INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener"

Transcription

1 INF58 : Cryptologie Attaque de clés RSA par la méthode de Wieer Nicolas DOUZIECH - Thomas JANNAUD - X005 9 mars 008 Table des matières Quelques rappels sur le cryptosystème RSA Pricipe de l attaque de Wieer 3 L algorithme des fractios cotiues 3. Pricipe Quelques ues des propriétés fodametales des fractios cotiues L idée de Wieer Démostratio Estimatio de la bore sur d Pratique 4 4. Algorithme complet Implémetatio Amélioratios implémetées Quelques résultats Coclusio 7

2 3 L ALGORITHME DES FRACTIONS CONTINUES Quelques rappels sur le cryptosystème RSA Le pricipe de RSA repose sur le chiffremet asymétrique à clé publique / clé privée suivat : Pour e et d bie choisis, x Z/Z, (x e ) d = x mod. O red alors publique la clé e. Si l o a u message m Z/Z, o ous evoie m e et coaissat d ous retrouvos le message iitial. La puissace du procédé tiet das le fait que coaissat m et e, il est très dur de retrouver d sas coaître la décompositio e facteurs premiers de. La méthode cosiste doc à choisir ombres premiers p et q aussi grads que écessaire, et à poser = p q. O choisit alors e plus ou mois "aléatoiremet", o le red publique, et il reste à calculer d. Choix de e et d : à x fixé, {x k, k Z} est u sous-groupe multiplicatif de (Z/Z), isomorphe d après le théorème chiois à (Z/pZ) (Z/qZ). Le cardial du sousgroupe divise doc ppcm(p, q ). Aisi, si e est premier avec p et q,et si d est l iverse de e das Z/(p )(q )Z (i.e tel que ed = mod (p )(q )), alors (x e ) d = x mod. Pricipe de l attaque de Wieer L attaque de Wieer s applique tout particulièremet lorsque l exposat secret d est faible. Elle repose sur l équatio défiissat d d après l exposat public e et la foctio de Carmichael appliquée au module = p q : e d = mod λ() De cette équatio, o e déduit l existece d u etier K tel que e d = +K λ(). De plus, λ() = ppcm(p, q ) = (p )(q ) G, avec G = pgcd(p, q ). Il viet alors ed = + K G (p )(q ) = + k g (p )(q ), après réductio tel que pgcd(k, g) =. O e déduit alors le pivot de l algorithme des fractios cotiues appliquées à cette attaque : e pq = k dg ( p + q g k ) f = f( δ) pq qui sera efficace si δ = p+q g k pq est très faible. Or, comme pgcd(k, g) = par défiitio et pgcd(k, d) = (d après la formulatio de Bézout : ed = +k (p )(q ) g ), si o détermie la fractio k dg, o obtiedra aisémet k et le produit dg. 3 L algorithme des fractios cotiues Le développemet e fractios cotiues permet de calculer le umérateur et le déomiateur d u ombre ratioel x (de maière exacte). Aisi, sachat que f = f( δ) et que l o coait f, o va pouvoir remoter o pas à f, mais à

3 3. Pricipe 3 L ALGORITHME DES FRACTIONS CONTINUES so umérateur et à so déomiateur, ce qui apporte cosidérablemet plus d iformatios. Cela permet e l occurece de "casser" le système puisque coaissat ces iformatios o verra que l o parviet à remoter à p, q, et d. 3. Pricipe Tout réel x peut s écrire de maière uique sous la forme x = q 0 + q + q + q 3 + q , q, q, N Par costructio, q i = r et r i i = r q i i. O peut oter (q 0, q, q,... ) le développemet d u réel x. O peut ituiter qu ue certaie otio de "cotiuité" se dégage : Si x est proche de y, les premiers termes du développemet de x serot égaux à ceux de y. 3. Quelques ues des propriétés fodametales des fractios cotiues D ue part, le développemet coverge rapidemet, et il est fii si et seulemet si x est ratioel. D autre part, pour i pair : et pour i impair : (q 0, q,..., q i ) < (q 0, q,..., q i+ ) < (q 0, q,..., q i + ) (q 0, q,..., q i + ) < (q 0, q,..., q i+ ) < (q 0, q,..., q i ) La suite x (q 0, q,..., q i ) est doc alterée, et les sous-suites d idices pairs seulemet ou impairs seulemet sot mootoes. Efi, e défiissat i et d i tels que i, i di = (q 0,..., q i )), o a (q 0, q,..., q i ) = q i i + i q id i +d i et i d i i di = ( ) i. 3.3 L idée de Wieer Rappelos que f = f( δ), où δ semble être de petite taille, et l o aimerait coaître le umérateur et le déomiateur de f, sachat ceux de f. L idée de Wieer cosiste à effectuer le développemet e fractios cotiues de f : O ote (q 0, q,..., q m ) le développemet de f et (q 0, q,,q m ) celui de f. Si f et f sot suffisammet proches, alors les premiers termes du développemet de f et de celui de f sot égaux. Et avec u peu de chace, m m, ce qui ferait que le développemet de f serait u sous-développemet de celui de f. L algorithme va foctioer si et seulemet si les m premières valeurs du développemet de f sot celles de f, c est à dire si : m est pair et (q 0, q,..., q m ) < f (q 0, q,..., q m ) = f 3

4 3.4 Démostratio 4 PRATIQUE m est impair et (q 0, q,,q m + ) < f (q 0, q,,q m ) = f (ceci etraierait que le développemet de f cotiue plus loi qu au rag m) Cette coditio est remplie si δ < 3 où m et d m sot le umérateur et le mdm déomiateur de f. Ce qui semble être de la "chace" e est e fait pas. La coditio m m qui semble être aléatoire est e fait vérifiée sur l itervalle des ratioels compris etre (q 0, q,..., q m ) et (q 0, q,..., q m ) = f (si m est pair), qui est e fait de largeur fδ. 3.4 Démostratio O prouve le résultat das le cas où m est u etier pair. O a l iéquatio ci-dessus si et seulemet si δ < (q0,q,...,qm ) (q 0,q,...,q m). E utilisat les otatios i et d i vues das la partie "propriétés fodametales", l iéquatio se réécrit : δ < m d m m dm (q m m + m )(q md m +d m d m ) Et après réductio, e utisat la propriété fodametale citée e derier, o obtiet δ < m(d m d m ). Par voie de coséquece, δ < md m est suffisat pour obteir la covergece de l algorithme. (et doc δ < 3 aussi) mdm 3.5 Estimatio de la bore sur d O utilise les otatios de l article. Il y est écrit que pour d < 4 le "cassage" du code réussit grâce à l algorithme des fractios cotiues. Coditio de réussite : δ < md m = kdg. Or δ = p+q g k pq doc il suffit que p+q pq < kdg pour que l algorithme marche. O peut estimer p et q par puisque = pq. Ue coditio de réussite est doc kdg soit d kg. K Or k = P GCD(K,G) et g = G P GCD(K,G) doc il suffit que d KG. ed Comme G = P GCD(p, q ) et K = P P CM(p,q ) ed P P CM(p,q ), cela équivaut d avec (p )(q ). G ed (p )(q ) Ue coditio est doc d G ed soit d G e. Comme e <, ue coditio plus stricte est d G. p et q état premiers, avec ue forte probabilité les facteurs de (p ) et (q ) ot que de petits facteurs premiers et G(= P GCD(p, q )) est très petit devat (soit O()). O retrouve doc la coditio d < 4. 4 Pratique 4. Algorithme complet Voici l algorithme complet de l attaque de Wieer cotre ue clé publique (, e). 4

5 4. Implémetatio 4 PRATIQUE CasserRSA(, e) m 0, q 0 e/, r 0 e/ q 0, 0 q 0 et d 0 while (r m 0) 3 do if m est pair 4 the k/dg < q 0,..., q m + > 5 else k/dg < q 0,..., q m > O vérifie si le développemet partiel coviet pour k/dg 6 edg e dg 7 (p )(q ) edg/k 8 g edg mod 9 if (g = 0) 0 the goto FiTest le développemet e coviet pas p + q (p )(q ) if p + q impair 3 the goto FiTest le développemet e coviet pas 4 ( p q ) = ( p+q ) p q 5 = (( p q ) ) racie carré etière 6 if ( p q ) est pas u carré parfait 7 the goto FiTest le développemet e coviet pas 8 p p+q + p q, q p+q p q 9 d dg/g Fi des vérificatios, retour de d 0 retur d FiTest : Calcul de l élemet suivat du développemet de e/ q m+ = r m et r m+ = r m q m+ 3 if (m=0) 4 the = q 0 q + et d = q 5 else m+ = q m+ m + m et d m+ = q m+ d m + d m 6 retur "Clé icassable" 4. Implémetatio Pour implémeter cet algorithme, ous avos opté pour développer ue classe dot les membres serot os variables, e, m etap, la liste des q i, celle des i et d i et r i est stocké sous le format umérateur (variable r i ) et déomiateur (variable r i ). Pour ce qui est des foctios de calcul, ous avos : Ue foctio casser qui pred e argumet le mode de calcul choisi. Nous verros qu il s agit e fait des amélioratios que ous proposeros plus bas. Ue foctio breaker qui est l implémetatio de l algorithme de base mais das lequel ous etros le umérateur et le déomiateur de f qui approche, de maière iférieure f = k dg. Ue foctio calcul_ext qui calcule l élémet m + du développemet e fractio cotiue et met à jour les listes q i, i et d i. 5

6 4.3 Amélioratios implémetées 4 PRATIQUE Ue foctio Verifier qui, coaissat le développemet (partiel) de f vérifie s il coviet pour f. Cette foctio pred e argumet ue structure (qui cotiet, p, q, e, d) qui sera remplie si la vérificatio s avère positive et retourera VRAI, sio retourera FAUX. Parallèlemet, ous avos développé ue classe pricipale qui permet de choisir différets formats d etrées (lacemet e lige de commade). O peut spécifier la valeur de, soit directemet, soit via u fichier, celle de e de la même maière. O peut aussi demader la géératio aléatoire d ue clé dot o spécifie la taille (la taille de p et de q). U mode permet aussi de lacer k tests géérat aléatoiremet des clés et les testat. Efi, o peut spécifier le mode de calcul qui précise si o travaille avec la versio de base (par défaut) ou avec ue amélioratio. Pour géérer ue clé, ous choisissos "aléatoiremet" p et q premiers de la taille spécifiée. est alors le produit des deux et ϕ() = (p ) (q ). O choisit alors d aléatoiremet de taille le quart de celle de (BigIteger(.bitLegth()/4, rad)) et o essaie d iverser d pour obteir e ( mod ϕ()). Cepedat, o sait que d est pas toujours iversible, das ce cas, o rejette simplemet la clé et o e essaie ue autre. Notos e passat que pour calculer la racie carrée de, ous avos développé ue foctio sqrt sur les BigIteger qui calcule le plus grad etier (format BigIteger) m tel que m par la méthode de Newto. 4.3 Amélioratios implémetées Nous avos implémeté deux amélioratios proposées das l article. Les deux reposet sur le pricipe d approcher mieux f par f (toujours iférieuremet). Cepedat, elles peuvet e pas foctioer das des cas où l attaque classique foctioe (car o peut se retrouver avec f > f) Pour la première (mode ), il s agit de remplacer f = e par e (, ce qui ) améliore la bore maximale de d. Pour la deuxième (mode ), o souhaite toujours s approcher iférieuremet de f. Aussi, e supposat e et grads, o peut remplacer f = e e+i par f = +i avec i faible. Aussi, o essaie avec i variat de à Quelques résultats A titre d illustratio, ous avos testé le programme. Cocerat l algorithme de base, ous avos testé la créatio de 0000 clés de taille 5 bits. O costate que seulemet 306 clés ot pu être géérées jusqu au bout (l iversio de d échoue doc à 70%) Parmi ces 306 clés, seulemet 86 ot pas pu être cassées par l attaque de Wieer, ce qui est u taux d échec de seulemet 6%. Sur u ordiateur ormal, le test de ces 0000 clés ot pris que sept miutes. Notos cepedat qu u même test de 0000 clés mais e choisissat d par BigIteger(.bitLegth()/4-, rad) e géère statistiquemet aucue clé icassable! Cocerat les amélioratios, ous avos simulé clés comme précédemmet mais lorsqu ue clé est pas cassable par la méthode de base, alors ous tetos de la 6

7 5 CONCLUSION casser par la versio améliorée et par la versio améliorée. Comme précédemmet, seules 30% des clés ot pu être géérées jusqu au bout (30740 sur 00000), parmi cellesci, 58 ot pu être cassées par l attaque de base (soit eviro 8%). Cepedat, parmi ces 58 clés, l amélioratio a permis d e casser 35, ce qui est certes faible mais motre l itérêt de cette derière. Malheureusemet, la deuxième amélioratio a pu e casser aucue. A titre d exemple, ous doos deux clés o cassées par l attaque de base mais où la première amélioratio a réussi. (l algorithme pred et e e etrée et retoure p, q et d) = e = p = q = d = = e = p = q = d = Coclusio Comme le motre les résultats, l attaque de Wieer est efficace pour peu que d < 4. De plus, ous costatos que l amélioratio qui cosiste à remplacer e par e ( s avère utile mais e peut pas être gééralisée car o se retrouve fréquemmet ) au dessus de k dg et l algorithme des fractios cotiues est doc plus efficace. 7

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Reconnaissance des formes: Fenêtre de Parzen

Reconnaissance des formes: Fenêtre de Parzen Préom Nom Recoaissace des formes: Feêtre de Parze Pricipes de l'appretissage o paramétrique Estimatio o paramétrique de la desité Feêtres de Parze vs. k plus proches voisis Feêtres de Parze Réseau de euroes

Plus en détail

I. Premier exemple : calcul de π par la méthode d Archimède. Les figures suivantes montrent le principe de la méthode d Archimède pour le calcul de π.

I. Premier exemple : calcul de π par la méthode d Archimède. Les figures suivantes montrent le principe de la méthode d Archimède pour le calcul de π. TS. DM 6 - Correctio I. Premier exemple : calcul de par la méthode d Archimède. Les figures suivates motret le pricipe de la méthode d Archimède pour le calcul de. Au début, =,S =,T =. = 8 = 6 Désigos

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

Chapitre 1. Arithmétique. Partie 5 : PGCD

Chapitre 1. Arithmétique. Partie 5 : PGCD Chapitre 1 Arithmétique Partie 5 : PGCD Propriété/Défiitio : (PGCD) O se doe deux etiers relatifs a et b o uls. L esemble des diviseurs positifs commus à a et b admet u plus grad élémet que l o PGCD a

Plus en détail

Sylvain ETIENNE 2003/2004 PLC1, groupe 1 Exposé 64

Sylvain ETIENNE 2003/2004 PLC1, groupe 1 Exposé 64 Sylvai ETIENNE 3/4 IMAGE D UN INTERVALLE PAR UNE FONCTION CONTINUE, IMAGE D UN SEGMENT. CONTINUITE DE LA FONCTION RECIPROQUE D UNE FONCTION CONTINUE STRICTEMENT MONOTONE SUR UN INTERVALLE. Niveau : Complémetaire.

Plus en détail

6.1 Modèle multiplicatif de mortalité excédentaire (proportional

6.1 Modèle multiplicatif de mortalité excédentaire (proportional 6 Tests d hypothèse (Klei 6.3, Lawless 10.2 et 10.3, Klugma 13.4) 6.1 Modèle multiplicatif de mortalité excédetaire (proportioal hazard) O veut comparer la mortalité d u groupe sous étude avec celle d

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

Groupes monogènes, groupes cycliques. Exemples

Groupes monogènes, groupes cycliques. Exemples 2 Groupes moogèes, groupes cycliques. Exemples Les otios de base sur les groupes sot supposées coues. E particulier, les esembles et groupes quotiets sot supposés cous. Pour des rappels, o pourra cosulter

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Exercices de dénombrement

Exercices de dénombrement DOMAINE : Combiatoire AUTEUR : Atoie TAVENEAUX NIVEAU : Itermédiaire STAGE : Grésillo 0 CONTENU : Exercices Exercices de déombremet Exercice Combie y a-t-il de sous-esembles d u esemble de cardial? Exercice

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Comportement asymptotique

Comportement asymptotique Comportemet asymptotique NB: Les phrases écrites etre guillemets e italique sot écessaires à la compréhesio de la otio de ite, mais sot peu utilisées das la pratique où l o fait plutôt appel au propriétés

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES GRAPHES - EXERCICES CORRIGES Compilatio réalisée à partir d exercices de BAC TES Exercice. U groupe d amis orgaise ue radoée das les Alpes. O a représeté par le graphe ci-dessous les sommets B, C, D, F,

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (5/0/00) Chapitre 4 Lois de Probabilité Sommaire. Itroductio. 4. Lois discrètes..4.. Loi uiforme..4... Défiitio...4... Espérace et variace..5..

Plus en détail

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE Nombre de pages de l épreuve Durée de l épreuve 0 pages 3h00 Compte teu du fait qu il s agissait d u cocours d etraiemet, cette épreuve à été prise sur le

Plus en détail

CONVERGENCE ET APPROXIMATION

CONVERGENCE ET APPROXIMATION 11-2- 2010 J.F.C. Cov. p. 1 CONVERGENCE ET APPROXIMATION I CONVERGENCE EN PROBABILITÉ 1. Défiitio 2. Ue coditio suffisate de covergece e probabilité 3. La loi faible des grads ombres 4. Ue coséquece de

Plus en détail

CHAPITRE IV. Rappels et compléments sur les suites

CHAPITRE IV. Rappels et compléments sur les suites CHPITRE IV Rappels et complémets sur les suites SUITES NUMÉRIQUES 1 Sommaire I Notio de suite...................................... 30 Exemples.......................................... 30 B Défiitio..........................................

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible.

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible. Uiversité de Geève Sectio de Mathématiques Algèbre I Corrigé 2 Série 7, ex 3 Toutes les affirmatios sot vraies sauf la derière E effet, pour que deux espaces soiet e somme directe, il faut que leur itersectio

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI Ξ 2 Suites umériques 2016-2017 Résumé du cours de MPSI I/ Défiitio, propriétés globales 1/ Défiitio Ue suite de complexes u est ue applicatio de N das C Notatios : L'image d'u etier par u se ote u( ou

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Chapitre 2 : Raisonnement par récurrence, manipulation de sommes.

Chapitre 2 : Raisonnement par récurrence, manipulation de sommes. ECS1B Carot Chapitre 013/014 Chapitre : Raisoemet par récurrece, maipulatio de sommes Objectifs : Écrire propremet u raisoemet par récurrece (simple, double Maipuler les symboles Σ et sas erreur ceci viedra

Plus en détail

CORRIGÉ DE LA FEUILLE 2

CORRIGÉ DE LA FEUILLE 2 CORRIGÉ DE LA FEUILLE. Exercice Soiet u et v deux séries à termes positifs.. Si ue des séries est divergete, alors la série de terme gééral u + v est divergete C est vrai. E effet, supposos que la série

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence Chapitre 1 Déombremet Objectifs du chapitre 1. A travers l axiomatisatio de Peao de N, rappeller les pricipes de récurrece forte et faible. 2. Défiir la otio de cardial et les opératios sur les cardiaux.

Plus en détail

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9.

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9. Liba 13 v 0 = 1 O cosidère la suite umérique ( v ) défiie pour tout etier aturel par 9 v +1 = 6 v Partie A 1 O souhaite écrire u algorithme affichat, pour u etier aturel doé, tous les termes de la suite,

Plus en détail

Séries entières. Plan de cours

Séries entières. Plan de cours 5 Séries etières «U mathématicie qui est pas aussi quelque peu poète e sera jamais u mathématicie complet.» Extrait d ue lettre de Karl Weierstrass à Sophie Kowalevski (883) Pla de cours I Rayo de covergece

Plus en détail

Exercices - Les nombres réels : corrigé. Valeur absolue - Partie entière

Exercices - Les nombres réels : corrigé. Valeur absolue - Partie entière Exercices - Les ombres réels : corrigé Exercice 1 - Ordre et R - L1/Math Sup - 1. Supposos que a 0 et posos ε = a /2 > 0. Alors o a a < ε = a /2, soit e simplifiat par a qui est positif, 1 < 1/2. Ceci

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Article PanaMaths Les intégrales et la formule de Wallis

Article PanaMaths Les intégrales et la formule de Wallis Article PaaMaths Les itégrales et la formule de allis Itroductio Joh allis (Ashford 66 Oxford 73) est u mathématicie aglais. So éducatio fut d abord religieuse (il sera ordoé prêtre e 64) mais à partir

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

Informatique TP3 : Calcul numérique d une intégrale CPP 1A

Informatique TP3 : Calcul numérique d une intégrale CPP 1A Iformatique TP3 : Calcul umérique d ue itégrale CPP 1A Djamel Aouae, Frédéric Deveray, Matthieu Moy mars 015 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer le zéro d ue foctio

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Corrigé du problème: autour de la fonction zeta alternée de Riemann

Corrigé du problème: autour de la fonction zeta alternée de Riemann Corrigé du problème: autour de la foctio zeta alterée de Riema I Gééralités Pour x >, la suite décroît vers, doc la série coverge par le critère spécial des séries alterées Pour x, e ted pas vers, ce qui

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Les suites récurrentes à convergence lente

Les suites récurrentes à convergence lente Les suites récurretes à covergece lete Daiel PERRIN 0. Itroductio. Je me propose d écrire ue sorte de bila sur la covergece des suites u + = f(u ), avec f de classe C au mois, vers u poit fixe α, das le

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si :

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si : Sites mootoes Sites adjacetes Approximatios d réel Développemet décimal Pré reqis Axiome de la bore spériere Limite d e site Partie etière d réel Divisio eclidiee Sites mootoes Défiitios : O dit d e site

Plus en détail

Note sur le comportement en l infini d une fonction intégrable

Note sur le comportement en l infini d une fonction intégrable Note sur le comportemet e l ifii d ue foctio itégrable Emmauel Lesige To cite this versio: Emmauel Lesige. Note sur le comportemet e l ifii d ue foctio itégrable. 2008. HAL Id: hal-00276738

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion

COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion COURS DE STATISTIQUES INFERENTIELLES Licece d écoomie et de gestio Laurece GRAMMONT Laurece.Grammot@uiv-st-etiee.fr http://www.uiv-st-etiee.fr/maths/cvlaurece.html September 19, 003 Cotets 1 Rappels 5

Plus en détail

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations 8-8- JFC p EM LYON S JF COSSUTTA Lycée Marceli BERTHELOT SAINT-MAUR jea-fracoiscossutta@waadoofr PROBLÈME Partie I : Résultats gééraux sur les matrices stochastiques - Illustratios Remarque Das la suite

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales Filtratios et martigales 1 [M. Gubielli - Processus discrets - M1 MMD 2009/2010-20100113 - v.6] IV Martigales 1 Filtratios et martigales O cosidère u espace probabilisé (Ω, F, P). Défiitio 1. Ue filtratio

Plus en détail

Fiche Diagonalisation des Matrices 2x2

Fiche Diagonalisation des Matrices 2x2 Fiche Diagoalisatio des Matrices x MOSE 1003 4 Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

Principe de récurrence

Principe de récurrence Pricipe de récurrece Remarues sur les formules sommatoires établies par récurrece à u terme. Le pricipe est toujours le même. O désire motrer u ue somme S u 0 + u +.. + u est égale à la valeur f () d ue

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

TD n 3 : quelques exercices sur la récurrence

TD n 3 : quelques exercices sur la récurrence Éocé TD 3 : quelques exercices sur la récurrece Exercice 1 Soit (a ) 0 ue suite de ombres réels ou complexes. O pose b 0 = 1 et b = (1 a k ) pour 1. Motrer que b +1 = 1 Exercice O défiit ue suite (u )

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Correction du devoir Surveillé 6 : Probabilités

Correction du devoir Surveillé 6 : Probabilités S www.wicky-math.fr.f DS - Probabilités Correctio du devoir Surveillé : Probabilités Exercice. ROC Démotrer le théorème suivat : ( poits) Théorème : La probabilité de la réuio de deux évéemetsaetb est

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

TD d algorithmique avancée Corrigé du TD 2 : récursivité

TD d algorithmique avancée Corrigé du TD 2 : récursivité TD d algorithmique avacée Corrigé du TD : récursivité Jea-Michel Dischler et Frédéric Vivie Suite de Fiboacci La suite de Fiboacci est défiie comme suit : 1 si = 0 Fib() = 1 si = 1 Fib( 1) + Fib( ) sio.

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Produit de Cauchy de la série alternée par elle-même.

Produit de Cauchy de la série alternée par elle-même. CCP 8. Filière MP. Mathématiques. Corrigé pour serveur UPS par JL. Lamard (jea-louis.lamard@prepas.org I. Gééralités. Pour > la série défiissat F coverge absolumet, pour < elle coverge par le critère spécial

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

I) Suites arithmétiques

I) Suites arithmétiques CHAPITRE 9 Suites arithmétiques et géométriques Capacités au programme : Modéliser et étudier ue situatio à l aide des suites. Mettre e œuvre des algorithmes permettat : d obteir ue liste de termes d ue

Plus en détail

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi.

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi. Exo7 Fractios ratioelles Correctios de Léa Blac-Ceti. Fractios ratioelles Exercice Existe-t-il ue fractio ratioelle F telle que ( F() ) = ( + ) 3? Idicatio Correctio Vidéo [006964] Exercice Soit F = P

Plus en détail