliques. Exemples 2 Groupes moogèes, groupes cycliques. Exemples Les otios de base sur les groupes sot supposées coues. E particulier, les esembles et groupes quotiets sot supposés cous. Pour des rappels, o pourra cosulter

Plus en détail

Séries d exercices Aritmetiques

Séries d exercices Aritmetiques Séries d exercices Aritmetiques ème Maths Maths au lycee Ali AKIR Site Web : http://maths-akirmidiblogscom/ EXERCICE N )Quel est le reste de la divisio par 7 du ombre ) Quel est le reste de la divisio

Plus en détail

1 + ln x + 1 2. MA + MB + MC + MD. AMERIQUE DU SUD Novembre 2000

1 + ln x + 1 2. MA + MB + MC + MD. AMERIQUE DU SUD Novembre 2000 MERIQUE DU SUD Novembre 000 EXERIE U sac cotiet trois boules umérotées respectivemet 0, et, idiscerables au toucher. O tire ue boule du sac, o ote so uméro et o la remet das le sac ; puis o tire ue secode

Plus en détail

Les nombres complexes

Les nombres complexes haptre 6 termale S Les ombres complexes 1 hstorque et créato : N Z ID Q R es esembles ot été costruts au fl de l hstore grâce à u même problème : certaes équatos ot des solutos das u esemble doé mas d

Plus en détail

Construire des polygones connaissant les milieux des côtés.

Construire des polygones connaissant les milieux des côtés. Costruire des olygoes coaissat les milieux des côtés Costruire u triagle ABC dot les milieux des côtés soiet trois oits doés I J K deux à deux disticts Aalyse : La symétrie cetrale de cetre le milieu d

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

Correction concours général maths 2015

Correction concours général maths 2015 Correctio cocours gééral maths 2015 Problème I Petits poids 1) a) 3 = 3, 3 + 5 = 8, 3 + 5 6 = 2, 3 + 5 6 8 = 6, 3 + 5 6 8 + 2 = 4 doc poids(3,5, 6, 8,2) = 8 b) poids(1,2,3,,2015, 2015, 2014,.., 1) = 1

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Chapitre 1 Les nombres complexes

Chapitre 1 Les nombres complexes Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

ENSEMBLE DE NOMBRES TD N 1 - CORRIGE

ENSEMBLE DE NOMBRES TD N 1 - CORRIGE ENSEMBLE DE NOMBRES TD N - CORRIGE Exercice A 8 7 B 7 7 - C 0 7 0 0 0 - Exercice ) ³ 8 ) 7 0 88 7 0 ) ) 00 00 0 7 77 7 x Exercice Le déomiateur commu est x 7 x 9 8 8 7 98 ; ; ; ; 7 9 9 L ordre croissat

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

Liban 2012 BAC S Correction

Liban 2012 BAC S Correction Liba 0 BAC S Correctio / 8 Exercice Partie A. Les foctios polyomiale et l sot dérivables sur ]0 ;+ [. Par coséquet la foctio g l est aussi. g (x) 6x² + x. Pour tout x >0, 6x² >0 et > 0. Doc g (x) > 0 sur

Plus en détail

(10.C02) Une matrice de dimension <n;m> est un tableau formé par la juxtaposition de m vecteurs de dimension n. On la note par une majuscule grasse.

(10.C02) Une matrice de dimension <n;m> est un tableau formé par la juxtaposition de m vecteurs de dimension n. On la note par une majuscule grasse. 0.C ANNEXE: CALCUL MATRICIEL 0.C. Défiitios La maîtrise du calcul matriciel est icotourable pour aborder l'étude des réglages d'état. Nous 'e rappelleros que les opératios fodametales déjà étudiées e mathématiques

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

Suite des polynômes de Tchebychev. (Exercice N 127 page 87) Corrigé

Suite des polynômes de Tchebychev. (Exercice N 127 page 87) Corrigé Suite des polyômes de Tchebychev (Exercice 7 page 87) a E utilisat la relatio de récurrece avec =, o obtiet : Puis, pour = : Efi, pour = 4 : O a bie : f x x f x f x x x x = = = f x = x f x f x = x x x=

Plus en détail

Sommaire. Chapitre 1. Notions de base Chapitre 2. Nombres complexes Polynômes... 33

Sommaire. Chapitre 1. Notions de base Chapitre 2. Nombres complexes Polynômes... 33 Sommaire Chapitre. Notios de base.................... 7 A. Démostratio par récurrece..................... 8 B. Esembles............................. 9 C. Applicatios............................ 2 D. Calcul

Plus en détail

Chapitre 9 Les nombres complexes

Chapitre 9 Les nombres complexes Chapitre 9 Les nombres complexes Vocabulaire-représentation Définition des nombres complexes Définition Nombres complexes, partie réelle, partie imaginaire) On introduit i, un nombre qui vérifie i = On

Plus en détail

Module et Argument d un nombre complexe

Module et Argument d un nombre complexe I Module et Argument d un nombre complexe Tout point M du plan peut être repéré par un couple de coordonnées polaires (r, θ) (r > 0, θ réel) M r est la distance OM ; θ est une mesure de l angle ( u, OM).

Plus en détail

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3 I Forme algébrique d un nombre complexe 1 Il existe un ensemble noté et appelé ensemble des nombres complexes qui vérifie les propriétés suivantes : " ; L'ensemble est muni d'une addition et d'une multiplication

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER D Poquillon, C Mijoule et P Floquet SEPTEMBRE 005 Cours semaine 1 :Introduction, définitions, résolution d équations 1-1 Introduction

Plus en détail

Nombres complexes et application à la géométrie

Nombres complexes et application à la géométrie Nombres complexes et application à la géométrie I) Représentation graphique d un nombre complexe Le plan est muni d un repère orthonormé (O,u,v). 1) Affixe d un point a) Définition Si M est le point de

Plus en détail

et z B alors le vecteur AB a pour affixe le iy B. Alors par définition les coordonnées = x B, z B, z C et z D, z C = z B

et z B alors le vecteur AB a pour affixe le iy B. Alors par définition les coordonnées = x B, z B, z C et z D, z C = z B Chapitre 9 Nombres complexes et géométrie Dans tout ce chapitre on se place dans un repère orthonormal direct du plan complexe O ; i ; j. 1. Affixe d un vecteur Définitions et conséquences Définition :

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

1+a + a+b + b 1. 1 z n 1 z 1 z n. 1 z

1+a + a+b + b 1. 1 z n 1 z 1 z n. 1 z PCSI Nombres complexes Fiche L esemble C, forme algébrique, cojugaiso, module, iégalité triagulaire Exercice Doerlaformealgèbrique(i.e. z=a+iboùa,bsotréels)descomplexessuivats: z =(+3i)(3+4i),z = +i 3

Plus en détail