BA + DB. Métropole La Réunion septembre 2008

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "BA + DB. Métropole La Réunion septembre 2008"

Transcription

1 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue B comporte 6 cases oires et 4 cases rouges. Lors du lacer d ue roue toutes les cases ot la même probabilité d être obteues. La règle du jeu est la suivate : Le joueur mise et lace la roue. S il obtiet ue case rouge, alors il lace la roue B, ote la couleur de la case obteue et la partie s arrête. S il obtiet ue case oire, alors il relace la roue, ote la couleur de la case obteue et la partie s arrête.. Traduire l éocé à l aide d u arbre podéré.. Soiet E et F les évèemets : E : «à l issue de la partie, les cases obteues sot rouges» F : «à l issue de la partie, ue seule des deu cases est rouge». otrer que p(e)= 0,0 et p(f) = 0,7.. Si les cases obteues sot rouges le joueur reçoit 0 ; si ue seule des cases est rouge le joueur reçoit ; sio il e reçoit rie. X désige la variable aléatoire égale au gai algébrique e euros du joueur (rappel le joueur mise ). a. Détermier la loi de probabilité de X. b. Calculer l espérace mathématique de X et e doer ue iterprétatio. 4. Le joueur décide de jouer parties cosécutives et idépedates ( désige u etier aturel supérieur ou égal à ) a. Démotrer que la probabilité p qu il lace au mois ue fois la roue B est telle que p = (0,9). b. c. Justifier que la suite de terme gééral p est covergete et préciser sa limite. Quelle est la plus petite valeur de l etier pour laquelle p 0,9? EXERCICE poits Commu à tous les cadidats O se propose de détermier toutes les foctios f défiies et dérivables sur l itervalle ] 0 ; + [ vérifiat l équatio différetielle (E) : f () ( + ) f () = 8.. a. Démotrer que si f est solutio de (E) alors la foctio g défiie sur l itervalle ] 0 ; + [ par g () = f ( ) est solutio de l équatio différetielle (E ) : y = y + 8. b. Démotrer que si h est solutio de (E ) alors la foctio f défiie par f () = h() est solutio de (E).. Résoudre (E ) et e déduire toutes les solutios de (E),. Eiste-t-il ue foctio f solutio de l équatio différetielle (E) dot la représetatio graphique das u repère doé passe par le poit (l ; 0)? Si oui la préciser. EXERCICE 4 poits Commu à tous les cadidats Cet eercice est u questioaire à choi multiple (QC). Pour chaque questio, ue seule des propositios est eacte. Le cadidat portera sur la copie, sas justificatio, la lettre correspodat à la répose choisie. Il sera attribué u poit si la répose est eacte, zéro sio. Das le pla orieté, BCD est u carré direct ( B, D ) =. O ote I so cetre et J le milieu de [ I].. C est le barycetre des poits podérés (, m), (B, ) et (D, ) lorsque : a. m = b. m = c. m = d. m =. a. B est l image de C par la rotatio de cetre I et d agle. b. Le rapport de l homothétie de cetre C qui trasforme I e J est. c. Le triagle DB est ivariat par la symétrie de cetre I. d. J est l image de I par la traslatio de vecteur B + DB 4. L esemble des poits du pla tels que + C = B est : a. la médiatrice de [C]. b. le cercle circoscrit au carré BCD. c. la médiatrice de [I]. d. le cercle iscrit das le carré BCD. 4. L esemble des poits du pla tels que : ( + B + D ). ( + C ) = 0 est : a. la médiatrice de [C]. b. le cercle circoscrit au carré BCD. c. la médiatrice de [I]. d. le cercle iscrit das le carré BCD. étropole La Réuio septembre 008

2 EXERCICE 4 4 poits Commu à tous les cadidats O cosidère la suite umérique (J ) défiie, pour tout etier aturel o ul, par : J = e + t d t. Démotrer que la suite (J ) est croissate.. Das cette questio, le cadidat est ivité à porter sur sa copie les étapes de sa démarche même si elle aboutit pas. O défiit la suite (I ), pour tout etier aturel o ul, par : I = ( t + ) e d t. a. Justifier que, pour tout t, o a t + t +. b. c. E déduire que J I. Calculer I e foctio de. E déduire que la suite (J ) est majorée par u ombre réel (idépedat de ). d. Que peut-o e coclure pour la suite (J )? EXERCICE 5 5 poits Pour les cadidats ayat suivi l eseigemet de spécialité Le pla complee est rapporté au repère orthoormal direct (O ; u, v ). O réalisera ue figure e preat 4 cm comme uité graphique sur chaque ae. O cosidère le poit d affie z =. Partie k est u réel strictemet positif ; f est la similitude directe de cetre O de rapport k et d agle. O ote 0 = et pour tout etier aturel, + = f ( ).. a. État doé u poit d affie z, détermier e foctio de z l affie z du poit image de par f. b. Costruire les poits 0,, et das le cas particulier où k est égal à.. a. Démotrer par récurrece que pour tout etier, l affie z du poit est égale à k i e b. E déduire les valeurs de pour lesquelles le poit appartiet à la demi droite (O ; u ) et, das ce cas, détermier e foctio de k et de l abscisse de. Das cette partie toute trace de recherche, même icomplète, sera prise e compte das l évaluatio. Désormais, k désige u etier aturel o ul.. Doer la décompositio e facteurs premiers de Détermier, e epliquat la méthode choisie, la plus petite valeur de l etier aturel k pour laquelle k 6 est u multiple de Pour quelles valeurs des etiers et k le poit appartiet-il à la demi droite (O ; u ) avec pour abscisse u ombre etier multiple de 008? EXERCICE 5 5 poits Cadidats ayat pas suivi l eseigemet de spécialité Le pla complee est rapporté au repère orthoormal direct (O ; u, v ). O réalisera ue figure e preat cm comme uité graphique sur chaque ae. O cosidère les poits, B et I d affies respectives z =, z B = 5 et z I = + i. O ote (C ) le cercle de cetre O et de rayo, ( ) la médiatrice de [B] et (T) la tagete au cercle (C ) e. À tout poit d affie z, différet de, o associe le poit d affie z telle que : z = z. Le poit est appelé l image de. Partie. Détermier sous forme algébrique l affie du poit I image de I. Vérifier que I appartiet à (C ).. a. Justifier que pour tout poit distict de et B, o a : O = B. b. Justifier que pour tout poit distict de et B, o a : ( O, O' ) = (, B ). Das cette partie, toute trace de recherche, même icomplète, sera prise e compte das l évaluatio. Das la suite de l eercice, désige u poit quelcoque de ( ). O cherche à costruire géométriquemet so image.. Démotrer que appartiet à (C ).. O ote (d) la droite symétrique de la droite () par rapport à la tagete (T). (d) recoupe (C ) e N. a. Justifier que les triagles B et ON sot isocèles. près avoir justifié que ( O, N ) = (, B ) démotrer que ( O, ON ) = (, B ). b. E déduire ue costructio de.. étropole La Réuio septembre 008

3 CORRECTION EXERCICE 4 poits Commu à tous les cadidats. 0 R R N. p(e) = p(r R ) = p(f) = p(r N ) + p(n R ) = = 00 = 0,0 8 0 N = 7 00 = 0,7 R N. p(x = 9) = p(e) = 0,0 p((x = ) = p(f) = 0,7 p(x = ) = (p(e) + p(f)) = 0,8 9 Total p(x = ) 0,8 0,7 0,0 p(x = ) 0,8 0,7 0,8 0,46 E(X) = 0,46 doc sur u grad ombre de parties, le joueur perd 0, a. L évéemet «le joueur lace au mois ue fois la roue B» est l évéemet cotraire de «le joueur lace fois la roue». L évéemet ««le joueur lace la roue» a pour probabilité = 0, doc l évéemet «le joueur lace fois la roue» a pour 0 probabilité : 0,9 doc p = (0,9). b. < 0,9 < doc lim 0,9 = 0 doc la suite de terme gééral p est covergete et lim p = + + c. p 0,9 (0,9) 0,9 0,9 (0,9) l 0, l 0,9 or l 0,9 < 0 doc p 0,9 l 0, l 0,9,85 et est u etier aturel doc. l 0, l 0,9 étropole La Réuio septembre 008

4 EXERCICE poits Commu à tous les cadidats f ( ) f '( ) f ( ). a. la foctio g défiie sur l itervalle ] 0 ; + [ par g () = est dérivable sur ] 0 ; + [ et g () = si f est solutio de (E) alors pour tout de ] 0 ; + [, f () ( + ) f () = 8 doc f () f () = 8 + f () 8 + f ( ) f ( ) doc g () = doc g () = 8 + soit g () = 8 + g() doc si f est solutio de (E) alors g est solutio de l équatio différetielle (E ) : y = y + 8. b. la foctio f défiie par f () = h() est dérivable sur ] 0 ; + [ et f () = h() + h () si h est solutio de (E ) alors pour tout de ] 0 ; + [, h () = h() + 8 doc f () = h() + ( h() + 8) soit f () = ( + ) h() + 8 doc f () = ( + ) h() + 8 or pour tout de ] 0 ; + [, h() = f () doc f () = 8 + f () soit f () ( + ) f () = 8. si h est solutio de (E ) alors la foctio f défiie par f () = h() est solutio de (E).. Les solutios de (E ) sot les foctios h de la forme h() = C e 4 avec C costate réelle. D après les questios précédetes, f est solutio de (E) si et seulemet si la foctio g défiie par g() = g() = f ( ) = C e 4 avec C costate réelle f () = C e 4 avec C costate réelle. f ( ) est solutio de (E ). O doit avoir f (l ) = 0 soit C l e l 4 l = 0 or l = l ( ) = l 4 doc e l = e l 4 = 4 doc 4 C l 4 l = 0 doc C = ; la foctio f défiie par f () = e 4 est solutio de l équatio différetielle (E), et sa représetatio graphique das u repère doé passe par le poit (l ; 0). EXERCICE 4 poits Commu à tous les cadidats. Répose c. Le barycetre G des poits podérés (, m), (B, ) et (D, ) vérifie pour tout poit du pla : (m + + ) G = m + B + D e particulier si = alors (m + ) G = B + D = C doc G = C si et seulemet si m + = soit m =.. a. FUX B est l image de C par la rotatio de cetre I et d agle. b. FUX CJ = CI doc le rapport de l homothétie de cetre C qui trasforme I B I J e J est. C D c. FUX s(d) = B, s(b) = D et s() = C. Le triagle DB par la symétrie de cetre I est trasformé e le triagle CBD d. VRI B + DB = DC + DI = CD + DI = CI = IJ doc J est l image de I par la traslatio de vecteur 4 B + DB 4. + C = I doc L esemble des poits du pla tels que + C = B I = C = I I = I décrit le cercle de cetre I passat par + C = B est le cercle circoscrit au carré BCD. 4. L esemble des poits du pla tels que : ( + B + D ). ( + C ) = 0 est : + B + D = + I = 4 J et + C = I doc ( + B + D ). ( + C ) = 0 4 J. I = 0 J. I = 0 le triagle IJ est rectagle e décrit le cercle de diamètre [IJ] doc le cercle circoscrit au carré BCD. étropole La Réuio septembre 008 4

5 EXERCICE 4 4 poits Commu à tous les cadidats + +. J + J = e + t d t e + t d t = e + t d t + La foctio t e + t est cotiue positive sur [ ; + [ e + t d t 0, doc J + J 0 La suite (J ) est croissate.. a. t doc t + doc t + doc e multipliat les termes de cette iégalité par t +. Pour tout t, o a t + t +. b. Pour tout t, o a t + t + doc e + t (t + ) e t les foctios t e + t et t (t + ) e t sot cotiues sur [ ; + [ doc e + t d t ( t + ) e d t soit J I u '( t) = e alors u( t) = e c. Soit v( t) = t + alors v '( t) = I = ( + ) e + e doc I = ( t + ) e e d t e = ( + ) e + e e + e = e ( + ) e Pour tout, ( + ) e > 0 doc I e or J I doc J e. La suite (J ) est majorée par e. d. La suite (J ) est croissate majorée par e doc coverge et sa limite est positive et iférieure ou égale à e. étropole La Réuio septembre 008 5

6 EXERCICE 5 5 poits Pour les cadidats ayat suivi l eseigemet de spécialité i i. a. z' 0 = k e (z 0) z' = k e z b. f est la similitude directe de cetre O de rapport et d agle. doc f est la composée de l homothétie de cetre O de rapport, et de la rotatio de cetre O d agle, il suffit doc de costruire le poit image de par l homothétie de cetre O de rapport, puis le poit image de par la rotatio de cetre O d agle. ' ' o 0. a. Vérificatio, si = 0, z 0 = = k 0 e 0 i = k 0 i e. La propriété est vraie pour =0. otros que la propriété est héréditaire, c est-à-dire que pour tout, si z = k e z + = k e i ( + ) z or z = k i e doc z + = k + i e La propriété est héréditaire doc est vraie pour tout de IN. ' i ( + ) alors z + = k + i e 6 o 5 4 b. Pour tout de IN, O doc z 0 (O ; u ) arg(z ) = 0 + p (k Z) N doc (O ; u ) = p (p N) = p. 008 = est compris etre 5 et 6 et est divisible par aucu ombre premier iférieur ou égal à 5 ( ; ; 5 ; 7 ; ; ) doc est premier. 008 = 5. Soit ue décompositio e produit de facteurs premiers de k, k 6 est u multiple de 008 doc et 5 figuret das cette décompositio doc k = 5 k 6 = k 6 est le plus petit multiple de 008 si et seulemet si = : alors k = 5 = 50. (O ; u ) = p (p N) L abscisse de est u etier multiple de 008 k est u multiple de 008 or = p (p N) k 6 p est u multiple de 008. k 0 = doc ceci est impossible pour p = 0, si p =, k 6 est u multiple de 008 k est u multiple de 50 d après la questio précédete. Si p, k 6 p = k 6 (p ) k 6 or k 6 est u multiple de 008 doc k 6 p est u multiple de 008 Le poit appartiet à la demi droite (O ; u ) avec pour abscisse u ombre etier multiple de 008 si et seulemet si k est u multiple de 50 et = p (p N*). étropole La Réuio septembre 008 6

7 EXERCICE 5 5 poits Cadidats ayat pas suivi l eseigemet de spécialité Le pla complee est rapporté au repère orthoormal direct (O ; u, v ). O réalisera ue figure e preat cm comme uité graphique sur chaque ae. O cosidère les poits, B et I d affies respectives z =, z B = 5 et z I = + i. O ote (C ) le cercle de cetre O et de rayo, ( ) la médiatrice de [B] et (T) la tagete au cercle (C ) e. À tout poit d affie z, différet de, o associe le poit d affie z telle que : z = z. Le poit est appelé l image de. Partie + i 5 + i ( i ) 4. z I = = = = + i + i + i z I 4 = a. z = z doc z = = doc OI = doc I appartiet à (C ). z = z z z z B doc pour tout poit distict de, o a : O = B. z z B b. si z et z 5 alors z = doc arg(z ) = arg à près soit arg(z ) = arg à près z z z z O = u doc pour tout poit distict de et B, o a : ( O, O' ) = (, B ).. est u poit quelcoque de ( ) doc = B or O = B doc O = doc appartiet à (C ).. a. appartiet à la médiatrice de [B] doc = B, et N sot deu poits du cercle (C) doc O = ON doc les triagles B et ON sot isocèles respectivemet e O et. N I oo B Soit et B les symétriques des poits et B par rapport à la tagete (T), alors (, B ) = (, B ) N [ ] et B [O] doc (, B ) = ( N, O ). Les triagles ON et B sot isocèles respectivemet e O et, de même ses doc ( B, B ) = ( NO, N ). Par symétrie autour de (T), ( O, ON ) = (, B ). b. N vérifie les coditios N (C) et ( O, ON ) = (, B ) doc = N pour costruire, o peut doc : costruire le symétrique de par rapport à (T), la droite ( ) recoupe (C) e. étropole La Réuio septembre 008 7

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c.

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c. NOUVELLE CALEDONIE NOVEMBRE 2007 Exercice 4 poits Commu à tous les cadidats Pour chaque questio, ue seule des trois propositios est exacte. Le cadidat idiquera sur la copie le uméro de la questio et la

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe Termiale S mai 6 Cocours Fesic Calculatrice iterdite ; traiter eercices sur les 6 e h ; répodre par Vrai ou Fau sas justificatio + si boe répose, si mauvaise répose, si pas de répose, bous d poit pour

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé Baccalauréat S Nouvelle-Calédoie 7 mars 4 Corrigé A. P. M. E. P. EXERCICE 4 poits Commu à tous les cadidats Aucue justificatio était demadée das cet exercice.. Répose b. : 4e i π Le ombre i a pour écriture

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

Exercices sur les fonctions trigonométriques réciproques

Exercices sur les fonctions trigonométriques réciproques Eercices sur les foctios trigoométriques réciproques O cosidère la foctio f défiie par f Arcta ) Détermier l esemble de défiitio D de f ) Simplifier l epressio de f pour D Idicatio : Poser y Arccos Soit

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève.

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève. Lycée Féelo Saite-Marie Aée 2011-2012 Durée : 3 heures BAC BLANC avril Toutes calculatrices autorisées. Classe de Termiale ES Mathématiques Le sujet comporte u total de 4 exercices par élève. EXERCICE

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique.

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique. Suites 6 AU CŒUR DE LA TOILE Objectif Notios utilisées Traduire, à l aide d ue suite, u processus géométrique itératif et redre compte de so évolutio. Mettre e place les premiers pricipes d étude d ue

Plus en détail

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007 Durée : 4 heures Correctio du baccalauréat S Nouvelle-Calédoie ovembre 007 EXERCICE 1 Commu à tous les cadidats 4 poits 1 Avec z = x+ iy, z+ z = 9+i x+ iy+ x iy = 9+i x+ iy = 9+i et par ideticatio x =,

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série.

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série. 1 ère S1 Cotrôle du vedredi 13 février 015 (30 mi) O ote M, Q 1, Q 3 respectivemet la médiae, le premier quartile et le troisième quartile de la série. M... Q1... Q3... Préom : Nom : Note :. / 0 I. (4

Plus en détail

Question 3 Cet hypermarché vend des téléviseurs dont la durée de vie, exprimée en année, peut être modélisée par une variable aléatoire réelle 1

Question 3 Cet hypermarché vend des téléviseurs dont la durée de vie, exprimée en année, peut être modélisée par une variable aléatoire réelle 1 Das l esemble du sujet, et pour chaque questio, toute trace de recherche même icomplète, ou d iitiative même o fructueuse, sera prise e compte das l évaluatio. Exercice ( poits) Commu à tous les cadidats

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EXAMEN PROBATOIRE D ADMISSION DES ETRANGERS DANS LES ECOLES DE FORMATION D OFFICIERS EPREUVE DE MATHEMATIQUES DUREE DE L EPREUVE : 4 Heures Matériel autorisé : Calculatrice Circulaire 9986 du 6 ovembre

Plus en détail

Corrigé du baccalauréat S Liban 3 juin 2010

Corrigé du baccalauréat S Liban 3 juin 2010 Corrigé du baccalauréat S Liba 3 jui 1 Exercice 1. Partie A : Restitutio orgaisée de coaissaces 1) x R, o a d après le pré-requis e preat y x : e x e x e x+x e 1. Ceci état vrai pour tout x, e divisat

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

Centres étrangers Enseignement spécifique. Corrigé

Centres étrangers Enseignement spécifique. Corrigé EXERCICE 1 Partie A Cetres étragers 13. Eseigemet spécifique. Corrigé 1) La durée de vie moyee d ue vae est l espérace de la variable aléatoire T. O sait que l espérace de la loi expoetielle de paramètre

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

BACCALAURÉAT GÉNÉRAL Session 2014 MATHÉMATIQUES. Série ES ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures.

BACCALAURÉAT GÉNÉRAL Session 2014 MATHÉMATIQUES. Série ES ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures. BACCALAURÉAT GÉNÉRAL Sessio 04 MATHÉMATIQUES Série ES ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : heures Coeiciet : 7 Les calculatrices électroiques de poche sot autorisées, coormémet à la réglemetatio

Plus en détail

Mardi 10 janvier h-13h

Mardi 10 janvier h-13h Mardi javier 27 8h-3h Il sera teu compte de faco importate de la qualité de la rédactio et de l argumetatio. E particulier, répodre juste à ue questio est valorisé, répodre faux est péalisé et e pas répodre

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Corrigé. Exercice 1 : (5 points)

Corrigé. Exercice 1 : (5 points) Corrigé Exercice : (5 poits) Pour les questios. et. o doera les résultats sous forme de fractios et sous forme décimale par défaut à 0 3 près. U efat joue avec 0 billes, 3 rouges et 7 vertes. Il met 0

Plus en détail

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i }

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i } Nom :........................ DS Préom :..................... Devoir o 7 Mars 6.../... Le soi et la rédactio serot pris e compte das la otatio. Faites des phrases claires et précises. Le barème est approximatif.

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

{ } Sujet I, éléments de correction. EXERCICE I (3 points) u = La suite u est définie par u 0 = 2 et pour tout entier naturel n, un+ 1 =.

{ } Sujet I, éléments de correction. EXERCICE I (3 points) u = La suite u est définie par u 0 = 2 et pour tout entier naturel n, un+ 1 =. Sjet I, élémets de correctio EXERCICE I ( poits) La site est défiie par 0 = et por tot etier atrel, + = 0 = ; =, 7 ; =, 7 ; =, 6666 ; =, 0 ; la site e semble pas être mootoe, elle paraît coverger vers

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires Problème 1 : costructio de triagles Das u pla affie euclidie orieté, o cosidère deux poits disticts B et C et u poit M apparteat pas à la droite BC). Pour chacue des assertios suivates, détermier s il

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

CONCOURS BLANC 1 SCI 2

CONCOURS BLANC 1 SCI 2 CONCOURS BLANC SCI Durée : 4 heures Aucu istrumet de calcul est autorisé Aucu documet est autorisé Les étudiats sot ivités à soiger la présetatio de leur copie EXERCICE : CCP 05 CCP : cocours commus polytechiques

Plus en détail

NS 25 الرياضيات شعبة العلوم الرياضية )أ( و)ب( )الترجمة الفرنسية( L usage de la calculatrice n est pas autorisé

NS 25 الرياضيات شعبة العلوم الرياضية )أ( و)ب( )الترجمة الفرنسية( L usage de la calculatrice n est pas autorisé 5 4 المركز الوطني للتقويم واالمتحانات والتوجيه المادة االمتحان الوطني الموحد للبكالوريا الرياضيات الدورة العادية الموضوع مدة اإلنجاز 40 NS 5 www.tawjihpro.com 9 الشعبة أو المسلك شعبة العلوم الرياضية )أ(

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Divers exercices de probabilité

Divers exercices de probabilité Divers exercices de probabilité Traiter e priorité les quatre premiers exercices de chaque sectio. 1 Probabilité Exercice 1.1 Mo voisi a deux efats. 1- Le plus jeue est ue fille, quelle est la probabilité

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

BACCALAUREAT GENERAL. Bac blanc n 4 Mercredi 7 Mai 2014 MATHEMATIQUES. Série : S Enseignement Obligatoire ou de Spécialité

BACCALAUREAT GENERAL. Bac blanc n 4 Mercredi 7 Mai 2014 MATHEMATIQUES. Série : S Enseignement Obligatoire ou de Spécialité BACCALAUREAT GENERAL Bac blac 4 Mercredi 7 Mai 4 MATHEMATIQUES Série : S Eseigemet Obligatoire ou de Spécialité Durée de l épreuve : 4 heures Coefficiet : 7 ou 9 L utilisatio de la calculatrice est autorisée

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

LSMarsa Elriadh M : Zribi Epreuve 4 ème Maths Révisio Eercice : Le pla complee est mui d u repère orthoormal direct (O, u, v ) O predra 5 cm pour uité graphique Soit f la trasformatio qui, à tout poit

Plus en détail

Liban 2012 BAC S Correction

Liban 2012 BAC S Correction Liba 0 BAC S Correctio / 8 Exercice Partie A. Les foctios polyomiale et l sot dérivables sur ]0 ;+ [. Par coséquet la foctio g l est aussi. g (x) 6x² + x. Pour tout x >0, 6x² >0 et > 0. Doc g (x) > 0 sur

Plus en détail

Baccalauréat Antilles-Guyane juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Antilles-Guyane juin 2013 Sciences et technologies du design et des arts appliqués accalauréat tilles-guyae jui 2013 Scieces et techologies du desig et des arts appliqués EXERCICE 1 5 poits Questioaire à choix multiples : pour chaque questio ue seule des propositios est exacte ; aucue

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Théorème de Rolle dans le cas complexe.

Théorème de Rolle dans le cas complexe. Théorème de Rolle das le cas complexe. Das ce problème o se propose de prouver l aalogue complexe suivat du théorème de Rolle : Théorème. Soiet a et b deux ombres complexes disticts et u etier. Soit P

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

x 0 + f ' (x) f (x) ln 3 3 f (x) dx.

x 0 + f ' (x) f (x) ln 3 3 f (x) dx. T S Devoir surveillé 8 Vedredi avril 7 Exercice (5 poits) l (x + ) O cosidère la foctio f défiie sur [, + [ par f (x) = x +. O admet que le tableau de variatios de f est le suivat. O défiit la suite (U

Plus en détail

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h.

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h. Coceptio : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES mai 07, de 8 h à h La présetatio, la lisibilité, l orthographe, la qualité de la rédactio, la clarté et la précisio des raisoemets etrerot pour ue part

Plus en détail

Correction concours général maths 2015

Correction concours général maths 2015 Correctio cocours gééral maths 2015 Problème I Petits poids 1) a) 3 = 3, 3 + 5 = 8, 3 + 5 6 = 2, 3 + 5 6 8 = 6, 3 + 5 6 8 + 2 = 4 doc poids(3,5, 6, 8,2) = 8 b) poids(1,2,3,,2015, 2015, 2014,.., 1) = 1

Plus en détail

Pépinière académique de mathématiques Stage des 24 et 25 février 2011 Élèves de terminale présentés par leurs établissements au Concours général

Pépinière académique de mathématiques Stage des 24 et 25 février 2011 Élèves de terminale présentés par leurs établissements au Concours général Pépiière académique de mathématiques Stage des 4 et 5 février 0 Élèves de termiale présetés par leurs établissemets au Cocours gééral Orgaisatio géérale et emploi du temps Jeudi 4 février 0 heures à h

Plus en détail

Covariance et ajustement affine par la méthode des moindres carrés

Covariance et ajustement affine par la méthode des moindres carrés Uiversité de Poitiers - 205-206 A. Moreau Algèbre - Géométrie M MEEF Covariace et ajustemet affie par la méthode des moidres carrés Das tout le documet, la lettre désige u etier aturel o ul. Les deux parties

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Partie commune (3 heures)

Partie commune (3 heures) TS Cotrôle du ludi 5 février 06 (4 heures) Partie commue ( heures) Le barème est doé sur 40 I (7 poits : ) poits ; ) poits ; ) poits + poit) Ue chaîe de magasis souhaite fidéliser ses cliets e offrat des

Plus en détail

Probabilités élémentaires

Probabilités élémentaires 1. Exemple... p2 4. Lois de probabilité... p7 2. Vocabulaire... p4 5. Variables aléatoires... p8 3. Espaces probabilisés fiis... p4 Copyright meilleuremaths.com. Tous droits réservés 1. Exemple Probabilités

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim NOM : Termiale S- ABC S3 ludi ovembre 06 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie. Le sujet est composé de 5 eercices idépedats.

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Corrigé du baccalauréat S Pondichéry du 26 avril points

Corrigé du baccalauréat S Pondichéry du 26 avril points EXERCICE 1 5 poits Comm a tous les cadidats Les parties A, B et C peuvet être traitées de faço idépedate Das tout l exercice, les résultats serot arrodis, si écessaire, au millième La chocolaterie «Choc

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

1 Présentation du jeu.

1 Présentation du jeu. Présetatio du jeu.. Les règles du jeu. Le touroi est u jeu comportat ue suite de maches (appelées duels ) opposat deux joueurs, jamais plus. Les joueurs vot etrer e jeu successivemet, tat qu aucu d etre

Plus en détail

S Métropole septembre 2016

S Métropole septembre 2016 S Métropole septembre 206 Exercice 3 Cadidats ayat suivi l'eseigemet de spécialité 5 poits O dispose d'u dé équilibbré à 6 faces umérotées de à 6 et de trois pièces A, B et C ayat chacue u côté pile et

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie).

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie). Atilles-ue septembre 0 EXERCICE poits Commu à tous les cdidts O cosidère l foctio f défiie ] 0 ; + [ pr : f () = l Prtie A : Étude d ue foctio Détermier l limite de l foctio f e + b Détermier l limite

Plus en détail

Centres étrangers juin n + 2.

Centres étrangers juin n + 2. Cetres étragers ji 3 EXERCICE poits Comm à tos les cadidats O défiit, por tot etier atrel >, la site ( ) de ombres réels strictemet positifs par = Por tot etier atrel >, o pose v = a Motrer qe v = b Motrer

Plus en détail

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique EXERCICE : EXERCICES SR LES SITES NMÉRIQES Site MathsTICE de Adama Traoré Lycée Techique I) r désigat respectivemet le premier terme, le ième terme, la raiso et la somme des premier termes d ue suite arithmétique,

Plus en détail

Fiche 6 : Nombres complexes

Fiche 6 : Nombres complexes Nº : 3006 Fiche 6 : Nombres complexes Pla de la fiche I - Esemble des ombres complexes II - Nombre complexe cojugué III - Module et argumet IV - Les différetes écritures d u ombre complexe o ul V - Equatio

Plus en détail