L'INDUCTION ON5WF (MNS)

Dimension: px
Commencer à balayer dès la page:

Download "L'INDUCTION ON5WF (MNS)"

Transcription

1 'IDUCTIO ème parte / O5WF (MS) Dans la ère parte de cet artcle, nous avons vu qu'un courant électrque donnat leu à un champ magnétque (expérence d'oersted). ous avons ensute vu comment Faraday, après avor effectué dfférentes expérences, en dédust une lo caractérsant l'nfluence d'un champ magnétque varable sur un crcut conducteur. a deuxème parte de cet artcle sera consacrée plus partculèrement à l'étude de cette nfluence magnétque, ce qu nous amènera à ntrodure les notons d'nductance mutuelle et d'auto-nductance. 3. A OI DE EZ Henrch EZ (84 865). Physcen allemand d'orgne germano-balte. (source: Wkpeda) En 834, alors qu'l état professeur à l'unversté de Sant Petersbourg, Henrch enz a refat les expérences de Faraday et leur a donné une nterprétaton physque très précse. a lo de enz s'énonce comme sut: e courant ndut produt à travers son propre crcut un flux magnétque qu tend toujours à compenser la varaton de flux qu lu a donné nassance. Prenons par exemple le cas de la premère expérence de Faraday, lorsque l'on approche le pôle nord de l'amant de la bobne (stuaton à la fgure 7, ère parte). e flux magnétque produt par l'amant dans la bobne augmente. Un courant ndut prend alors nassance dans cette bobne, avec un sens tel que le champ magnétque qu'l produt s'oppose au champ magnétque de l'amant, ce qu tend à compenser la varaton de flux magnétque dans la bobne. Dans la stuaton, on élogne le pôle nord de l'amant par rapport à la bobne. Dans ce cas, le flux magnétque à travers la bobne dmnue et le courant ndut a un sens contrare à celu du cas précédent; le champ magnétque produt par le courant vent renforcer celu de l'amant, ce qu tend c auss, à compenser la varaton de flux. Exemple 4 Un long solénoïde de 3 cm de damètre comporte spres/cm. Une bobne de cm de damètre et comportant spres jontves, est placée au centre de, de manère à ce que leurs axes coïncdent (fgure 9). On fat passer dans la bobne un courant varant selon le graphque de la fgure. Calculer la force électromotrce ndute dans la bobne. Soluton orsque le courant dans la bobne passe de à ampères, le champ magnétque passe de à [relaton (5), ère parte ]: = µ n 4*π* 7* * 5,7* 3 = = tesla

2 / Fgure 9: une bobne est placée au centre d'un long solénoïde, de façon à ce que leurs axes coïncdent. On s'ntéresse à la force électromotrce ndute dans lorsque le courant vare dans selon le graphque de la fgure. (ampère),,,3,4,5 t (seconde) d dt - ( 5 weber/s) 7,9 t (seconde),,,3,4,5-5,8 Fgure : le graphque supéreur représente la varaton dans le temps du courant dans la bobne. e graphque nféreur représente la vtesse de varaton du flux magnétque dans la bobne, en foncton du temps.

3 e flux magnétque correspondant dans vaut, en supposant le champ unforme dans le centre du solénoïde: 3/ *(,) S 5,7* 3 π = = * = 5,79* 6 4 weber e courant vare de à ampères en, seconde, la vtesse de varaton du flux magnétque dans vaut alors: d 5,79* 6 = = 7,896* 5 dt, weber / s a valeur c-dessus est auss (en valeur absolue) celle de la force électromotrce ndute dans une spre de la bobne. a force électromotrce totale ndute dans la bobne vaut donc (en valeur absolue), lorsque le courant est crossant: d u ( crossant) = 5 3 dt = 7,896* * = 7,9* volt orsque le courant est ramené à zéro, le flux passe de sa valeur maxmum à zéro en, seconde. a vtesse de varaton du flux vaut alors: d 5,79* 6 = = 5,79* 5 dt, weber / s e sgne mons dans la relaton précédente correspond à une dmnuton et donc à une vtesse de varaton négatve. Par consuent, la force électromotrce ndute dans vaut, lorsque le courant est décrossant: d u ( décrossant) = 5 3 dt = 5,79* * = 5,8* volt Cette force électromotrce ndute est donc de sens opposé à celle ndute lors de la crossance du courant. 4. 'IDUCTACE 4.. 'Inducton mutuelle Consdérons le système de la fgure dans lequel une bobne est raccordée à une source de tenson U par l'ntermédare d'une résstance varable R. Un courant crcule dans ce crcut, donnant leu à un flux magnétque. S une seconde bobne est placée dans le vosnage de, une parte du flux, que nous appellerons, traversera la surface défne par la secton de la bobne. Ce flux réalse un couplage entre et. Joseph HERY ( ). Physcen amércan. (source: Wkpeda)

4 S le courant vare dans la bobne, le flux varera suvant le même rythme. Selon la lo de Faraday, une force électromotrce ndute u apparaîtra aux bornes de : u d = (8) dt Dans la relaton (8), est le nombre de spres de (on suppose c que le flux est le même d pour toutes les spres de ) et est la vtesse de varaton du flux. Cette force dt électromotrce ndute donnera leu à un courant se manfestant par une dévaton du galvanomètre G. 4/ u u G R U Fgure : une bobne dans laquelle on peut fare passer un courant varable, est couplée magnétquement à une bobne branchée aux bornes d'un galvanomètre. Pour autant qu'aucun matérau ferromagnétque ne se trouve dans le vosnage des bobnes, le flux est drectement proportonnel au courant et la relaton (8) peut alors s'écrre comme sut, en appelant M le facteur de proportonnalté: u ( ) d( M ) d d d = M = = = dt dt dt (9) dt a force électromotrce ndute dans la bobne est donc drectement proportonnelle à la vtesse de varaton du courant dans la bobne. e phénomène de producton d'une force électromotrce ndute dans par un courant varable dans est appelé nducton mutuelle et le facteur de proportonnalté M est appelé nductance mutuelle. 'nductance mutuelle s'exprme en henry, en hommage à Joseph Henry qu a été un des premers à étuder le phénomène d'nducton. D'après la relaton (9), on peut écrre, pusque = M : M = ()

5 On peut donc dre que l'nductance mutuelle est égale au flux total produt à travers toutes les spres de, par unté de courant crculant dans. D'après la relaton (9), une nductance mutuelle de henry correspond à une force électromotrce de volt ndute dans, sute à une varaton de courant de ampère par seconde dans. Donc: V V s H A = A s = () S l'on nverse les rôles dans la fgure, c'est-à-dre s c'est la bobne qu est branchée sur la source de tenson et la bobne sur le galvanomètre, on observera un phénomène semblable d'nducton mutuelle entre les deux bobnes, caractérsé par une nductance mutuelle M. D'une façon générale, on a: M = M = M () a grandeur M est l'nductance mutuelle du système des deux bobnes. 5/ Remarque 4 'nductance mutuelle entre deux bobnes peut être augmentée dans de grandes proportons en plaçant à l'ntéreur des bobnes un noyau en fer (ou consttué d'un matérau aux proprétés magnétques semblables). Exemple 5 Calculer l'nductance mutuelle du système de bobnes de l'exemple 4. Soluton e champ magnétque produt par la bobne vaut: = µ n Dans cette relaton, n est le nombre de spres par unté de longueur de. e flux traversant la secton de la bobne vaut: = S = µ n S Selon la relaton () et en tenant compte de (), l'nductance mutuelle du système vaut: M = = µ n S = µ n S Avec les valeurs numérques de l'exemple 4, on obtent:

6 6/ π* (, ) M = µ n S *π* 7* * *,79* 3 = 4 = H Sot,79 mh 'auto-nducton Dans l'expérence de la fgure, les varatons de flux magnétque produtes par la bobne ndusent une force électromotrce dans la bobne. A fortor, la bobne qu bagne dans son propre flux magnétque, sera auss le sège d'une force électromotrce ndute. Dans ce cas, on ne parle pas d'nducton mutuelle mas d'auto-nducton. S on suppose que le flux produt par la bobne est le même à travers toutes les spres de cette bobne (cas d'une bobne très serrée), la force électromotrce u ndute dans vaudra: u ( ) d d = = (3) dt dt Dans l'ar, le flux total est drectement proportonnel au courant dans la bobne. a relaton (3) peut donc s'écrre, en appelant le coeffcent de proportonnalté: u ( ) d( ) d d = = = (4) dt dt dt D'une façon générale, pour une bobne de spres traversée par un courant, l'nductance de cette bobne vaudra (s un même flux traverse toutes les spres de la bobne): = (5) a relaton (5) reste valable pour une bobne quelconque, mas le flux total sera plus complqué à calculer. e coeffcent est appelé auto-nductance ou plus smplement nductance de la bobne. Tout comme l'nductance mutuelle, l'nductance s'exprme en henry. En l'absence de matérau ferromagnétque dans le vosnage de la bobne, l'nductance de cette bobne ne dépend que des caractérstques géométrques de celle-c. Exemple 6 Calculer l'nductance d'un solénoïde de 3 cm de damètre et comportant 3 spres jontves répartes sur une longueur l = 3 cm. Soluton En supposant le champ magnétque unforme dans toute la bobne, le flux à travers une spre de la bobne vaut: e flux total vaut: = S = µ ns = µ l S

7 7/ = µ S l Fnalement, on obtent pour l'nductance: 3 π* (, 3) = = µ S *π* 7* *, 67* 3 H = 4 = l, 3 4 Sot 67 µh. Un calcul effectué avec la formule de agaoka donne: D( cm) 3 *3 ( µ H ) = = = 58 µ H * l( cm) + 45* D( cm) *3 + 45*3 Hantaro AGAOKA (865 95). Physcen japonas. (source: Wkpeda) 4.3. Expresson de l'nductance mutuelle en foncton de l'nductance des bobnes Consdérons les deux bobnes et de la fgure. On peut se demander quelle est la relaton entre l'nductance mutuelle M des deux bobnes et les nductances et de ces bobnes. Supposons que ces deux bobnes soent parfatement couplées; cela veut dre que tout le flux produt par M ( ) ( ) Fgure : deux bobnes et couplées; comporte spres et en comporte. On cherche la relaton entre l'nductance mutuelle M et les nductances et des bobnes. (lorsqu'elle est traversée par un courant) traverse les spres de et vce versa ( = et = ). Dans ces condtons, l'nductance mutuelle M des deux bobnes est à sa valeur maxmum M max. Fasons passer un courant de ampère dans la bobne et sot le flux produt par ous pouvons alors écrre, en foncton des relatons (), () et (5):

8 8/ max = M = = = (6) De même, en fasant passer un courant de ampère dans : max = = M = = (7) En multplant la premère relaton de (6) par la premère de (7) et la deuxème de (6) par la deuxème de (7) on obtent: M max = = (8) On en dédut mmédatement la relaton entre M max et et : M max = ou M max = (9) 'nductance mutuelle de deux bobnes peut varer, selon le degré de couplage des bobnes, entre M = et M = M max ; elle est au maxmum égale à la moyenne géométrque des deux nductances et. On défnt le coeffcent de couplage k de deux bobnes par la relaton: M M k = = () M max a relaton () montre que le coeffcent de couplage vare entre (couplage nul) et (couplage parfat). Remarque 5 e couplage entre deux bobnes peut être fortement augmenté en plaçant les bobnes sur un noyau en matérau ferromagnétque commun Inductances en sére ous termnerons cet artcle par l'étude de l'nductance uvalente à deux nductances en sére. ous consdérons c le cas de deux bobnes et connectées en sére (fgure 3) et entre ( ) ( ) Fgure 3: deux bobnes d'nductances et connectées en sére. On s'ntéresse à l'nductance totale du système.

9 lesquelles peut exster un couplage défn comme c-dessus par son coeffcent k [relaton ()]. Ces deux bobnes comportent respectvement et spres et sont caractérsées par leurs nductances et ; l faut ben noter que et sont les nductances des bobnes consdérées séparément l'une de l'autre (c'est-à-dre dans le cas où aucun couplage n'exste entre les deux bobnes). ous désrons calculer l'nductance uvalente du système consttué par et. S le couplage entre les deux bobnes est nul (k = ), on a smplement, comme dans le cas de deux résstances en sére: = + () Dans le cas où le couplage entre et n'est pas nul, le flux produt par (lorsqu'elle est traversée par un courant) va renforcer ou atténuer le flux produt par et récproquement. Supposons que les deux bobnes de la fgure 3 soent coaxales et que leurs enroulements soent dans le même sens. Dans ce cas, les flux produts par les bobnes vont se renforcer mutuellement. S les enroulements sont en sens contrares, les flux vont s'atténuer. Pour tenr compte de ce renforcement ou de cette atténuaton, nous devons donner un sgne au coeffcent de couplage k; k peut donc varer c entre - (atténuaton totale) et + (renforcement total). S k est par exemple >, nous pouvons changer le sgne de k de tros façons: ) changer le sens de l'enroulement d'une des deux bobnes (cas n de la fgure 4). ) permuter les connexons d'une des deux bobnes (cas n de la fgure 4). 3 ) fare tourner une des deux bobnes de 8 par rapport à l'autre (cas n 3 de la fgure 4); dans ce cas, k vare de façon contnue de - à + (du mons théorquement). 9/ Même sens d'enroulement Connexons de permutées k > k < Enroulements de sens contrares Rotaton de 8 d'une des deux bobnes k < 3 k < Fgure 4: tros façons de modfer le sgne du coeffcent de couplage k entre les deux bobnes et.

10 / Pour calculer l'nductance uvalente du système formé par les deux bobnes, nous devons d'abord calculer le flux total dans chacune des deux bobnes. ous avons, pour : total = + = + k () Dans la relaton (), est le flux produt par et = k est la parte du flux produt par qu traverse les spres de. De même, nous avons pour : 'nductance uvalente vaut alors: total = + = + k (3) total total = + (4) Dans la relaton (4), est le courant traversant les bobnes. En remplaçant dans (4) les flux totaux par leurs expressons () et (3), on obtent: : k k = (5) Compte tenu du fat que =, = et k k M = =, (5) peut s'écrre: = + + M (6) Ou encore, pusque M = km max = k : = + + k (7) Dans le cas de deux bobnes coaxales, l'nductance uvalente peut varer, selon le sgne de k, de mn = + (pour k = -) (8) à = + + max (pour k = +) (9) Pour k = (pas de couplage entre les deux bobnes), on retrouve ben la relaton (). S les deux bobnes sont dentques ( = = ), l'nductance totale varera de = (pour k = -) à mn = 4 (pour k = +). C'est le prncpe du varomètre, un assemblage de deux bobnes max coaxales dont l'une peut tourner de 8 par rapport à l'autre. Dans la pratque, à cause des futes de flux, on n'attent pas les lmtes données c-dessus. Il faut noter également que le varomètre n'est

11 / pas le melleur procédé pour obtenr une nductance varable. En effet, la longueur de conducteur reste la même quelque sot la valeur de l'nductance; cela entraîne une dégradaton du facteur de qualté de la bobne lorsque l'nductance dmnue. e cas de deux nductances couplées en parallèle est plus complqué à étuder du fat que les courants dans chacune des deux nductances dépendent de ces nductances qu elles-mêmes dépendent de ces courants. a varaton d'nductance uvalente que l'on obtent n'est pas auss mportante que dans le cas précédent (théorquement, de à la valeur de la plus pette des deux nductances). O5WF IIOGRAPHIE. P. erché, "Pratque et théore de la TSF", Publcatons et édtons françases de la TSF et Radovson E. Gllon, "Cours d'électrotechnque", Dunod D. Hallday & R. Resnck, "Physcs Part ", Wley J. Qunet & A. Pettclerc, "Théore et pratque des crcuts de l'électronque et des amplfcateurs Tome ", Dunod R. M. Esberg &. S. erner, "Physcs Foundatons and Applcatons", Internatonal Student Edton G3YH, "From Transmtter to Antenna", Inductors and transformers.

SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12. Phénomènes d induction et conversion électromécanique:

SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12. Phénomènes d induction et conversion électromécanique: SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12 Phénomènes d nducton et converson électromécanque: 1/ Inductance propre et nductance mutuelle. 11/ Défntons et proprétés : 11a/ Défnr l'nductance propre L d un

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

À partir de la demi-période comprise entre les points C et D de la figure 2, mesurer u L, de la bobine. calculer et en déduire la valeur de L.

À partir de la demi-période comprise entre les points C et D de la figure 2, mesurer u L, de la bobine. calculer et en déduire la valeur de L. se 2004 ÉTUD XPÉIMNTL D'UN BOBIN (6 ponts) 1.5. On néglge dans la sute le terme fasant ntervenr r dans l'expresson de u L ans que les arronds des crêtes de l'ntensté. 1 - Détermnaton expérmentale de l'nductance

Plus en détail

Exercices Électrocinétique

Exercices Électrocinétique ercces Électrocnétque alculs de tensons et de courants -21 éseau à deu malles Détermner, pour le crcut c-contre, l ntensté qu 1 2 traverse la résstance 2 et la tenson u au bornes de la résstance 3 : 3

Plus en détail

Chapitre 2 : Energie potentielle électrique. Potentiel électrique

Chapitre 2 : Energie potentielle électrique. Potentiel électrique 2 e BC 2 Energe potentelle électrque. Potentel électrque 12 Chaptre 2 : Energe potentelle électrque. Potentel électrque 1. Traval de la orce électrque a) Expresson mathématque dans le cas du déplacement

Plus en détail

Electronique TD1 Corrigé

Electronique TD1 Corrigé nersté du Mane - Faculté des Scences! etour D électronque lectronque D1 Corrgé Pour un sgnal (t) quelconque : 1 $ (t) # MOY! (t) dt 1 FF! (t) dt (t) MX MOY mpltude crête à - crête mpltude Mn Pérode t emarque

Plus en détail

C.P.G.E-TSI-SAFI Redressement non commandé 2006/2007

C.P.G.E-TSI-SAFI Redressement non commandé 2006/2007 C.P.G.E-TSI-SAFI edressement non commandé 2006/2007 edressement non commandé Introducton : es réseaux et les récepteurs électrques absorbent de l énerge sous deux formes, en contnus ou en alternatfs. Pour

Plus en détail

Chapitre II : Introduction Thermodynamique des machines de compression (compresseurs) et de détente (turbines).

Chapitre II : Introduction Thermodynamique des machines de compression (compresseurs) et de détente (turbines). Chaptre II : Introducton hermodynamque des machnes de compresson (compresseurs) et de détente (turbnes). II. : Introducton. On s'ntéresse dans ce chaptre à l'ntroducton thermodynamque des compresseurs

Plus en détail

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010.

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010. Master 1ère année de Mathématques Analyse Numérque - Projet A rendre au plus tard le jour de l examen fnal, en Janver 2010. CMI, Unversté de Provence Année 2009-2010 Ce qu vous est demandé : Rédger les

Plus en détail

publicitaires Section 4. Oligopole et stratégie publicitaire 1) Dépenses publicitaires et stratégie concurrentielle 3) Oligopole et dépenses d

publicitaires Section 4. Oligopole et stratégie publicitaire 1) Dépenses publicitaires et stratégie concurrentielle 3) Oligopole et dépenses d Secton 4. Olgopole et stratége publctare 1) Dépenses publctares et stratége concurrentelle 2) Monopole et dépenses d publctares 3) Olgopole et dépenses d publctares 1) Dépenses publctares et stratége concurrentelle

Plus en détail

LES POMPES. Devant la grande diversité de situations possibles, on trouve un grand nombre de machines que l on peut classer en deux grands groupes :

LES POMPES. Devant la grande diversité de situations possibles, on trouve un grand nombre de machines que l on peut classer en deux grands groupes : Ste: http://gene.ndustrel.aa.free.fr LES POMPES Les pompes sont des apparels permettant un transfert d énerge entre le flude et un dspostf mécanque convenable. Suvant les condtons d utlsaton, ces machnes

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

SUIVI CINETIQUE PAR ANALYSE CHIMIQUE (CORRECTION)

SUIVI CINETIQUE PAR ANALYSE CHIMIQUE (CORRECTION) Chme Termnale S Chaptre Travaux Pratques n a Correcton SUIVI CINETIQUE PAR ANALYSE CHIMIQUE (CORRECTION) 1 PRINCIPE On dose une espèce chmque (réact ou produt du système chmque) à ntervalle de temps réguler

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type EAME FIAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSIO 1 - Correcton - Exercce 1 : 1) Questons à Chox Multples (QCM). Cochez la bonne réponse Classer ces statstques selon leur nature (ndcateur de poston

Plus en détail

N - ANNEAUX EUCLIDIENS

N - ANNEAUX EUCLIDIENS N - ANNEAUX EUCLIDIENS Dans ce qu sut A est un anneau untare, mun de deux opératons notées addtvement et multplcatvement. Le neutre de l addton est noté 0, celu de la multplcaton est noté e. On pose A

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes Snthèse de cours PanaMaths (Termnale S) L ensemble des nombres complees Défntons n pose tel que = 1 { } L ensemble des nombres complees, noté, est l ensemble : z /(, ) = + Le réel est appelé «parte réelle

Plus en détail

Banque d exercices pour le cours de "mise à niveau" de statistique de M1 AgroParisTech

Banque d exercices pour le cours de mise à niveau de statistique de M1 AgroParisTech Banque d exercces pour le cours de "mse à nveau" de statstque de M1 AgroParsTech Instructons pour les exercces 1. Lorsque ren n est précsé, on suppose que la dstrbuton étudée est gaussenne. Pour les exercces

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Chap. 7 : Le dipôle RL Exercices

Chap. 7 : Le dipôle RL Exercices Termnale S Physque Chaptre 7 : e dpôle Page 1 sur 8 xercce n 3 p170 1. a. unté d nductance est le henry de symbole H. b. e nom de cette unté provent du physcen amércan Joseph Henry : http://fr.wkpeda.org/wk/joseph_henry

Plus en détail

Mesures en tension continue & alternative

Mesures en tension continue & alternative Manp. Elec.1' Mesures en tenson contnue & alternatve E1.1 BUT DE LA MANIPULATION Cette manpulaton vse prncpalement à vous famlarser avec les apparels & nstruments de mesure utlsés en électrcté. Vous apprendrez

Plus en détail

CHAPITRE 2. La prévision des ventes

CHAPITRE 2. La prévision des ventes CHAPITRE La prévson des ventes C est en foncton des prévsons de ventes que l entreprse détermne la producton, les achats et les nvestssements nécessares. La prévson des ventes condtonne l ensemble de la

Plus en détail

CHAPITRE 5 : EFFET D'UN CHAMP ELECTRIQUE SUR LES IONS DU MILIEU ELECTROLYTIQUE

CHAPITRE 5 : EFFET D'UN CHAMP ELECTRIQUE SUR LES IONS DU MILIEU ELECTROLYTIQUE CHAPITRE 5 : EFFET D'UN CHAMP ELECTRIQUE SUR LES IONS DU MILIEU ELECTROLYTIQUE A. INTRODUCTION D'une manère générale, les substances qu réagssent aux électrodes peuvent être transportées de 3 façons dfférentes

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Partie I: Différences finies avec centrage partiel

Partie I: Différences finies avec centrage partiel U. PARIS VI et ÉCOLE POLYTECHNIQUE 7 anver 04 Spécalté Probablté et Fnance du Master de Scences et Technologe EXAMEN DU COURS ANALYSE NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES EN FINANCE verson 03/0/04

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM.

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM. Exercce n 1 Cet exercce propose de détermner l équlbre IS/LM sur la base d une économe dépourvue de présence étatque. Pour ce fare l convent, dans un premer temps de détermner la relaton (IS) marquant

Plus en détail

Indicateurs de compétitivité- prix et de performances à l exportation

Indicateurs de compétitivité- prix et de performances à l exportation Décembre 2009 Indcateurs de compéttvté- prx et de performances à Méthodologe Les ndcateurs présentés dans ce document vsent à mesurer en temps réel l évoluton des parts de marché des prncpaux exportateurs

Plus en détail

Chapitre 5: La programmation dynamique

Chapitre 5: La programmation dynamique Chaptre 5: La programmaton dynamque. Introducton La programmaton dynamque est un paradgme de concepton qu l est possble de vor comme une améloraton ou une adaptaton de la méthode dvser et régner. Ce concept

Plus en détail

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (!

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (! Courant alternatf Dr F. Raemy La tenson alternatve et le courant alternatf ont la représentaton mathématque : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Une résstance dans un crcut à courant

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

THERMODYNAMIQUE. Résumé de cours. Jacques Delaire ENS de Cachan

THERMODYNAMIQUE. Résumé de cours. Jacques Delaire ENS de Cachan Lcence ϕτεμ 26 27 THERMODYNAMIQUE Résumé de cours Jacques Delare ENS de Cachan 1 I INTRODUCTION I.1. Défntons Généraltés Système : ensemble de corps ou de substances qu appartennent à un domane de l espace.

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3 UNIVERSITE MONTESQUIEU BORDEAUX IV Lcence 3 ère année Econome - Geston Année unverstare 2006-2007 Semestre 2 Prévsons Fnancères Travaux Drgés - Séances n 3 «Les Crtères Fondamentaux des Chox d Investssement»

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

On dépose une espèce à une certaine concentration, puis on observe comment sa concentration se répartit en fonction de la distance.

On dépose une espèce à une certaine concentration, puis on observe comment sa concentration se répartit en fonction de la distance. Moblté des espèces en soluton I_ Les dfférents modes de transport En soluton, les molécules peuvent se déplacer selon tros modes dfférents : onvecton, la matère est déplacée par contrante mécanque (agtaton)

Plus en détail

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle Mrors spérques Doptres spérques Nous allons mantenant aborder des systèmes optques un peu plus complexes, couramment utlsés pour produre des mages. Nous allons commencer par étuder un mror spérque de façon

Plus en détail

La décomposition en valeurs singulières: un outil fort utile

La décomposition en valeurs singulières: un outil fort utile La décomposton en valeurs sngulères: un outl fort utle Références utles: 1- Sonka et al.: sectons 3.2.9 et 3.2.1 2- Notes manuscrtes du cours 3- Press et al: Numercal recpes * Dernère révson: Patrck Hébert

Plus en détail

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique Analyse fonctonnelle Chaptre S. Antone Tahan, ng. Ph.D. Département de géne mécanque Ma 009 Manuel : Métrologe MEC66 Auteur : Antone Tahan, ng., Ph.D. atahan@mec.etsmtl.ca ère édton : novembre 004 ème

Plus en détail

LP 46 Applications des lois de l'optique géométrique à l'appareil photographique

LP 46 Applications des lois de l'optique géométrique à l'appareil photographique LP 46 Applatons des los de l'optque géométrque à l'apparel photographque Introduton: Nous allons termner les leçons d'optque géométrque en étudant un apparel qu utlse les résultats de e domane de la physque,

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

CHAPITRE 1 L ÉLECTROSTATIQUE

CHAPITRE 1 L ÉLECTROSTATIQUE L électostatque Chapte 1 CHAPITRE 1 L ÉLECTROSTATIUE 1.1 Intoducton La chage est une popété de la matèe qu lu fat podue et sub des effets électques et magnétques. On dstngue : - l'électostatque qu est

Plus en détail

Enseignement secondaire. PHYSI Physique Programme

Enseignement secondaire. PHYSI Physique Programme Ensegnement secondare Dvson supéreure PHYSI Physque Programme 3CB_3CC_3CF_3MB_3MC_3MF Langue véhculare : franças Nombre mnmal de devors par trmestre : 1 PHYSI_3CB_3CC_3CF_3MB_3MC_3MF_PROG_10-11 Page 1

Plus en détail

10.1 INTRODUCTION CHAPITRE 10 INTERACTION SOL STRUCTURE

10.1 INTRODUCTION CHAPITRE 10 INTERACTION SOL STRUCTURE CHAPITRE 10 INTERACTION SOL STRUCTURE 10.1 INTRODUCTION Les chaptres précédents ont perms d'évaluer les efforts, provenant des forces d'nerte développées dans la structure lorsqu'elle est soumse à un mouvement

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA)

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Unversté d Orléans Econométre des Varables Qualtatves Chaptre 3 Modèles à Varable Dépendante Lmtée Modèles Tobt Smples et Tobt Généralsés Chrstophe Hurln

Plus en détail

Les domaines d'existence des deux solides sont représentés sur le graphe ci-dessous.

Les domaines d'existence des deux solides sont représentés sur le graphe ci-dessous. Concours Centralesupélec TSI 2011 corrge sous reserves I L'élément soufre et les sources naturelles de soufre I.A.1. Les règles pour obtenr la confguraton électronque d un atome dans son état fondamental

Plus en détail

DEFINITIONS ET PRINCIPES FONDAMENTAUX DE LA RDM

DEFINITIONS ET PRINCIPES FONDAMENTAUX DE LA RDM DEFINITIONS ET PRINCIPES FONDMENTUX DE L RDM 1 OJET DE L RDM PRINCIPES DE L STTIQUE.1 Défnton de l équlbre statque.1.1 Epresson du torseur des actons, moment d une force.1. Sstèmes de forces dvers 3. Les

Plus en détail

uur uur u ur Remarque : la superposition d'une lumière naturelle et d'une lumière totalement polarisée est une lumière partiellement polarisée.

uur uur u ur Remarque : la superposition d'une lumière naturelle et d'une lumière totalement polarisée est une lumière partiellement polarisée. T OLRITION RECTILIGNE DE L LUMIERE 1 - Descrpton de l'onde lumneuse naturelle : Une lumère naturelle résulte de la désectaton d'atomes qu émettent alors des vbratons (ou trans d'onde) de pérode de l'ordre

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

Exercices sur la géométrie plane

Exercices sur la géométrie plane Eercces sur la géoétre plane Sot un trangle équlatéral et M un pont ntéreur au trangle n note H, K, L les projetés orthogonau respectfs de M sur les tros côtés éontrer que la soe MH + MK + ML est constante

Plus en détail

Bien débuter avec Illustrator

Bien débuter avec Illustrator CHAPITRE 1 Ben débuter avec Illustrator Illustrator est un logcel de dessn vectorel. Cela sgnfe qu'l permet de créer des llustratons composées avec des objets décrts par des vecteurs. Une telle défnton

Plus en détail

Élec 2 Les dipôles linéaires dans l ARQS

Élec 2 Les dipôles linéaires dans l ARQS Élec 2 Les dpôles lnéares dans l ARQS Lycée Polyvalent de Montbélard - Physque-Chme - TSI 1-2016-2017 Contenu du programme offcel : Notons et contenus Dpôles : résstances, condensateurs, bobnes, sources

Plus en détail

FORMATION ET EVOLUTION DES AEROSOLS DANS L'AIR FILTRE ET DANS L'AIR NATUREL ACTION DE LA RADIOACTIVITE

FORMATION ET EVOLUTION DES AEROSOLS DANS L'AIR FILTRE ET DANS L'AIR NATUREL ACTION DE LA RADIOACTIVITE PREMIER MINISTRE COMMISSARIAT A L'ENERGIE ATOMIQUE CEA-R-36U FORMATION ET EVOLUTION DES AEROSOLS DANS L'AIR FILTRE ET DANS L'AIR NATUREL ACTION DE LA RADIOACTIVITE par Guy J. MADELANE DIRECTION DE LA PROTECTION

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Cours de CEM. Lois physiques de l électricité et de l électromagnétisme

Cours de CEM. Lois physiques de l électricité et de l électromagnétisme Cours de CEM - Orgne des éléments parastes os physques de l électrcté et de l électromagnétsme es composants passfs possèdent des éléments parastes qu lmtent leurs utlsatons. Ils sont dus aux los physques

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

1 Réponse d un circuit RC série à un échelon de tension

1 Réponse d un circuit RC série à un échelon de tension Lycée Naval, Sup. Sgnaux Physques.. Crcut lnéare du premer ordre Crcut lnéare du premer ordre 1 éponse d un crcut C sére à un échelon de tenson On s ntéresse à la réponse d une assocaton sére {conducteur

Plus en détail

TP 6: Circuit RC, charge et décharge d'un condensateur - Correction

TP 6: Circuit RC, charge et décharge d'un condensateur - Correction TP 6: Crcut C, charge et décharge d'un condensateur - Correcton Objectfs: Savor utlser un multmètre. Savor réalser un crcut électrque à partr d'un schéma. Connaître l'nfluence d'un condensateur dans un

Plus en détail

Globalisation de l Algorithme de Nelder-Mead : Application aux Composites

Globalisation de l Algorithme de Nelder-Mead : Application aux Composites INSA de Rouen LMR - Laboratore de Mécanque UMR 638 Rapport Technque : Globalsaton de l Algorthme de Nelder-Mead : Applcaton aux Compostes Marco Antôno Luersen, Doctorant au LMR Rodolphe Le Rche, Chargé

Plus en détail

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX *

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * "W.J.M. LEVELT et R. PLOMP (Insttute for Percepton R.V.O.-T.N.O., SOESTERBERG, PAYS-BAS) Introducton Il est ntéressant de savor de quelle manère

Plus en détail

Extraits de récents DS

Extraits de récents DS 1 Extraits de récents DS Chap. 3 : Magnétostatique 2 UT MARSELLE GE 1 Année D.S. d'électricité n 3 avec Corrigé 29 Mars 1997 2 ème exercice. Circuit avec mutuelle. M i 1 (t) Le primaire du circuit ci-contre

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite.

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite. www.mathsenlgne.com 2G3 - EQUATINS DE DRITES CURS (1/5) CNTENUS CAPACITES ATTENDUES CMMENTAIRES Drote comme courbe représentatve d une foncton affne. - Tracer une drote dans le plan repéré. - Interpréter

Plus en détail

TRANSFORMATEUR MONOPHASE

TRANSFORMATEUR MONOPHASE - ROLE ET NTERET. Rôle TRANSFORMATER MONOHASE n transformater est ne machne électrqe statqe permettant n changement de tenson alternatve avec n excellent rendement. l pet être tlsé en abasser de tenson

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

REDRESSEMENT COMMANDÉ PONT MIXTE

REDRESSEMENT COMMANDÉ PONT MIXTE REDRESSEMENT COMMANDÉ PONT MIXTE A) THYRISTOR 1) Présentaton : C est un nterrupteur électronque commandé ( undrectonnel ) dont le symbole est représenté c-dessous : anode T cathode 2) Fonctonnement : Fermeture

Plus en détail

4.2.1. Le fondement analytique : le tarif douanier

4.2.1. Le fondement analytique : le tarif douanier 4.2.1. Le fondement analytque : le tarf douaner Le lbre-échange procure des bénéfces à tous les pays. Pourtant, durant des décennes, la plupart des natons ont cherché à contrôler leurs échanges en nstaurant

Plus en détail

Transistors a effet de champ

Transistors a effet de champ Transstors a effet de cham e transstor à effet de cham (Feld Effect Transstor) est un dsostf magné ar Schockley en 1958. e rnce en est le contrôle du courant dans un barreau semconducteur à l'ade de deux

Plus en détail

Prévision des ventes des articles textiles confectionnés. B. Zitouni*, S. Msahli* * Unité de Recherches Textiles, Ksar-Hellal, Tunisie.

Prévision des ventes des articles textiles confectionnés. B. Zitouni*, S. Msahli* * Unité de Recherches Textiles, Ksar-Hellal, Tunisie. Prévson des ventes des artcles textles confectonnés B Ztoun*, S Msahl* * Unté de Recherches Textles, Ksar-Hellal, Tunse Résumé Dans cette étude, on se propose de détermner s le recours à des réseaux de

Plus en détail

TES - Accompagnement: Probabilités conditionnelles,, variable aléatoire et loi binomiale

TES - Accompagnement: Probabilités conditionnelles,, variable aléatoire et loi binomiale TS - ccompagnement: Probabltés condtonnelles,, varable aléatore et lo bnomale xercce 1 'asthme est une malade nflammatore chronque des voes respratores en constante augmentaton. n France, les statstques

Plus en détail

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7 Premère parte Proportonnalté 1 Reconnaître des stuatons de proportonnalté....... 7 2 Trater des stuatons de proportonnalté en utlsant un rapport de lnéarté........................ 8 3 Trater des stuatons

Plus en détail

(Licence L1 /Durée 3H) Stand d étude de l'effort tranchant dans une poutre Règle Des accroches poids

(Licence L1 /Durée 3H) Stand d étude de l'effort tranchant dans une poutre Règle Des accroches poids (Lcence L1 /Durée 3H) Objectfs : Se famlarser avec l apparel d étude de l'effort tranchant dans une poutre (les pèces consttutves, mode d emplo...) Ben matrser les étapes qu mènent à l élaboraton des dfférents

Plus en détail

). La force de Coulomb qui s exerce sur la charge q placée en M s écrit f (M) = qe(m) OM

). La force de Coulomb qui s exerce sur la charge q placée en M s écrit f (M) = qe(m) OM Électrostatque Lo de Coulomb dans le vde charges ponctuelles q et q placées dans le vde en des ponts M et M fxes et dstants de r exercent l une sur l autre des forces opposées telles que la force exercée

Plus en détail

Economie Ouverte. Economie ouverte. Taux de change et balance courante. Le modèle Mundell-Fleming. Définition du taux de change

Economie Ouverte. Economie ouverte. Taux de change et balance courante. Le modèle Mundell-Fleming. Définition du taux de change Econome Ouverte Econome ouverte Taux de change et balance courante Taux de change et balance courante Modèle Mundell-Flemng Campus Moyen Orent Médterranée Défnton du taux de change Le taux de change est

Plus en détail

Hansard OnLine. Guide relatif au Unit Fund Centre

Hansard OnLine. Guide relatif au Unit Fund Centre Hansard OnLne Gude relatf au Unt Fund Centre Table des matères Page Présentaton du Unt Fund Centre (UFC) 3 Utlsaton de crtères de recherche parm les fonds 4-5 Explotaton des résultats des recherches par

Plus en détail

Méthodes d étude des circuits linéaires en régime continu

Méthodes d étude des circuits linéaires en régime continu Méthodes d étude des crcuts lnéares en régme contnu Cadre d étude : n réseau électrque (ensemble de dpôles électrocnétques relés par des conducteurs flformes de résstance néglgeable) consttue un crcut

Plus en détail

ETUDE DU VIRAGE : LA BILLE!

ETUDE DU VIRAGE : LA BILLE! ETUDE DU VIAGE : LA BILLE! La blle donne la même ndcaton que celle d'un pendule accroché c par commodté à l'extrémté du vecteur "". Cet nstrument a pour but de rensegner le plote sur la symétre du vol

Plus en détail

Propriétés thermoélastiques des gaz parfaits

Propriétés thermoélastiques des gaz parfaits Themodynamque - Chapte opétés themoélastques des gaz pafats opétés themoélastques des gaz pafats LES CONNAISSANCES - Gaz pafat à l échelle macoscopque Défnton : Le gaz pafat assocé à un gaz éel est le

Plus en détail

CHAPITRE 3 DISTANCE ET VITESSE POUR LES SÉJOURS TOURISTIQUES

CHAPITRE 3 DISTANCE ET VITESSE POUR LES SÉJOURS TOURISTIQUES CHAPITRE 3 DISTANCE ET VITESSE POUR LES SÉJOURS TOURISTIQUES 87 Quels sont les facteurs qu nfluencent la combnason et qu nctent le tourste à modfer pett à pett, le mx de dstance et de temps dans la combnason?

Plus en détail

Circuits en courant continu

Circuits en courant continu Crcuts en courant contnu xercce On consdère les tros montages suvants : montage montage montage ) Montrer que le premer montage équvaut à une résstance unque eq telle que : + eq ) Montrer que le deuxème

Plus en détail

UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL

UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL Yohan KABLA ECP - 3 EME ANNEE MAP SMF UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL 5 MAI NOVEMBRE 00 MAITRES DE

Plus en détail

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003 DEA d physqu subatomqu Corrgé d l xamn d analys statstqu ds donnés t d modélsaton ssson d févrr - anné 22-23 Jérôm Baudot sur 45 ponts I- Errur sur la msur d un asymétr avant-arrèr ponts I-a La formul

Plus en détail

1 ère S. «Thème 3 / L énergie et ses transferts» Livret 1 / Les TP

1 ère S. «Thème 3 / L énergie et ses transferts» Livret 1 / Les TP 1 ère S «Thème 3 / L énerge et ses transferts» Lvret 1 / Les TP Sommare Page 3 : Page 5 : Page 6 : Page 7 : Page 8 : Page 9 : TP/ Chaleur latente de fuson de la glace TP/ Détermnaton d une énerge de combuston

Plus en détail

La mobilité résidentielle depuis 20 ans : des facteurs structurels aux effets de la conjoncture

La mobilité résidentielle depuis 20 ans : des facteurs structurels aux effets de la conjoncture La moblté résdentelle depus 20 ans : des facteurs structurels aux effets de la conjoncture T. Debrand C. Taffn Verson Prélmnare - Ne pas cter 10 mars 2004 Résumé : Les analyses économques sur la moblté

Plus en détail

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus :

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus : 1. Une dode est utlsée dans le montage c-dessous : 3,3 générateur + 2,5 =4,5 V V Fgure 43 Des relevés effectués sur cette dode branchée en drect sont donnés dans le tableau c-dessus : v (V) 0 0,6 0,7 0,8

Plus en détail

EC 2 Étude des circuits linéaires en régime continu

EC 2 Étude des circuits linéaires en régime continu Étude des crcuts lnéares en régme contnu PS 2016 2017 Objet du chaptre : donner des outls pour détermner l état électrque d un crcut : potentels des dfférents nœuds par rapport à un nœud chos comme référence

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal».

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal». «Toute théore n est bonne qu à condton de s en servr pour passer outre». ndré Gde n «Journal». Résumé L usage des los de Krchhoff permet de toujours trouver les tensons et courants dans un réseau électrque

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

Feuille d'exercices : Puissance, transformateur & actionneur

Feuille d'exercices : Puissance, transformateur & actionneur Feulle d'exercces : Pussance, transformateur & actonneur P Coln 12 janver 2017 1 Pussance moyenne consommée par un dpôle On consdère le montage suvant fonctonnant en régme snusoïdal de pulsaton ω. La pussance

Plus en détail

Chapitre I Les pourcentages. Exemples : Il y a 20 arbres dans le verger, donc 30% de poiriers. Combien y a-t-il de poiriers? =6 Il y a 6 poiriers.

Chapitre I Les pourcentages. Exemples : Il y a 20 arbres dans le verger, donc 30% de poiriers. Combien y a-t-il de poiriers? =6 Il y a 6 poiriers. Chaptre I Les pourcentages Extrat du programme : - Expresson en pourcentage d une augmentaton ou d une basse. / coeff multplcateur - Augmentatons et basses successves - aratons d un pourcentage. - Pourcentages

Plus en détail

Optimisation du conditionnement d'air des locaux de télécommunication par utilisation de produits à changement de phase

Optimisation du conditionnement d'air des locaux de télécommunication par utilisation de produits à changement de phase Optmsaton du condtonnement d'ar des locaux de télécommuncaton par utlsaton de produts à changement de phase Davd NÖRTERSHÄUSER, Stéphane LE MASSON France Telecom R&D, 2 Avenue Perre Marzn, 2 LANNION Résumé

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

Analyse quantitative en chromatographie. E. Beauvineau, ENCPB 1

Analyse quantitative en chromatographie. E. Beauvineau, ENCPB 1 nalyse quanttatve en chromatographe Chromatographe et analyse Rôle analytque qualtatf Rôle analytque quanttatf CCM : pureté, dentfcaton, suv réacton Colonne : séparaton, dosage CPG/HPLC : analyse qualtatve

Plus en détail

I. Fonctionnalités du tableur

I. Fonctionnalités du tableur Olver Coma Macro MRP pour Excel Decembre 1999 I. Fonctonnaltés du tableur I.1. Feulle «Nomenclature «Le tableur propose pluseurs optons à l ouverture du fcher. Cnq boutons apparassent à drote de la feulle

Plus en détail