Utilisation du solveur d Excel

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Utilisation du solveur d Excel"

Transcription

1 Cycle ICM : 1A Pôle nformatque Cours applcatons nformatques Auteur : Bertrand Jullen 22/12/04 Utlsaton du solveur d Excel Le but de ce TP est de famlarser les élèves avec la foncton Solveur d Excel, dans le cadre de la mse en œuvre de méthodes d optmsaton dont les prncpes ont été exposés dans le cours de recherche opératonnelle. Avant d aborder le premer exercce, l convent de lre attentvement le paragraphe Méthodologe qu ndque la condute à tenr pour résoudre les problèmes proposés. Tous font appel à la programmaton lnéare, en nombre réels pour les deux premers, en nombre enters pour le derner. Méthodologe Avant de se lancer dans l utlsaton du solveur, l est plus que vvement consellé de modélser le problème sous forme mathématque : 1. Défnr les varables X 1, X 2, X 3,, X n à détermner 2. Exprmer les contrantes lnéares que ces varables dovent respecter, de la forme : a x b a x c a x = d 3. Défnr la foncton économque, également lnéare, à optmser : Max (ou Mn) f x Une fos cette modélsaton achevée, l suffra de la transposer dans l envronnement Excel. Quelques prncpes smples dovent être observés : 1. La premère étape consste à préparer la feulle Excel. Outre les données qu dovent y fgurer (coeffcents et seconds membres des contrantes, coeffcents de la foncton économque), l convent d ajouter : Une cellule pour la valeur de chacune des varables X à détermner Une cellule pour la valeur du premer membre de chacune des contrantes Une cellule pour la valeur de la foncton économque La mse en page de la feulle est mportante, et on recommande d utlser celles des feulles à télécharger qu contennent les données des exercces à résoudre. En effet, elle est de nature à consdérablement smplfer l écrture des modèles. Une foncton ntégrée Excel est souvent utlsée pour calculer le premer membre des contrantes : l s agt de SOMMEPROD() qu permet

2 de fare un produt scalare vectorel ou matrcel. Voc un exemple d une telle mse en page. Il pourra être utle, avant de passer à la phase suvante, de tester l exacttude des formules en donnant des valeurs quelconques aux cellules à détermner. Fabrcaton d'allage Quantté C Cu Mn Stock Coût Ferralle 1 2,5 0 1, ,20 Ferralle , ,25 Ferralle 3 0 0, ,15 Ferralle ,22 Ferralle ,26 Ferralle 6 0 0,4 1, ,20 Ferralle 7 0 0, ,17 Mn 2 0,4 1,2 Max 3 0,6 1,65 Pods désré 5000 Pods Coût Cellules des varables à détermner Cellule foncton économque Cellules premers membres des contrantes 2. Une fos la feulle mse en forme, l faut fournr les donnés du problème qu vennent d être modélsées au solveur. Pour cela, on le lance (Menu «Outls / Solveur») et on spécfe successvement : Dans la cellule cble à défnr, l adresse de celle qu content la valeur de la foncton économque ; ne pas oubler de cocher la case qu correspond au sens de l optmsaton souhatée. Dans les cellules varables, la plage des adresses de celles qu ont été affectées aux varables Enfn dans la fenêtre qu leur est réservée, on peut ajouter successvement toutes les contrantes du problème en sélectonnant le bouton correspondant. Noter que ces

3 contrantes peuvent être exprmées sous la forme de plages de cellules ; cela permet par exemple d ndquer, en une seule contrante, que les cellules d une plage contenant les valeurs de premers membres (dont les adresses dovent fgurer dans «Cellule») dovent être respectvement nféreures ou égales aux cellules d une plage de cellules contenant les bornes du second («Contrante»). D où l mportance de la mse en page sgnalée précédemment. 3. Dernère étape avant le lancement du solveur, son paramétrage. Le bouton «Optons» permet d accéder à une fenêtre dans laquelle on sélectonne : «Modèle supposé lnéare», pour chosr un algorthme effcace dans la résoluton de tels problèmes, et «Supposé non négatf» pour mposer la non négatvté aux varables à détermner. Une fos revenu à la fenêtre prncpale, le bouton «Résoudre» permet d obtenr la soluton du problème.

4 Fabrcaton d'allages Une entreprse sdérurgque a reçu commande de cnq tonnes d'acer destné à la fabrcaton de carrosseres automobles. Les teneurs de cet acer en dfférents éléments chmques dovent se trouver dans les fourchettes suvantes : Elément chmque mnmale maxmale Carbone (C) 2% 3% Cuvre (Cu) 0,4% 0,6% Manganèse (Mn) 1,2% 1,65% Pour fabrquer cet acer, l'entreprse dspose de sept matères premères dont les teneurs, les quanttés dsponbles et les cours d'achat sont donnés dans le tableau suvant : Matère premère en C (%) en Cu (%) en Mn (%) Stock dsponble (kg) Coût ( /kg) Ferralle 1 2,5 0 1, ,20 Ferralle , ,25 Ferralle 3 0 0, ,15 Ferralle ,22 Ferralle ,26 Ferralle 6 0 0,4 1, ,2 Ferralle 7 0 0, ,17 Détermner les quanttés de ferralles à mélanger pour obtenr la commande souhatée par le clent au melleur coût. Modélsez le problème sous forme mathématque (caractérsez les varables à détermner, exprmez les contrantes qu'elles dovent vérfer et la foncton objectf qu'elles dovent optmser) sous la forme d'un programme lnéare (vellez à ce que la contrante sur les teneurs sot ben lnéare) Trouvez la soluton numérque de ce problème en utlsant le solveur Excel. Pour cela chargez le classeur Exercces.xls qu se trouve dans le répertore \\Nssel\work\ensegnants\Jullen\TpSolveur et complétez la feulle de l onglet Allage.

5 Logstque Il s'agt de lvrer un produt à tros clents européens (Clent 1, 2 et 3) d'une entreprse qu dspose de deux usnes de fabrcaton (Usne1 et 2). Le transport est assuré par un système logstque qu utlse un réseau de 5 plates-formes (PF1 à PF5). Les capactés de transport sur chacun des lens du réseau sont lmtées aux valeurs données dans le graphe suvant : Les quanttés de produt dsponbles en stock dans les usnes sont respectvement de 35 pour Usne 1 et 25 pour Usne 2. Les demandes des tros clents sont respectvement de 15 pour Clent 1 et pour Clent 2 et 20 pour Clent. Trouver un programme de transport qu satsfasse la demande des clents Modélsez le problème sous forme mathématque (caractérsez les varables à détermner, exprmez les contrantes qu'elles dovent vérfer et la foncton objectf qu'elles dovent optmser) sous la forme d'un programme lnéare. Le prncpe consste à ajouter deux sommets fctfs : une Source qu est connectée par un arc à chacune des 2 usnes auquel est affecté une «capacté» correspondant à la quantté en stock et un Puts sur lequel aboutt chacun des 3 clents par un arc dont la «capacté» est égale à sa demande. Il s agt alors d un problème de flot maxmal que l on peut modélser en ndquant que la quantté de produt qu transte sur chaque arc dot rester nféreure à sa capacté, que les flux sont conservés dans tous les sommets (sauf Source et Puts), et que la somme des flux arrvant au Puts dot être maxmale. Trouvez la soluton numérque de ce problème en utlsant le solveur Excel. Pour cela complétez la feulle de l onglet Logstque (sans prendre en compte le tableau des coûts). On veut mantenant satsfare la demande des clents au melleur coût global sachant que les coûts untares de fabrcaton sont de 12 dans l'usne 1 et de 10 dans l'usne 2 et que par alleurs les coûts untares de transport de sur le réseau sont donnés par le graphe suvant :

6 Il s agt alors d un problème de flot maxmal à coût mnmal. Pour le résoudre, on part de l exercce précédent en transformant sa foncton à optmser en contrante : on veut que le flot qu arrve au Puts sot être au mons égal à celu du problème précédent. Pus on écrt une nouvelle foncton économque à optmser qu porte sur les coûts logstques globaux (ndcaton : la foncton SOMMEPROD s étend aux matrces). Affectaton de personnel Chacune des sx machnes d'un ateler dot recevor un opérateur. Sx personnes ont été présélectonnées. Chacune d'elles a sub un test de productvté sur chaque machne, mesuré en pèces par heure : Productvté Machne 1 Machne 2 Machne 3 Machne 4 Machne 5 Machne 6 Opérateur Opérateur Opérateur Opérateur Opérateur Opérateur Comment affecter les opérateurs aux machnes (un opérateur par machne et une machne par opérateur) pour que le total de leurs productvtés sot la plus élevé possble? La modélsaton ne devrat plus poser de problèmes La seule partcularté c est que les varables à détermner, qu correspondent au tableau d affectaton, sont bnares : x j vaut 1 s l opérateur est affecté la machne j et 0 snon. On a donc un programme lnéare en nombres enters qu est matéralsé dans le solveur par une nouvelle contrante portant sur les varables à détermner (elles dovent être «bn»). Trouvez la soluton numérque de ce problème en utlsant le solveur Excel. Pour cela complétez la feulle de l onglet Affectaton.

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire IFT575 Modèles de recherche opératonnelle (RO 7. Programmaton non lnéare Fonctons convees et concaves Sot et deu ponts dans R n Le segment de drote jognant ces deu ponts est l ensemble des ponts + λ( -

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

Mathématiques B30. Les nombres complexes Module de l élève

Mathématiques B30. Les nombres complexes Module de l élève Mathématques B30 Les nombres complexes Module de l élève 00 Mathématques B30 Les nombres complexes 10 y axe magnare Module de l élève 4+6 x -10 10 axe réel --4 Bureau de la mnorté de langue offcelle 00-10

Plus en détail

EC 2 Étude des circuits linéaires en régime continu

EC 2 Étude des circuits linéaires en régime continu Étude des crcuts lnéares en régme contnu PS 2016 2017 Objet du chaptre : donner des outls pour détermner l état électrque d un crcut : potentels des dfférents nœuds par rapport à un nœud chos comme référence

Plus en détail

C 15/03/2017. Cahier Technique E. Tests de conformité 1/7

C 15/03/2017. Cahier Technique E. Tests de conformité 1/7 Indce de Révson Date de mse en applcaton C 15/03/017 Caher Technque E 1/7 Table des matères TABLE DES MATIERES... 1 1 PRICIPE... CRITERES DE COFORMITE DE LA VALEUR THERMIQUE DECLAREE....1 TEST DE COFORMITE

Plus en détail

Leçon 1. Statistiques

Leçon 1. Statistiques Leçon 1 Statstques Lors d une séance de saut en hauteur, le professeur d EPS a relevé, en centmètres, les performances c-dessous : 110-115-10-110-100-110-15-15-100-95-135-105-1-110-95-100-110-85-85-105-140-15-100-135-105-1-135-115-10-135

Plus en détail

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B 1 ère S1 ontrôle du mard 1 janver 01 ( heures 0) Le barème est donné sur 0. Parte B Pour la fabrcaton d un lvre, un mprmeur dot respecter sur chaque page des marges de cm à drote et à gauche, cm en haut

Plus en détail

Travaux pratiques de Mathématiques. Ajustement

Travaux pratiques de Mathématiques. Ajustement I.U.T de Sant-azare Département de Géne cvl E LETTRES CAPITALES OM(S) : PRÉOM(S) : GROUPE : Travaux pratques de Mathématques Ajustement Travaux pratques de Mathématques joseoun.fr Page 1 / 7 Travaux pratques

Plus en détail

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 1. Introducton La factorsaton est l un des ponts où l analoge entre nombres enters et polynômes se rompt. Par exemple, en caractérstque nulle, on peut trouver

Plus en détail

CIRCUITS LOGIQUES COMBINATOIRES

CIRCUITS LOGIQUES COMBINATOIRES CIRCUITS LOGIQUES COMBINTOIRES Fonctons combnatores ttenton! Ce produt pédagogque numérsé est la proprété exclusve de l'uvt Il est strctement nterdt de la reprodure à des fns commercales Seul le téléchargement

Plus en détail

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal».

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal». «Toute théore n est bonne qu à condton de s en servr pour passer outre». ndré Gde n «Journal». Résumé L usage des los de Krchhoff permet de toujours trouver les tensons et courants dans un réseau électrque

Plus en détail

Fiche technique : diagonalisation, trigonalisation.

Fiche technique : diagonalisation, trigonalisation. Fche technque 4 : dagonalsaton trgonalsaton - - Fche technque : dagonalsaton trgonalsaton Dagonalsaton de matrces le prncpe pour dagonalser en pratque une matrce est smple : calculer les espaces propres

Plus en détail

Editions ENI. Access Collection Référence Bureautique. Extrait

Editions ENI. Access Collection Référence Bureautique. Extrait Edtons ENI Access 2010 Collecton Référence Bureautque Extrat Relatons entres les tables Tables Établr une relaton entre deux tables Les dfférents types de relaton entre les tables Établr une relaton entre

Plus en détail

Devoil libre N 6 2ème TSI 1 Correction

Devoil libre N 6 2ème TSI 1 Correction CPGE- Lycée technque Mohammeda Devol lbre N 6 Correcton Mathématques Exercce 1 : Un compact de R est une parte bornée fermée http://mathscpge.wordpress.com 1 http://mathscpge.wordpress.com CPGE- Lycée

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION Optons : - Développeur d applcatons - Admnstrateur de réseaux locaux d entreprse SESSION 2011 SUJET ÉPREUVE E2 MATHÉMATIQUES I Durée : 3 heures coeffcent

Plus en détail

Établir une relation entre deux tables

Établir une relation entre deux tables Access 2013 Tables Relatons entre les tables Access 2013 Établr une relaton entre deux tables Les dfférents types de relaton entre les tables Établr une relaton entre les tables de la base de données va

Plus en détail

TD 1. Z la prévision de Monsieur Sûr-de-lui. On donne les lois jointes de (X, Y ) et celles de (X, Z) dans les deux tableaux suivants Elles

TD 1. Z la prévision de Monsieur Sûr-de-lui. On donne les lois jointes de (X, Y ) et celles de (X, Z) dans les deux tableaux suivants Elles TD 1 Exercce 1. Dans la vallée de la mort : l pleut en moyenne 1 jour sur 100. la météo prédt 3 jours de plue sur 100. chaque fos qu l pleut, la météo l a prévu. Monseur Sûr-de-lu prévot qu l ne pleut

Plus en détail

Chapitre 9 : Un système chimique évolue spontanément vers l état d équilibre

Chapitre 9 : Un système chimique évolue spontanément vers l état d équilibre Classe de TS Parte CChap 9 Chme PRTIE C : LE SENS «SPONTNE D EOLUTION D UN SYSTEME ESTIL PREISILE? LE SENS D EOLUTION D UN SYSTEME CIMIQUE PEUTIL ETRE INERSE? Chaptre 9 : Un système chmque évolue spontanément

Plus en détail

TP 7 Régimes transitoires et sinusoïdaux des circuits RC et RL 2013

TP 7 Régimes transitoires et sinusoïdaux des circuits RC et RL 2013 TP 7 égmes transtores et snusoïdaux des crcuts C et L 2013 1-Préparaton Noms des étudants : 1-1 Charge d un condensateur Sot le montage c-contre : Le condensateur a été préalablement chargé avec un générateur

Plus en détail

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles Clôture transtve (accessblté) Problème G = (S, A) graphe (orenté) Calculer H = (S, B) où B est la clôture réflexve et transtve de A. Clôture transtve des graphes et tous les plus courts chemns Note : (s,t)

Plus en détail

L onglet Mode Plan est sélectionné dans la barre des onglets. Les règles ne sont plus visibles et chaque paragraphe est précédé d un rond grisé.

L onglet Mode Plan est sélectionné dans la barre des onglets. Les règles ne sont plus visibles et chaque paragraphe est précédé d un rond grisé. Plans et tables Plans et tables Word 2010 Créer un plan en utlsant les styles prédéfns Actvez le mode d affchage Plan : clquez sur l onglet Affchage pus sur le bouton Plan vsble dans le groupe Affchages

Plus en détail

»

» Leçon 1 Nombres enters En lsant avec attenton le lvre Le calcul et la géométre au temps des pharaons de M. ROUSSELET, Thomas apprend que «Les premers nombres qu ont été écrts en Égypte datent de 5 000

Plus en détail

CIRCUITS LOGIQUES COMBINATOIRES

CIRCUITS LOGIQUES COMBINATOIRES Unversté Vrtuelle de Tuns Chap-V: crcuts arthmétques CIRCUITS LOGIQUES COMBINATOIRES Crcuts arthmétques TRABELSI Hchem Attenton! Ce produt pédagogque numérsé est la proprété exclusve de l'uvt. Il est strctement

Plus en détail

m chute frottement.avi 3,15 g 1,24 g.ml -1 2,61 g 1,68 m.s -2

m chute frottement.avi 3,15 g 1,24 g.ml -1 2,61 g 1,68 m.s -2 TP de physque n CHUTES VERTICLES Termnale Objectfs: Étuder, à partr d une vdéo et à l ade d un logcel de pontage et d un tableur-grapheur, l évoluton au cours du temps de la vtesse d un objet qu tombe

Plus en détail

Probabilités. Définition : Chacun des résultats possible d une expérience aléatoire est appelée issue de l expérience.

Probabilités. Définition : Chacun des résultats possible d une expérience aléatoire est appelée issue de l expérience. Probabltés A) Vocabulare.. Expérence aléatore. Défntons : Une expérence est dte aléatore s elle vérfe tros condtons : Elle condut à des résultats possbles qu on est capable de nommer. On ne sat à l avance

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

UE MAT234. Notes de cours sur l algèbre linéaire

UE MAT234. Notes de cours sur l algèbre linéaire UE MAT234 Notes de cours sur l algèbre lnéare Matrces - Systèmes lnéares - Détermnants - Dagonalsaton Dans tout ce document, K désgne ndfféremment le corps des nombres réels IR, ou celu des nombres complexes

Plus en détail

Fractions rationnelles

Fractions rationnelles Bblothèque d exercces Énoncés L Feulle n 8 Fractons ratonnelles Exercce Décomposer + 4 Décomposer + + + Décomposer + + + 4 Décomposer 4 + + 5 Décomposer 4 6 Décomposer 5 + 4 + 7 Décomposer 5 + 4 + ( )

Plus en détail

Méthode des résidus pondérés

Méthode des résidus pondérés Produt propre d un opérateur Méthode des résdus pondérés Ecrture d un opérateur u avec Ω les coordonnées spatales x, y, z p dans Ω Pour un opérateur lnéare u u u u avec α, β des nombres quelconques Pour

Plus en détail

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2 1 UNIVERSITE DE BOURGOGNE MM5: Analyse Numérque Elémentare FchedeTDno2 1 Que peut-on dre d une méthode tératve dont la matrce a un rayon spectral nul? 2 Etuder les méthodes de Jacob et Gauss-Sedel pour

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

Une introduction à la théorie de la NP-Complétude

Une introduction à la théorie de la NP-Complétude Chaptre 8 Une ntroducton à la théore de la P-Complétude. Introducton: u chaptre, nous avons dscuté l mportance d avor des solutons de complexté polynomale. Dans l étude de la complexté des problèmes, le

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

Editions ENI. Excel Collection Référence Bureautique. Extrait

Editions ENI. Excel Collection Référence Bureautique. Extrait Edtons ENI Excel 2010 Collecton Référence Bureautque Extrat Tableau crosé dynamque Tableau crosé dynamque Excel 2010 Créer un tableau crosé dynamque Un tableau crosé dynamque permet de résumer, d analyser,

Plus en détail

Méthodes d étude des circuits linéaires en régime continu

Méthodes d étude des circuits linéaires en régime continu Méthodes d étude des crcuts lnéares en régme contnu Cadre d étude : n réseau électrque (ensemble de dpôles électrocnétques relés par des conducteurs flformes de résstance néglgeable) consttue un crcut

Plus en détail

CFE-AEE. Problématiques soulevées par la question de l'allocation des émissions du raffinage pétrolier

CFE-AEE. Problématiques soulevées par la question de l'allocation des émissions du raffinage pétrolier CFE-AEE 11 ème sémnare d'économe de l'énerge Problématques soulevées par la queston de l'allocaton des émssons du raffnage pétroler Axel Perru IFP Le raffnage pétroler: une ndustre à produts lés Une raffnere

Plus en détail

T.P. 5 Exercice 1 Distribution normale

T.P. 5 Exercice 1 Distribution normale T.P. 5 Exercce 1 Dstrbuton normale Connassances préalables : Buts spécfques : Outls nécessares : Noton de moyenne, varance et écart type. Acquérr la noton de dstrbuton normale et ses caractérstques. Paper,

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

Calculer une enveloppe convexe

Calculer une enveloppe convexe Calculer une enveloppe convexe Préparaton à l agrégaton opton Calcul formel Antone Chambert-Lor (verson revue par Mchel Coste) 1. Introducton Sot A une parte du plan ; de nombreux problèmes géométrques

Plus en détail

Module Mathématiques pour l Informatique_ partie 10

Module Mathématiques pour l Informatique_ partie 10 Module Mathématques pour l Informatque_ parte 0 Zahra Royer-SafouanaTabou Rappel : On appelle ans les ensembles de nombres : (cf. Wpéda), ensemble des enters naturels., ensemble des enters relatfs., ensemble

Plus en détail

Q(t) Figure 2.1 : Intervalle Temps-Ressource. Dans notre cas, la capacité Q(t) est considéré comme constante Q.

Q(t) Figure 2.1 : Intervalle Temps-Ressource. Dans notre cas, la capacité Q(t) est considéré comme constante Q. INTODUCTION : Tenr compte smultanément du temps et des ressources permet d ntrodure le concept d énerge et le concept d un rasonnement basé sur des blans énergétque. Ce chaptre donne tout d abord des rappels

Plus en détail

est minimale pour 1 a = et b = 0.

est minimale pour 1 a = et b = 0. EXERCICE. On consdère la sére chronologque suvante : x 3 4 5 0 5 33 4 5 0 Pour chacune des deux affrmatons suvantes, dre s elle est vrae ou s elle est fausse en justfant la réponse fourne. a. Le pont moen

Plus en détail

Matériel. But du jeu. Nombre de manches

Matériel. But du jeu. Nombre de manches atérel 110 cartes, dont 37 cartes Voyelle jaunes et 73 cartes onsonne bleues ans que 21 jetons. u recto de chaque carte on trouve une lettre centrale reprse sur les quatre cons, et au verso, une couleur

Plus en détail

1 Réponse d un circuit RC série à un échelon de tension

1 Réponse d un circuit RC série à un échelon de tension Lycée Naval, Sup. Sgnaux Physques.. Crcut lnéare du premer ordre Crcut lnéare du premer ordre 1 éponse d un crcut C sére à un échelon de tenson On s ntéresse à la réponse d une assocaton sére {conducteur

Plus en détail

CH V Statistique II : Caractéristiques de position et de dispersion

CH V Statistique II : Caractéristiques de position et de dispersion CH V Statstque II : Caractérstques de poston et de dsperson I) Les caractérstques de poston : Les caractérstques de poston sont des données mportantes pour l étude des séres statstques. 1) Le mode d une

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

L ANOVA (complements)

L ANOVA (complements) L ANOVA (complements) On utlse le t de Student pour comparer deux moyennes. Cependant s on veut comparer tros moyennes ou plus l devent nécessare d utlser l Analyse de Varance smple ou l ANOVA 1. L applcaton

Plus en détail

L ANOVA ( ceci est un complément)

L ANOVA ( ceci est un complément) L ANOVA ( cec est un complément) On utlse le t de Student pour comparer deux moyennes. Cependant s on veut comparer tros moyennes ou plus l devent nécessare d utlser l Analyse de Varance smple ou l ANOVA

Plus en détail

Chapitre 6 Statistiques Classe :4 SC-EXP

Chapitre 6 Statistiques Classe :4 SC-EXP L-P-Bourguba de Tuns Prof :Ben jedda chokr Chaptre 6 Statstques Classe :4 SC-EXP EXERCICES EXERCICE 1 : Le tableau c-dessous ndque le taux de départ en vacances de la populaton d un pays de 1965 à 1993

Plus en détail

Répartition Optimale de Différentes Ressources d Energies Renouvelables

Répartition Optimale de Différentes Ressources d Energies Renouvelables 16 èmes Journées Internatonales de Thermque (JITH 2013) Marrakech (Maroc), du 13 au 15 Novembre, 2013 Répartton Optmale de Dfférentes Ressources d nerges Renouvelables Souad BLHOUR (1), Abdelouahab ZAATRI

Plus en détail

CIRCUITS LOGIQUES SEQUENTIELS

CIRCUITS LOGIQUES SEQUENTIELS Chap-II: Regstres à décalage CIRCUITS LOGIQUES SEQUENTIELS Regstres à décalage Attenton! Ce produt pédagogque numérsé est la proprété exclusve de l'uvt. Il est strctement nterdt de la reprodure à des fns

Plus en détail

Exercices type Bac Nombres complexes

Exercices type Bac Nombres complexes Exercces type Bac Nombres complexes Exercce 1 : Pour chaque queston, une seule réponse est exacte. Chaque réponse juste rapporte 1 pont. Une absence de réponse n est pas sanctonnée. Il sera retré 0,5 pont

Plus en détail

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus :

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus : 1. Une dode est utlsée dans le montage c-dessous : 3,3 générateur + 2,5 =4,5 V V Fgure 43 Des relevés effectués sur cette dode branchée en drect sont donnés dans le tableau c-dessus : v (V) 0 0,6 0,7 0,8

Plus en détail

A =

A = Exercces avec corrgé succnct du chaptre 2 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Le montage et le raccordement d'appareillages électriques doivent être réservés à des électriciens spécialisés.

Le montage et le raccordement d'appareillages électriques doivent être réservés à des électriciens spécialisés. Réf. : 240PDPETW Instructons d utlsaton 1 Consgnes de sécurté Le montage et le raccordement d'apparellages électrques dovent être réservés à des électrcens spécalsés. Rsques de blessures, d'ncendes ou

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

dctc dy MaxW y 2: Monopole, surplus collectif et tarification publique A Les enjeux de la réglementation publique des monopoles :

dctc dy MaxW y 2: Monopole, surplus collectif et tarification publique A Les enjeux de la réglementation publique des monopoles : : Monopole, surplus collectf et tarfcaton publque A Les enjeux de la réglementaton publque des monopoles : Rédure les dstorsons de prx Fare face aux défallances du marché dans le cas de la producton de

Plus en détail

Dipôle RC : Exercices

Dipôle RC : Exercices Dpôle : xercces xercces 1 : QM Un condensateur est placé dans un crcut. Le schéma ndque les conventons adoptées. hosr dans chacune des phrases suvantes, la proposton exacte. On donne q A = q 1. la tenson

Plus en détail

( ), dans les conditions standards, va

( ), dans les conditions standards, va THERMOCHIMIE R. Duperray Lycée F.BUISSON PTSI U T I L I S A T I O N D E S T A B L E S D E S G R A N D E U R S T H E R M O D Y N A M I Q U E S S T A N D A R D Dans le chaptre précédent, nous avons vu l

Plus en détail

Filtrage et Électronique numérique

Filtrage et Électronique numérique TD 02 Fltrage et Électronque numérque Fltres lnéares 1. Spectre et forme du sgnal Un expérmentateur a effectué le spectre de ces 6 sgnaux temporels de pérode de 1 ms : On obtent en sorte des fltres (1),

Plus en détail

0HVXUHGH ODPDWULFHGHGLVWULEXWLRQGHWUDILF. GDQVXQUpVHDXDYHFGpERUGHPHQW. (Exercices inclus) Mr. H. Leijon, ITU

0HVXUHGH ODPDWULFHGHGLVWULEXWLRQGHWUDILF. GDQVXQUpVHDXDYHFGpERUGHPHQW. (Exercices inclus) Mr. H. Leijon, ITU /$,78'RF) 0HVXUHGH ODPDWULFHGHGLVWULEXWLRQGHWUDILF GDQVXQUpVHDXDYHFGpERUGHPHQW (Exercces nclus) Mr. H. Leon, ITU 8,,7($7,$/('(67(/(&008,&$7,6,7($7,$/7(/(&008,&$7,8, 8,,7($&,$/'(7(/(&08,&$&,(6 - - 0(68('(/$0$7,&('(',67,%87,'(7$),&'$68(6($8$9(&'(%'(0(7

Plus en détail

Initiation à l informatique. Windows 10, Word 2016, Excel 2016, Outlook 2016 et Microsoft Edge

Initiation à l informatique. Windows 10, Word 2016, Excel 2016, Outlook 2016 et Microsoft Edge Intaton à l nformatque Wndows 10, Word 2016, Excel 2016, Outlook 2016 et Mcrosoft Edge Table des matères Découverte de l envronnement Wndows 10 Interface Wndows 10 Présentaton de Wndows...................................

Plus en détail

AL1 Complexes Séance de TD - Corrigés des exercices -

AL1 Complexes Séance de TD - Corrigés des exercices - AL1 Complexes Séance de TD - Corrgés des exercces - 1 QCM GI FA 01 Test calcul et rotaton GI FA 015 Test 1 Complexes et rotaton GI FC186 015 Test Complexes et cercle 5 GI FC18/6 01 Test - Complexes et

Plus en détail

Exercice 1 : Classification, d un point de vue général (4 points)

Exercice 1 : Classification, d un point de vue général (4 points) Corrgé du Devor survellé de Reconnassance de Formes I3 Informatque Mard 8 anver 003 - durée : heures Tous documents autorsés Noté sur 30 ponts (/0 Exercce : Classfcaton, d un pont de vue général ( ponts

Plus en détail

TP 6: Circuit RC, charge et décharge d'un condensateur - Correction

TP 6: Circuit RC, charge et décharge d'un condensateur - Correction TP 6: Crcut C, charge et décharge d'un condensateur - Correcton Objectfs: Savor utlser un multmètre. Savor réalser un crcut électrque à partr d'un schéma. Connaître l'nfluence d'un condensateur dans un

Plus en détail

T.P. 5 Exercice 1 Distribution normale

T.P. 5 Exercice 1 Distribution normale T.P. 5 Exercce 1 Dstrbuton normale Corrgé Connassances préalables : Buts spécfques : Outls nécessares : Noton de moyenne, varance et écart type. Acquérr la noton de dstrbuton normale et ses caractérstques.

Plus en détail

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d etour au menu éseaux lnéares Défntons Un réseau électrque lnéare est un ensemble de dpôles lnéares, relés par des conducteurs de résstance néglgeable. On suppose que le réseau content au mons un générateur.

Plus en détail

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 :

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 : Termnales S Exercces sur les nombres complexes Page sur 6 Exercce : ) Calculer, et 05 06 07 ) En dédure, et ) Détermner les enters n pour lesquels n est a) un réel, b) est un magnare pur, c) égal à Exercce

Plus en détail

CHAPITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS

CHAPITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS Chaptre 7 : Calcul des ndcateurs du souten aux consommateurs CHAITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS 313. À l nstar du chaptre 6, le présent chaptre décrt en détal la méthode à applquer

Plus en détail

Paramètres de position et de dispersion de séries statistiques

Paramètres de position et de dispersion de séries statistiques Réservé aux ensegnants - Reproductonterdte - Nathan Nathan/VUEF. La photocope non autorsée est un délt. Paramètres de poston et de dsperson de séres statstques Exercces Exercces d entraînement Constructons

Plus en détail

Les corrigés des examens DPECF - DECF

Les corrigés des examens DPECF - DECF 1 er centre de formaton comptable va Internet. Les corrgés des examens DPECF - DECF 2004 48h après l examen sur www.comptala.com L école en lgne qu en fat + pour votre réusste Préparaton aux DPECF et DECF

Plus en détail

Polynômes bis. Marc SAGE. 18 décembre Continuité des racines 3. 4 Une fonction polynomiale en ses variables est polynomiale 4

Polynômes bis. Marc SAGE. 18 décembre Continuité des racines 3. 4 Une fonction polynomiale en ses variables est polynomiale 4 Polynômes bs Marc SAGE 8 décembre 25 Table des matères Sur la nullté des polynômes à n ndétermnées 2 2 Une foncton localement polynomale est un polynôme 2 3 Contnuté des racnes 3 4 Une foncton polynomale

Plus en détail

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1 EXERCICE 1. Détermner (x + y ), représentaton cartésenne du nombre complexe : 1.1. (5 ) ; ( + ) ; (1 5 ). 1.. (5 )( + 6 ); ( + ) ( ). 1.. 1.. 1.5. 1+ ; 1 ; +. 1+ 7 + + + 1. 1+ α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

TP C3 : SPECTROPHOTOMETRIE

TP C3 : SPECTROPHOTOMETRIE TP C3 : SPECTROPHOTOMETRIE Capactés exgbles : Etalonner et utlser un spectrophotomètre en s adant d une notce. Mettre en œuvre une démarche expérmentale pour détermner la valeur d une constante d équlbre

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

EPREUVE N 4 MATHEMATIQUES ET SCIENCES PHYSIQUES

EPREUVE N 4 MATHEMATIQUES ET SCIENCES PHYSIQUES EPREUVE N 4 MATHEMATIQUES ET SCIENCES PHYSIQUES Pour TCV en produts hortcoles et de jardnage :(Coeffcent : - Durée : 3 heures) Autres optons : (Coeffcent :,5 - Durée : 3 heures) Matérel autorsé : calculatrce

Plus en détail

LA METHODE PERT 1 INTRODUCTION. 5 mn 60 mn 5 mn mn. 10 mn. 5 mn. G.MEBARKI Séquence 12

LA METHODE PERT 1 INTRODUCTION. 5 mn 60 mn 5 mn mn. 10 mn. 5 mn. G.MEBARKI Séquence 12 C L METHODE PERT INTRODUCTION La réalsaton d'un proet nécesste souvent une successon de tâches auxquelles s'attachent certanes contrantes : De temps = délas à respecter pour l'exécuton des tâches ; D'antérorté

Plus en détail

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1 NOMBRES COMPLEXES EXERCICE 1 Détermner (x + y ), représentaton cartésenne du nombre complexe : 11 (5 ) ; ( + ) ; (1 5 ) 1 (5 4 )( + 6 ); (4 + ) (4 ) 1 14 15 ; 1 ; + 7 + + + 1 α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

Leçon 3 Les statistiques, révisions

Leçon 3 Les statistiques, révisions Leçon 3 Les statstques, révsons Pour cette parte, je reprends d abord toutes les notons vues en seconde. Il y a un vocabulare de base à connaître. Les statstques sont utlsées dans tous les domanes, scences,

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

Méthodes en Sciences-Physiques. Programme de Première S.

Méthodes en Sciences-Physiques. Programme de Première S. Méthodes en Scences-Physques. Programme de Premère S. Comment réalser et utlser les tableaux d avancement en Premère S Équaton de la réacton 3Ag + aq + AsO 3 4 aq Ag 3 AsO 4 s quanttés de matère en mol

Plus en détail

Exercices probabilités statistiques

Exercices probabilités statistiques Premère S Exercces probabltés - statstques 1. Boules 2. Pèces de monnae 3. Tenns 4. Premère langue 5. Urnes 6. Cnéma 7. Football 8. Dés spécaux 9. Une populaton actve 10. Tr à l arc 11. Etude de marché

Plus en détail

Introduction aux algorithmes de tri. Les tris séquentiels. Méthodologie de la programmation E2I.1- Les algorithmes de tri. Les tris récursifs.

Introduction aux algorithmes de tri. Les tris séquentiels. Méthodologie de la programmation E2I.1- Les algorithmes de tri. Les tris récursifs. Vue d'ensemble Méthodologe de la programmaton E2I.1- Les algorthmes de tr Cyrlle CHAVET 2 Plan Objectfs é Tr: Ordonner un ensemble d éléments selon un ensemble de clés sur lesquelles est défne une relaton

Plus en détail

Interface : OneNote 2010

Interface : OneNote 2010 Interface : OneNote 2010 Interface : OneNote 2010 Offce 2010 Lancer OneNote 2010 Clquez sur le bouton Démarrer de la barre des tâches stuée en bas de l écran pus clquez sur l opton Tous les programmes

Plus en détail

Table des matières. Outils symboliques pour l'écriture de modèles et l étude de sensibilité des multicorps

Table des matières. Outils symboliques pour l'écriture de modèles et l étude de sensibilité des multicorps 3 Lste des fgures 11 Lste des tableaux 13 Introducton générale 15 Parte 1 Ecrture automatque des équatons du mouvement grâce aux Tenseurs d'inerte Globaux (TIG). Cas des lasons complexes et des pseudo-paramètres.

Plus en détail

Une approche heuristique pour l'utilisation et la transformation de bouchons en liège

Une approche heuristique pour l'utilisation et la transformation de bouchons en liège 3 e Conférence Francophone de MOdélsaton et SIMulaton Concepton, Analyse et Geston des Systèmes Industrels MOSIM 01 du 25 au 27 avrl 2001 - Troyes (France) Une approche heurstque pour l'utlsaton et la

Plus en détail

ANNEXE : Rappels sur les notions de dérivée et différentielle

ANNEXE : Rappels sur les notions de dérivée et différentielle NNEXE : Rappels sur les notons de dérvée et dfférentelle Pente d une drote Eamnons géométrquement les drotes dans le plan cartésen La prncpale caractérstque qu dstngue une drote d une autre est son nclnason,

Plus en détail

Les transformations élémentaires

Les transformations élémentaires Les transformatons élémentares ransformatons Utlsatons : Déplacement d'un objet dans une scène Déplacement d'un observateur par rapport a une scène éplcaton d'un motf ou d'un objet Déformaton d'un objet

Plus en détail

REPRESENTATION DU COMPORTEMENT D'UN SYSTEME LOGISTIQUE PAR UNE RELATION ETATS / INDICATEURS DE PERFORMANCE

REPRESENTATION DU COMPORTEMENT D'UN SYSTEME LOGISTIQUE PAR UNE RELATION ETATS / INDICATEURS DE PERFORMANCE 3 e Conférence Francophone de Modélsaton et SIMulaton «Concepton, Analyse et Geston des Systèmes Industrels» MOSIM 0 du 25 au 7 avrl 200 Troyes (France) REPRESENTATION DU COMPORTEMENT D'UN SYSTEME LOGISTIQUE

Plus en détail

Simulation de déplacements piétons dans les travaux d'atn Vladimir Koltchanov, ATN

Simulation de déplacements piétons dans les travaux d'atn Vladimir Koltchanov, ATN Smulaton de déplacements pétons dans les travaux d'atn Vladmr Koltchanov, ATN v.koltchanov@atn-france.com Sémnare INRETS - MSIS Plan de la présentaton Évoluton hstorque des travaux de recherche et de développement

Plus en détail

Régulation PID par les méthodes empiriques

Régulation PID par les méthodes empiriques Régulaton PID par les méthodes emprques. Introducton à la synthèse des régulateurs PID et objectf du TP Les systèmes asservs peuvent présenter quelques contre performances : une précson permanente nsuffsante,

Plus en détail

INTRODUCTION A L ETUDE DES SPECTROMETRIES DE L ATOME

INTRODUCTION A L ETUDE DES SPECTROMETRIES DE L ATOME INTRODUCTION A ETUDE DES SPECTROMETRIES DE ATOME Nveaux énergétques de l atome et transtons permses C.J. Ducauze, H. Ths et X.T. Bu INTRODUCTION A ETUDE DES SPECTROMETRIES DE ATOME Nveaux énergétques de

Plus en détail

Élec 2 Les dipôles linéaires dans l ARQS

Élec 2 Les dipôles linéaires dans l ARQS Élec 2 Les dpôles lnéares dans l ARQS Lycée Polyvalent de Montbélard - Physque-Chme - TSI 1-2016-2017 Contenu du programme offcel : Notons et contenus Dpôles : résstances, condensateurs, bobnes, sources

Plus en détail

Chapitre 2. Distillation flash Points de bulle et de rosée de systèmes multicomposants

Chapitre 2. Distillation flash Points de bulle et de rosée de systèmes multicomposants haptre 2 Dstllaton flash Ponts de bulle et de rosée de systèmes multcomposants 2. Vaporsaton flash et condensaton partelle La dstllaton flash est l'opératon de dstllaton la plus smple qu consste à amener

Plus en détail

2. Loi de propagation des erreurs (cas simples)

2. Loi de propagation des erreurs (cas simples) Lycée Blase-Cendrars/Physque/Labos/DC///04 Labos de physque : Mesures - Propagaton d erreurs - Mesures répéttves - Statstques. Prncpe de la mesure en physque Une mesure est toujours mprécse. La précson

Plus en détail

2. Demi Additionneur. 1. Les Circuits combinatoires. Chapitre 4 : Les circuits combinatoires. Exemple de Circuits combinatoires

2. Demi Additionneur. 1. Les Circuits combinatoires. Chapitre 4 : Les circuits combinatoires. Exemple de Circuits combinatoires haptre : Les crcuts combnatores Object Les rcuts combnatores Un crcut combnatore est un crcut numérque dont les sortes dépendent unquement des entrées F(E F(E E E n pprendre la structure de quelques crcuts

Plus en détail

MODELISATION DE DONNÉES QUALITATIVES REGRESSION LOGISTIQUE SIMPLE

MODELISATION DE DONNÉES QUALITATIVES REGRESSION LOGISTIQUE SIMPLE MODELISATION DE DONNÉES QUALITATIVES REGRESSION LOGISTIQUE SIMPLE Perre-Lous Gonzalez MODELES A REPONSE DICHOTOMIQUE Quelques applcatons: Y est dchotomque: succès ou échec, présence ou absence. Un organsme

Plus en détail