E(X i ) par linéarité de l espérance.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "E(X i ) par linéarité de l espérance."

Transcription

1 Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux otés m = E(X) et σ = V (X ), alors e otat X = X i : X m σ loi + N(0,1) ) Si Cov(X,Y ) = 0, alors X et Y sot idépedates. Vrai ou faux? Expliquer Faux. C est l implicatio suivate qui est vraie : si X et Y sot idépedates, alors Cov(X,Y ) = 0. 3) Si X 1,...X i.i.d.n(m,σ ), quelle est la loi de X = X N(m, σ ) X i? 4) Si X 1,...X i.i.d.n(0,1), quelle est la loi de X X? Défiitio de la loi du khi-deux : Si X 1,...X i.i.d.n(0,1) alors X X χ ( loi du khi-deux à degrés de liberté). 5) Si U N(0,1) et Y χ, quelle est la loi de U Y Défiitio de la loi de Studet : Si U N(0,1) et Y χ alors U T (loi de Studet à degrés de liberté). Y? Exercice 1. 3 poits Soiet X ue v.a. d espérace m et de variace σ et (X 1,...X ) des observatios idépedates. O dispose de deux estimateurs de m : ˆm 1 = X et ˆm = 1 (X 3 + X 3 ). 1) Motrer que ces estimateurs sot sas biais. Défiitio d u estimateur sas biais : u estimateur T de est dit sas biais si pour tout de Θ et tout etier positif : E (T ) = Motros que E( ˆm 1 ) = m et que E( ˆm ) = m. E( ˆm 1 ) = E( X) = E( 1 X i ) = 1 E(X i ) par liéarité de l espérace. E outre E(X 1 ) =... = E(X ) = m doc E( ˆm 1 ) = 1..m = m doc ˆm 1 est sas biais. La moyee empirique est u estimateur sas biais de la moyee théorique. E( ˆm ) = E( 1 (X 3 + X 3 )) = 1 (E(X 3) + E(X 3 )) par liéarité de l espérace. E outre E(X 3 ) = E(X 3 ) = m doc E( ˆm ) = 1..m = m doc ˆm est sas biais. 1

2 ) Motrer que ˆm 1 est coverget Défiitio d u estimateur coverget : U estimateur T est coverget si la suite de v.a. (T ) coverge e probabilité vers la valeur du paramètre. Théorème : Tout estimateur sas biais dot la variace ted vers 0 est coverget. Ce théorème doe deux coditios suffisates pour u estimateur sas biais. Ce e sot pas des coditios écessaires et suffisates (il est faux d écrire que si u estimateur est sas biais et que sa variace e ted pas vers 0 alors il est pas coverget). O se sert de ce théorème pour motrer que ˆm 1 est coverget. E effet, ˆm 1 est sas biais et V ( ˆm 1 ) = V ( X) = V ( 1 X i ) = 1 V ( X i ) = 1 V (X i ) car les X i sot idépedats. V ( ˆm 1 ) = 1..V (X i ) = 1 V (X i) = σ 0 quad +. Doc ˆm 1 est coverget. La moyee empirique est u estimateur coverget de la moyee théorique (c est-à-dire de l espérace). Remarques : 1) La variace empirique modifiée est u estimateur sas biais de la variace théorique. ) Les deux estimateurs sot sas biais et V ( ˆm 1 ) V ( ˆm ) dès lors que 4. Doc l estimateur ˆm 1 est préférable à l estimateur ˆm au ses de la variace. O dit que ˆm 1 est plus efficace que ˆm. Exercice. 6 poits Ue laiterie produit des fromages dot la masse X e grammes est distribuée selo ue loi ormale N(m,σ ). O observe les masses de fromages (idépedates). 1) O suppose que la variace est coue : σ = 6.5. a) Doer u itervalle de cofiace bilatéral à 0.95 pour m. σ = 6.5 =.5 X 1,...X i.i.d.n(m,6.5) doc X N(0, 6.5 ) et U = X m.5 N(0,1) (o utilise pas le Théorème Cetral Limite ici et U suit cette loi même pour petit). P( u U u) = La lecture de la table de la loi N(0,1) doe u = Aisi P( 1.96 X m ) = 0.95, soit P( X m X ) = 0.95 b) Combie de fromages doit-o peser pour que la logueur de l itervalle de cofiace soit iférieure à 1? La logueur de l itervalle est O doit peser au mois 97 fromages pour que la logueur de l itervalle de cofiace soit iférieure à 1. c) Applicatio umérique : pour fromages, o observe que la moyee de la masse observée est x = 53.5 grammes. Das quelle fourchette se situe m? L itervalle de cofiace de m est X m X doc m soit 5.31 m ) O suppose que la variace σ est icoue. a) Doer u itervalle de cofiace à 0,95 de m.

3 Soit S = (X i X ) 1 Z = X m S T ( 1) Soit z le fractile d ordre 0,975 de la loi de Studet à 1 degrés de liberté : P( z Z z) = 0,95 Aisi P( z X m S z) = 0,95 soit P( X z. S m X + z. S ) = 0,95 b) Applicatio umérique. Pour fromages, la moyee de la masse observée est x = 53,5 et la variace est 1 (x i x) = 8,01. Calculer la variace modifiée s et doer l itervalle das lequel se situe m. Idicatio : le fractile d ordre 0,975 de la loi de Studet à 16 degrés de liberté T 16 vaut,1. s = 1 1 (x i x) = 1 ( 1 (x i x) ) = 16 ( 1 (x i x) ) =.8,01 = 8,51 16 et doc s = 8,51 =,9 O a X z. S m X + z. S et doc 53,5,1.,9 m 53,5 +,1.,9 soit 5,00 m 55,00. Exercice 3. 3 poits. Méthode du maximum de vraisemblace Cf Lec. ex 13 p.3 Soit X ue variable aléatoire admettat pour desité f(x;) = { 1 x exp( x ) si x > 0 0 sio où est u paramètre strictemet positif que l o se propose d estimer à partir d u échatillo (X 1,...X ) de X. Détermier l estimateur du maximum de vraisemblace ˆ de. La vraisemblace est l(x 1,...x ;) = f(x i;) = 1 x i exp( x i ) = 1 x 1 exp( x 1 ). 1 x exp( x )... 1 x exp( x ) = () x 1 i exp( 1 xi ) la log vraisemblace s écrit L(x 1,...x ;) = ll(x 1,...x ;) = l l 1 l x i 1 xi O cherche la valeur qui maximise la vraisemblace. La log-vraisemblace est deux fois dérivables, o applique doc u résultat classique d optimisatio. Les dérivées s écrivet : L = + 1 xi L = 3 xi = 3 xi Coditio écessaire d ordre 1 (CN1) : L = 0 3

4 + 1 xi = 0 = 1 xi. Coditio suffisate d ordre (CS) : L < 0 E le poit = 1 xi c est-à-dire pour xi =, la dérivée secode vaut 3 qui est bie égatif. L estimateur du maximum de vraisemblace (emv) est doc : ˆ = 1 Xi =, ce Exercice 4. 5 poits. Méthode des { momets et méthode du maximum de vraisemblace x Soit X ue v.a. de desité f(x;) = si 0 x où est u paramètre strictemet 0 sio positif. (X 1,...X ) est u échatillo de X. 1) a) Détermier u estimateur T de par la méthode des momets. E(X) = + xf(x)dx = 0 x dx = [ 1 3 x3 ] 0 = 3 3 = 3 L estimateur des momets est la solutio de l équatio e momet empirique= momet théorique. Ici o va utiliser le momet d ordre 1 c est-à-dire la moyee. L équatio s écrit X = E(X) X = 3. Sa solutio est T = 3 X b) Pourquoi T est-il coverget? Calculer V (T ). Est-ce que T est u estimateur efficace? Défiitio d u estimateur coverget : U estimateur T est coverget si la suite de v.a. (T ) coverge e probabilité vers la valeur du paramètre (ici ). O ous demade pourquoi T coverge e probabilité vers. Théorème (loi des grads ombres) : Si (X ) est ue suite de v.a. mutuellemet idépedates qui admettet les mêmes momets d ordres u et deux, c est-à-dire avec pour tout etier i, E(X i ) = m et V (X i ) = σ, alors quad : X p m La méthode des momets se justifie par les propriétés de covergece des momets empiriques vers les momets théoriques. O vérifie das le cas préset qu il y a bie covergece. D après la loi des grads ombres, X p m = E(X) = 3, doc T = 3 X 3 p. 3 = Aisi T est coverget. V (X) = E(X ) [E(X)] E(X ) = + x f(x)dx = 0 x3 dx = [ 1 4 x4 ] 0 = 4 4 = 1 doc V (X) = 1 [ 3 ] = 1 18 V (T ) = V ( 3 X ) = V ( 3. 1 X i ) = V ( 3 X i ) = 9 4 V (X i ) car les X i sot mutuellemet idépedates. V (T ) = 9 4 V (X) car V (X 1 ) = V (X ) =... = V (X ) = V (X) V (T ) = 9 4..V (X) = = 1 La questio de l efficacité e se pose pas parce que toutes les hypothèse de Cramer-Rao e sot pas 4

5 vérifiées ; e effet X(Ω) = [0,] est pas idépedat du paramètre à estimer. ) Détermier l estimateur du maximum de vraisemblace (oté M ) de. La vraisemblace de l échatillo e s écrit : l(x 1,...x ;) = f(x i;) l(x 1,...x ;) = ( ) x i si 0 mix i maxx i = 0 sio ou ecore l(x 1,...x ;) = ( ) x i.1 [0 mixi maxx i ] = 1 [0 mixi].( ) x i.1 [ maxxi] l(x,) est pas différetiable e, doc la recherche du maximum de vraisemblace e peut pas se faire e utilisat les résultats classiques d optimisatio. O cherche pour quelle valeur de, foctio des observatios (x 1,...x ), o aura l maximale. Lorsque < maxx i, l est ulle. Lorsque maxx i, l est décroissate. Aisi il apparaît clairemet que l est maximale pour = maxx i. Fialemet M = maxx i est l estimateur du maximum de vraisemblace pour. 5

Aide Mémoire de Statistique

Aide Mémoire de Statistique Aide Mémoire de Statistique (E, E, P) modèle statistique (E, E, P) modèle probabiliste E probabilité, o coaît la loi P et o fait des calculs E statistique, o e coaît pas la loi (seulemet ue famille de

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède).

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède). #4 Itégrale de Riema Khôlles - Classes prépa Thierry Sageaux, Lycée Gustave Eiel Exercice Soit f ue foctio cotiue sur [, ] telle que Motrer que f ab f(t)dt = O pose a = mi f et b = max f Exercice x ) Motrer

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression Pla du cours Méthodes de statistique iféretielle. A. Philippe Laboratoire de mathématiques Jea Leray Uiversité de Nates Ae.Philippe@uiv-ates.fr 1 Itroductio 2 Probabilités : Variables Aléatoires Cotiues

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart

Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart Uiversité Joseph Fourier, Greoble Maths e Lige Séries umériques Luc Rozoy, Berard Ycart Disos-le tout et, ce chapitre est pas idispesable : d ailleurs, vous e verrez pas vraimet la différece avec les suites.

Plus en détail

CTU, Licence de Mathématiques Statistique Inférentielle. Jean-Yves DAUXOIS. Université de Franche-Comté

CTU, Licence de Mathématiques Statistique Inférentielle. Jean-Yves DAUXOIS. Université de Franche-Comté CTU, Licece de Mathématiques Statistique Iféretielle Jea-Yves DAUXOIS Uiversité de Frache-Comté Aée scolaire 2011-2012 Ce polycopié cotiet le cours, les sujets d exercice et leurs corrigés aisi que les

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Introduction to Econometrics

Introduction to Econometrics MPRA Muich Persoal RePEc Archive Itroductio to Ecoometrics Moussa Keita September 015 Olie at https://mpra.ub.ui-mueche.de/66840/ MPRA Paper No. 66840, posted. September 015 04:1 UTC INTRODUCTION A L ECONOMETRIE

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1 1 Statistique iferetielle. Relatios Iteratioales Lucya Firlej Pl. E.Bataillo, Bat.11, cc.06 34095 Motpellier cedex 5 Frace lucya.firlej@umotpellier.fr S3. Statistics. 30 h d eseigemet: 10 cours, 10 TD,

Plus en détail

Fonctions convexes. Prologue

Fonctions convexes. Prologue Foctios covexes Prologue Ce chapître développe les propriétés des foctios covexes f C E R défiies sur ue partie covexe C d u espace de dimesio fiie E. Si, fodametalemet, la covexité est ue propriété uidimesioelle

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1 SESSION 2005 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES PREMIER EXERCICE a. T (x + y dxdy = = ( y= (x + y dy y= x dx = ((x + 2 ( x2 + x2 2 dx = T (x + y dxdy = 4 3. [xy +

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

Équations différentielles - Cours no 6 Approximation numérique

Équations différentielles - Cours no 6 Approximation numérique Équatios différetielles - Cours o 6 Approximatio umérique 1 Itroductio De très ombreux problèmes scietifiques sot mis e équatio à l aide d u système d équatios différetielles ẋt) = ft, xt)) voir par exemple

Plus en détail

Université Paris-Dauphine Année 2008-2009 U.F.R. Mathématiques de la décision L3 - Statistique Mathématique. Examen

Université Paris-Dauphine Année 2008-2009 U.F.R. Mathématiques de la décision L3 - Statistique Mathématique. Examen Uiversité Paris-Dauphie Aée 28-29 U.F.R. Mathématiques de la décisio L3 - Statistique Mathématique Exame Durée 2h. Le barême est doé à titre idicatif. Exercice : 5 poits) Soit X,...,X ) u échatillo de

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Exercices de Khôlles de Mathématiques, second trimestre

Exercices de Khôlles de Mathématiques, second trimestre Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Exercice 2 (Séries de fonctions - 7 points)

Exercice 2 (Séries de fonctions - 7 points) INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple

Plus en détail

Concours de l Iscae. Épreuve Commune de Mathématiques (2015)

Concours de l Iscae. Épreuve Commune de Mathématiques (2015) Mohiieddie Beayad Cocours de l Iscae Épreuve Commue de Mathématiques (5) Voici l éocé de l épreuve commue de Mathématiques du cocours d etrée à l ISCAE de l aée 5, aisi que l itégralité du corrigé. Les

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Probabilités et Statistiques MATH-F-315. Simone GUTT

Probabilités et Statistiques MATH-F-315. Simone GUTT Probabilités et Statistiques MATH-F-315 Simoe GUTT 2012 Das la vie, ous sommes cotiuellemet cofrotés à des collectios de faits ou doées. Les statistiques formet ue brache scietifique qui fourit des méthodes

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

2 Exercice 15 : les intégrales de Wallis

2 Exercice 15 : les intégrales de Wallis Exercice sur les itégrles Exercice 5 : les itégrles de Wllis O pose si xdx ) Clculer I et I ) Motrer que l suite ( ) coverge 3) Etblir ue formule de récurrece etre et 4) Motrer que le produit ( + ) + est

Plus en détail

COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion

COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion COURS DE STATISTIQUES INFERENTIELLES Licece d écoomie et de gestio Laurece GRAMMONT Laurece.Grammot@uiv-st-etiee.fr http://www.uiv-st-etiee.fr/maths/cvlaurece.html September 19, 003 Cotets 1 Rappels 5

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mp.cpgedupuydelome.fr] édité le 9 mai 07 Eocés Calcul de ites Exercice [ 054 ] [Correctio] Détermier la ite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = + + d u =

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique Uiversité de Picardie Jules Vere 006-007 Faculté de Mathématiques et d Iformatique Licece metio Mathématiques - Deuxième aée - Semestre 4 Probabilités Elémetaires Exame du ludi 4 jui 007 Durée h00 Documet

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations 8-8- JFC p EM LYON S JF COSSUTTA Lycée Marceli BERTHELOT SAINT-MAUR jea-fracoiscossutta@waadoofr PROBLÈME Partie I : Résultats gééraux sur les matrices stochastiques - Illustratios Remarque Das la suite

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

D- Convergence de variables aléatoires

D- Convergence de variables aléatoires D-1 Notatios O cosidère ( ) N (évetuellemet (Y ) N ) ue suite de variables aléatoires défiies sur l espace probabilisé (Ω, A, ) et X (évetuellemet Y ) ue variable aléatoire défiie sur le même espace. O

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Modélisation stochastique

Modélisation stochastique Uiversité de Lorraie Master 2 IMOI 2014-2015 Modélisatio stochastique Madalia Deacou 2 Table des matières Itroductio 5 1 Simulatio de variables aléatoires 7 1.1 Itroductio............................ 7

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Estimation paramétrique

Estimation paramétrique Retour au pla du cours Soit Ω, A, P u espace probabilisé et X ue v.a. de Ω, A das E, E. La doée d u modèle statistique c est la doée d ue famille de probabilités sur E, E, {P θ, θ Θ}. Le modèle état doé,

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire Séquece 9 Lois ormales, itervalle de fluctuatio, estimatio Sommaire 1. Prérequis. Lois ormales 3. Itervalles de fluctuatio 4. Estimatio 5. Sythèse de la séquece Séquece 9 MA0 1 Ced - Académie e lige Das

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 6 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques CHAPITRE 2 : Estimatio o-paramétrique 1. Estimateurs empiriques Soit u échatillo i.i.d. de durées T i i1,..., de foctio de survie S Défiitio: L estimateur empirique de la foctio de survie est S x 1 i1

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés Exercice [ 43 ] [Correctio] O pose ) k+ s = et u = l e s ) k k= a) Éocer le théorème des séries spéciales alterées, e faire la preuve. b) Prouver

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail