ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES"

Transcription

1 ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez

2 Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord» () «pas tellemet d accord» () «peut-être d accord» (3) «be d accord» (4) «etèremet d accord» (5) avec cette phrase? : «O e a assez de ceux qu bloquet la ve du pays par leurs revedcatos». Tedace poltque TOTAL Extrême gauche Gauche Cetre Drote Extrême drote Idéret No-répose Kh-deux = 39,48 d.d.l. = 4 Proba =.0-53

3 Exste-t-l u le etre les réposes et la tedace poltque? Tableau des prols lges Tedace poltque TOTAL Extrême gauche Gauche Cetre Drote Extrême drote Idéret No-répose

4 DIAGRAMME EN BATONS No répose Idéret Extrême drote Drote Cetre Gauche Extrême gauche 00 0 Accord -- Accord -- Accord = Accord + Accord + REPRESENTATION GRAPHIQUE DES COLONNES

5

6 TEST DU KHI-DEUX Il s agt de tester l dépedace de deux varables qualtatves. Y a-t-l dépedace etre : la catégore socoproessoelle et le vote à l électo présdetelle? le veau d études et les ouraux lus?. Tableau de cotgece Crosemet de deux varables qualtatves I et J à p et q modaltés. q p q = = p = = p q = = = (total lge) (total coloe) (total)

7 . Prols lges - prols-coloes - prols margaux Prol lge : O dvse chaque terme de la lge par l eect de la lge q Prol margal correspodat : J q S les deux varables qualtatves I et J étaet dépedates, les prolslges seraet tous detques, et doc detques au prol margal correspodat. = =

8 Remarques O pouvat établr la relato précédete e rasoat sur les prolscoloes. Souvet cette relato est exprmée = avec = et = = Elle exprme claremet que das le cas de l dépedace le tableau de cotgece est etèremet détermé par ses marges.

9 3. Déto du Kh-deux Pour chaque case, o peut doc calculer le ombre de cas attedus (sous hypothèse d dépedace) = O peut comparer les ombres de cas attedus E aux ombres observés. χ χ = = p = p = q = q = ( E) E 4. Test S les deux varables sot réellemet dépedates, cette expresso sut ue dstrbuto du Kh-deux avec u ombre de degrés de lberté égal à : ( p ) ( q ) Das ue table o lt χ α,k valeur ayat ue probablté pour ue dstrbuto du kh-deux avec k= ( p ) ( q ) lberté. α d être dépassée degrés de S S χ χ,k o accepte H0 : dépedace χ α >,k o reette H0. χ α

10 Remarque : test du kh-deux Les logcels statstques proposet la présetato suvate : calcul du χ assocé au tableau de cotgece oté χ. obs probablté pour ue v.a. suvat ue lo du kh-deux à ( ) ( ) p q d.d.l. de dépasser χ obs. Prob χ [ ( )( ) χ ] p q > obs χ obs S cette probablté est able (e gééral < 5 %), o reette l hypothèse d dépedace etre les deux varables qualtatves.

11 5. Autres coecets Du χ d assocato. assocé à u tableau de cotgece, o dédut d autres mesures Coecet de cotgece x + x φ de Pearso φ = x Coecet de Tschuprow T = φ p q où p et q = ombre de modaltés des varables Ce coecet comprs etre 0 et est e at l aalogue d u coecet de corrélato. T = laso octoelle récproque Coecet de Cramer C = I, ( p q ) φ

12

13

14

15

16 L aalyse des correspodaces smples (A.F.C.) Méthode proposée par J.P. Bezecr das le but d étuder la laso dte ecore correspodace etre deux varables qualtatves. Exemple : répartto des habtats de Pars selo leur leu d habtato : u des 80 quarters et leur C.S.P. Questos : Certas quarters sot-ls proches? au ses même répartto des C.S.P.? Certaes C.S.P. sot-telles proches? Certaes C.S.P. sot-elles plus souvet assocées à certas quarters? L aalyse des correspodaces trate des tableaux de cotgece.

17 I. NOTATIONS ET PRÉSENTATION ) Notatos : tableau de cotgece : N Crosemet de deux varables qualtatves à p et q modaltés p q Var I Var J ( ) = N pq, p Prols des lges = prol de la lge oté q q q Prols des coloes prol de la coloe oté c p p

18 ) Représetato des prols a) Les prols-lges Les prols lges sot cosdérés comme des dvdus. Les p prols-lges ormet u uage de p pots das R q A chaque prol-lge est assocé u pods égal à sa réquece margale. O ote NI ( ) le uage de pots ormé des prols-lges podérés : ( ; ) prol lge pods Le cetre de gravté g est dé par : p g = = La ème coordoée de g vaut E eet : p = = p = = Doc g = prol margal de la varable J (à q modaltés) g = J 3

19 b) Les prols-coloes ( ) = uage de pots ormé des q prols - coloes podérés ( c, ) NJ Le cetre de gravté g c est le prol margal de la varable I à p modaltés. g c = I 4

20 Le problème qu se pose est l étude de la dépedace etre les deux varables qualtatves. Das le cas où les deux varables sot dépedates, o a detté des prols : = prol - lge ( ) ( ) = prol - coloe = Das le cas de l dépedace, le uage des prols-lges se rédut à u pot g De même, le uage des prols-coloes se rédut à u pot g c. L étude de la dépedace cosste à étuder la orme des uages. Problème d aalyse e composates prcpales. Quelle métrque? Remarque Remarquos que les prols ayat pour somme, les p prols-lges sot e réalté stués das le sous-espace de dmeso q dé par q x = (avec x 0). = De même pour les q prols-coloes. 5

21 Métrque du χ a) Pour les prols lges : d χ ( ), q = = Justcatos : Doe u pods mportat aux déreces portat sur les petts pourcetages. Vére le prcpe d équvalece dstrbutoelle : s deux coloes ot le même prol, o les réut e ue seule d eect somme sas moder les dstaces etre prolslges. b) Pour les prols-coloes : d χ ( c, c ) p = = 6

22 Exemple de calcul de la dstace etre deux prols-lges Dstace du χ : d ( EXPA,LICS ) = ( ) drot SCEC + + LETT + SCIE MEDD PHAR PLUR IUT + (.. ) ( ) cotrbuto das le calcul de la dstace du pour MEDD pour IUT : 0,30 : 0,33 χ avec la dstace eucldee usuelle : pour MEDD pour IUT : 0,06 : 0,0076 la cotrbuto d IUT aurat été trop able : E eet :,35 % des ls d EXPA vot à l IUT au leu de 5,7 % pour l esemble de la populato (sot le double),6 % des eats de LICS vot à l IUT au leu de 5,7 % populato etère 7

23 Ierte du uage N(I) I NI ( ) l erte du uage NI ( ) calculée par rapport au cetre de gravté vaut J χ où χ = Kh-deux assocé au tableau de cotgece étudé. E eet : I p NI χ = () = d (, J ) p = q = = p q = = = p q = = = = p = = χ q = Remarque : o obtet le même résultat pour l erte du uage NJ ( ). 8

24 II. L ANALYSE EN COMPOSANTES PRINCIPALES DU NUAGE DES PROFILS-LIGNES, DES PROFILS- COLONNES. O réalse l A.C.P. du uage des prols-lges : Les prols-lges ouet le rôle d dvdus ; ls sot aectés des pods La métrque utlsée pour le calcul des dstaces etre dvdus est la métrque du kh-deux. Le premer axe prcpal du uage des prols-lges est la drote passat le plus près possble de l esemble des pots de N( I. ) Notos a la premère composate prcpale a =... coordoées des p prols-lges sur l'axe Notos λ la varace de a (égale à l erte portée par l axe qu lu est assocé). a = deuxème composate prcpale de varace λ a 3 = trosème composate prcpale de varace λ 3 9

25 . O peut égalemet réalser l A.C.P. du uage des prolscoloes aectés des pods e utlsat la métrque du χ. Notos b la premère composate prcpale b =... coordoées des q prols-coloes sur l'axe b = deuxème composate prcpale Les composates prcpales de l A.C.P. des prols-coloes sot assocées aux mêmes valeurs propres que les composates prcpales de l A.C.P. des prols-lges. b a pour varace λ b a pour varace λ

26 3. Le etre les deux aalyses : ormules de trasto (deuxème orme) E otat b et a les ème et ème coordoées des composates prcpales b et a assocées à la même valeur propre λ : λ b = p = a λ a = q = b avec a = a a a p... b = b b b... q À λ près, la coordoée d ue modalté d ue varable est la moyee des coordoées des catégores de l autre varable podérées par les réqueces codtoelles du prol de.

27 III. REPRÉSENTATIONS GRAPHIQUES A.F.C. Dvers types de représetatos sot possbles :. Les modaltés de la varable I sot représetées e tat qu dvdus (prols-lges) de l A.C.P. des prols-lges. La modalté de la varable I a pour coordoées das u espace de dmeso k : k ( a, a,..., a ) avec a a ème = coordoée du vecteur a ème = coordoée du vecteur a... Pour les modaltés de la varable J, la modalté a pour coordoées : k ( λ b, λ b,... λk b ) b b ème = coordoée du vecteur b ème = coordoée du vecteur b Les modaltés du deuxème groupe ( J ) sot les barycetres des modaltés du premer groupe (varable I). (vor ormules de trasto)

28 . Même prcpe mas e versat les rôles des deux groupes de modaltés. 3. Abado du prcpe barycetrque Les modaltés de chaque esemble sot représetées par les : a b k k =... p =... q Cette derère soluto est la plus pratque (be que les deux groupes de modaltés se trouvet e réalté das des espaces dérets). Cette représetato permet de détermer les proxmtés etre certas élémets de I et certas élémets de J (compte teu de la qualté de la représetato). 3

29 4. Ades à l terprétato : detques à celles de l A.C.P. a) Cotrbutos de la lge à l axe k ( a ) k λ k avec = de la coloe à l axe k ( a ) λ k k avec = b) Cosus carrés Modalté représetée sur l axe k d ( a ) k (, G) Modalté représetée sur l axe k d ( b ) k (, G) 4

30 c) Aspects pratques de l terprétato L terprétato peut se are à partr des représetatos graphques (e s assurat de la qualté de représetato de chaque modalté à l ade des cos ). Quad le ombre de modaltés est élevé, l est cosellé d édter d abord le graphque des prols-lges, pus celu des prolscoloes, e la représetato smultaée. Les prols ayat des pods dérets la lecture de leurs cotrbutos à l erte de chaque axe s avère très utle. O peut repérer les prols dot la cotrbuto est supéreure au pods 5

ANALYSE DES CORRESPONDANCES SIMPLES

ANALYSE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez MESURE DE LIAISON ENTRE DEUX VARIABLES QUALITATIVES KHI-DEUX Mesure de la laso etre deux varables qualtatves

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques IFT393 Qualté du logcel et métrques Chaptre 7 Collecte et aalyse des métrques Pla du cours Itroducto Qualté du logcel Théore de la mesure Mesure du produt logcel Mesure de la qualté du logcel Études emprques

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

1 ère partie : STATISTIQUE DESCRIPTIVE

1 ère partie : STATISTIQUE DESCRIPTIVE ère parte : STATISTIQUE DESCRIPTIVE CHAPITRE : COLLECTE DE L INFORMATION, TABLEAUX ET GRAPHIQUES. I. Défto et vocabulare Défto : la statstque est ue méthode scetfque qu cosste à réur des doées chffrées

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

Variables j.. p. Xij

Variables j.. p. Xij L alyse e Composates Prcpales (CP) O possède u tableau rectaulare de mesure dot les coloes sot des varables quattatves (mesuratos, taux, statos clmatques) et dot les les représetet des dvdus statstques

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Chapitre 4 : RÉGRESSION

Chapitre 4 : RÉGRESSION Chaptre 4 : RÉGRESSION 4. Régresso léare smple 4.. Équato de la régresso 4.. Estmato par les modres carrés 4..3 Coeffcet de détermato 4..4 Iférece sur les coeffcets 4..5 Prévso et aalyse des résdus Régresso

Plus en détail

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

Analyse de régression

Analyse de régression Itroducto à la régresso Aalyse de régresso La régresso est utlsée pour estmer ue focto f( ) décrvat ue relato etre ue varable explquée cotue,, et ue ou pluseurs varables explcatves,. = f(,, 3,, )+ε Remarque

Plus en détail

PHYSIQUE DES SEMICONDUCTEURS

PHYSIQUE DES SEMICONDUCTEURS MIISTERE DE L'ESEIGEMET SUPERIEURE ET DE LA REHERHE SIETIFIQUE UIERSITE DE BEHAR Départemet es Sceces Laboratore e Pysque es spostfs à semcoucteurs (L.P.D.S ttp://www.uv-becar.z/lps/ PHYSIQUE DES SEMIODUTEURS

Plus en détail

sont distincts 2 à 2.

sont distincts 2 à 2. Lycée Thers CORRIGÉ TP PYTHON - 09 L algorthme des k-meas pour partager u uage de pots e u ombre doé de classes peu dspersées 1 - La méthode de Forgy [Qu. 1] 1) Cette double somme comporte termes pusque

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

NOTATIONS ET FORMULAIRE

NOTATIONS ET FORMULAIRE Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 1/5 PROTOCOLE SUR U ECHA TILLO NOTATIONS ET FORMULAIRE Esemble des sujets de l échatllo S { s 1 ; s ;.; s } (1) Varable

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

Calculs en chromatographie

Calculs en chromatographie Calculs e chroatographe éthode de la oralsato tere... 1 Coeffcet de répose assque relatf... 1 Calcul des pourcetages assques... 2 Calcul des pourcetages olares... 3 xeple d aalyse CG d ue substtuto copéttve

Plus en détail

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles L Meto Iformatque UE Probabltés Chaptre 3 : Varables aléatores réelles Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer, Serge Solovev Sot (, A, P) Ω et X : Ω R ue varable aléatore. I. Varable

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

Rappel (voir cours 1). On obtient l ampleur de chacune de ces dispersions par les sommes suivantes :

Rappel (voir cours 1). On obtient l ampleur de chacune de ces dispersions par les sommes suivantes : Master SV U7 COURS III - - Aalyse de varace (ANOVA I Patrc Coqullard I. ANOVA T RGRSSION MULTIPL I.. Rappels Ue régresso multple s accompage toujours d ue aalyse de varace ( ANalyse Of VArace = ANOVA.

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

Ingénierie de l'analyse des données

Ingénierie de l'analyse des données Igéere de l'aalyse des doées Jea-Lous Grard htt://www.u-carde.rtous/ocumetato/master/ia Pla de cours. Itroducto géérale..... Les Egytes atques savaet-ls edre?..... Ue autre llustrato... 3.3. Pla... 6.4.

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats.

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats. rbre de déombremet et arbre de probablté Pla du documet. O présete tout d'abord la règle du produt pour les arbres de déombremet avec, e cas partculer, le cardal d'u produt cartése d'esembles fs.. O présete

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION

AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION. INTRODUCTION Il est fréquet de s'terroger sur la relato qu peut exster etre deux gradeurs e partculer das les problèmes de prévso et d estmato. Tros types

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18 1 U commerçat a relevé le motat des dépeses e euros de chaque clet au cours d ue semae. Motat des dépeses Clets [0 ; 50[ 72 x x - x ) - x )² -x ) ² [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200

Plus en détail

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES SOMMAIRE. Normes sur u espace vectorel E 2.. Défto d'ue orme. Cter l'égalté tragulare reversée. 2.2. Normes usuelles

Plus en détail

6GEI300 - Électronique I. Examen Partiel #1

6GEI300 - Électronique I. Examen Partiel #1 6GEI3 Électroque I Autome 27 Modalté: Aucue documetato est permse. Vous avez drot à ue calculatrce o programmable. La durée de l exame est de 3h Cet exame compte pour 2% de la ote fale. Questo 1. Questos

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

5. Variables aléatoires simultanées

5. Variables aléatoires simultanées 5. Varables aléatores smultaées 5.1 Coule de varables aléatores Défto 1 Pour tout dce das 1, sot X ue varable aléatore. O dt que X X 1 X est ue varable aléatore de dmeso. Nous ous téresseros rcalemet aux

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure. TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. L agrégato des préféreces...2 I. Le système de vote à la majorté...2 I.2 Vote par classemet...3 I.3 Codtos de décso socale et théorème d

Plus en détail

LOI NORMALE ET LOIS DERIVEES

LOI NORMALE ET LOIS DERIVEES Prcpes et Méthodes de la Bostatstque Chaptre 5 LOI NORMALE ET LOIS DERIVEES A-LA LOI NORMALE Présetato La dstrbuto ormale, dte ecore de Laplace-Gauss, est pour des rasos qu apparaîtrot plus lo, la plus

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression L Meto Iformatque UE Probabltés Chaptre 4 : Smulato - Régresso Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer I- Smulato de varables aléatores. Itroducto Das certaes expéreces «réelles», où le

Plus en détail

" BIOSTATISTIQUE - 1 "

 BIOSTATISTIQUE - 1 ISTITUT SUPERIEUR DE L EDUCATIO ET DE LA FORMATIO COTIUE Départemet Bologe Géologe S0/ " BIOSTATISTIQUE - " Cours & Actvtés : Modher Abrougu Aée Uverstare - 008 Modher Abrougu Bostatstque «I» ISEFC - 008

Plus en détail

Au sommaire : Des généralités. Polynôme d'endomorphisme. Polynômes minimal d'un endomorphisme. Valeur et vecteur propres. Sous-espace propre.

Au sommaire : Des généralités. Polynôme d'endomorphisme. Polynômes minimal d'un endomorphisme. Valeur et vecteur propres. Sous-espace propre. - De la réducto des edomorphsmes - Ce cours a été rédgé e ovembre 994 alors que e préparas l'agrégato de mathématques et ms à our e u et ullet 2. Das le cas où l comporterat des erreurs, merc de me les

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 page1/6 CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 Dosser "Défcece" 1) = 30 pour les groupes. Les classes sot d'ampltudes dfféretes doc...utlser la desté (rappel : desté = effectf/ampltude). Durée

Plus en détail

6. RADIERS 6.1. GÉNÉRALITÉS

6. RADIERS 6.1. GÉNÉRALITÉS 6. RADIERS 6.. GÉNÉRALITÉS U raer est ue alle plae, évetuellemet ervurée, costtuat l'esemble es foatos 'u bâtmet. Il s'éte sur toute la surface e l'ouvrage. Ce moe e foato est utlsé as eux cas : lorsque

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES DT 3/2006 Pauvreté multdmesoelle au Cogo : ue approche o moétare Samuel AMBAPOUR BAMSI BAMSI B.P. 3734 Brazzavlle DT 3/2006 Pauvreté multdmesoelle

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

L Analyse Factorielle des Correspondances

L Analyse Factorielle des Correspondances Aalyse de doées Modle 5 : L AFC M5 L Aalyse Factorelle des Corresodaces L aalyse factorelle des corresodaces, otée AFC, est e aalyse destée a tratemet des tableax de doées où les valers sot ostves et homogèes

Plus en détail

Analyse de survie. Michel Fioc. (Michel.Fioc@iap.fr, www2.iap.fr/users/fioc/enseignement/analyse_de_survie/)

Analyse de survie. Michel Fioc. (Michel.Fioc@iap.fr, www2.iap.fr/users/fioc/enseignement/analyse_de_survie/) École doctorale d astroome et d astrophysque d Île de Frace. I.A.P., févrer 2013 Post-master. Approche statstque bayésee par l exemple Aalyse de surve Mchel Foc (Mchel.Foc@ap.fr, www2.ap.fr/users/foc/esegemet/aalyse_de_surve/)

Plus en détail

Résumé de statistique I

Résumé de statistique I Résumé de statstque I Etude de doées statstques : Ce qu ous téresse lorsqu o a des doées statstque ou ue dstrbuto de celles-c : Le cetre : o o Moyee : mesures o robustes Médae : mesures robustes La dsperso

Plus en détail

2013 LES DÉLAIS DE PAIEMENT. STATISTIQUES DE 2000 À 2012 EN NOMENCLATURE NAF rev. 2

2013 LES DÉLAIS DE PAIEMENT. STATISTIQUES DE 2000 À 2012 EN NOMENCLATURE NAF rev. 2 203 LES DÉLAIS DE PAIEMENT STATISTIQUES DE 2000 À 202 EN NOMENCLATURE NAF rev. 2 Javer 204 Itroducto Des séres statstques chroologques des délas de paemet et du solde du crédt teretreprses sot dspobles

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

Loi de Fisher. Test de Fisher. Exemple. Solution. ANOVA à un facteur. df = (29, 28) df = (19, 6) df = (6, 6)

Loi de Fisher. Test de Fisher. Exemple. Solution. ANOVA à un facteur. df = (29, 28) df = (19, 6) df = (6, 6) ! amlle de dtrbuto. Lo de her! Chaque membre de la famlle et détermé par deux paramètre: le ombre de degré de lberté du umérateur et le ombre de degré de lberté du déomateur.! et cotue et potve.! et potvemet

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

(respectivement M n,1 ( )) l espace vectoriel réel

(respectivement M n,1 ( )) l espace vectoriel réel Les calculatrces sot autorsées **** NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto S u caddat est ameé à reérer ce qu eut lu sembler être ue erreur d'éocé,

Plus en détail

STATISTIQUES A UNE VARIABLE

STATISTIQUES A UNE VARIABLE Cours et exercces de mathématques ) Itroducto et vocabulare STATISTIQUES A UNE VARIABLE La statstque est la scece qu cosste à réur des doées chffrées, à les aalyser, à les commeter et à les crtquer Ue

Plus en détail

Nombres complexes Sessions antérieures

Nombres complexes Sessions antérieures ème aée Maths Nombres complexes Sessos atéreures Aée scolare 9 - A LAATAOUI Exercce N (SP) Das le pla complexe P rapporté à u repère orthoormé ( Ouv ; ; ) o cosdère les pots A et B d affxes respectves

Plus en détail

RECUEIL DES METHODES INTERNATIONALES D'ANALYSES OIV Guide de validation Contrôle qualité

RECUEIL DES METHODES INTERNATIONALES D'ANALYSES OIV Guide de validation Contrôle qualité Gude de valdato Cotrôle qualté Gude pratque pour la valdato, le cotrôle qualté, et l estmato de l certtude d ue méthode d aalyse œologque alteratve (Résoluto Oeo 10/005) Sommare 1. OBJET... 5. PREAMBULE

Plus en détail

Texte Analyse en composantes principales

Texte Analyse en composantes principales Uverstés Rees I Épreuve de modélsato - Agrégato Extere de Mathématques 2007 Page Texte Aalyse e composates prcpales Itroducto E archéologe, l aalyse de la composto de matéraux est deveue u outl essetel

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

MPSI du lycée Rabelais semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n

MPSI du lycée Rabelais  semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n MPSI du lycée Rabelas http://mps.satbreuc.free.fr semae du septembre 5 CALCULS ALGÉBRIQUES Sommes et produts fs Exercce : Parm les formules suvates, lesquelles sot vraes?.. 3. α+a α+ a +b αa α a + a a

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Notions de base pour l analyse d un tableau de contingence

Notions de base pour l analyse d un tableau de contingence Uiversité de Bordeaux - Master MIMSE - 2ème aée Notios de base pour l aalyse d u tableau de cotigece Marie Chavet http://wwwmathu-bordeauxfr/ machave/ 204-205 Notatios et défiitios U tableau de cotigece

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier).

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier). Bla UE 1C G. EXERCICES BILAN Exercce 1 : Aaloge etre équlbres acdo-basques et équlbres de complexato (Applcato du Prcpe de Le Châteler). Objectfs de l'exercce - Coassaces/Compéteces testées das cet exercce

Plus en détail

f(t) g(t)dt f²(t)dt g²(t) dt a a a

f(t) g(t)dt f²(t)dt g²(t) dt a a a PCSI Chatre 4 : Produts scalares-résumé Das ce chatre E est u -ev. Produts scalares. Défto et exemles de référeces Def: O aelle rodut scalare sur E toute alcato de E² das est bléare. est symétrque: x,ye,

Plus en détail

INCERTITUDES. Lucyna Firlej. Groupe de Dynamique des Phases Condensees Université Montpellier 2

INCERTITUDES. Lucyna Firlej. Groupe de Dynamique des Phases Condensees Université Montpellier 2 Départemet Mesures Physques 005-006 INCERTITUDES Lucya Frlej Groupe de Dyamque des Phases Codesees Uversté Motpeller COURS ACCESSIBLES SUR LE SITE WEB: http://www.gdpc.uv-motp.r:708/~rlej ESTIMATION de

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!!

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!! Cours : Statstques I. Itroducto Classe de ère S O a vu que our caractérser ue sére statstque, o utlse des : - aramètres de tedace cetrale : - la moyee ; - la médae. Ils ermettet d dquer la «osto» de la

Plus en détail

Méthodologie statistique

Méthodologie statistique Méthodologe statstque 000 L'ECONOMETIE ET l'etude DES COMPOTEMENTS Présetato et mse e oeuvre de modèles de régresso qualtatfs Les modèles uvarés à résdus logstques ou ormaux LOGIT, POBIT Documet de traval

Plus en détail

NOMBRES COMPLEXES EXERCICES CORRIGES

NOMBRES COMPLEXES EXERCICES CORRIGES Cours et exercces de mathématques NOMRES COMPLEXES EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; Exercce. Calculer, et = ; = ; = ; 5 006 009 E dédure

Plus en détail

Incertitudes expérimentales

Incertitudes expérimentales U N I O N D E S P R O F E S S E U R S D E P H Y S I Q U E E T D E C H I M I E 995 Icerttudes érmetales par Fraços-Xaver BALLY Lcée Le Corbuser - 93300 Aubervllers et Jea-Marc BERROIR École ormale supéreure

Plus en détail

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2 - Varables aléatores et dstrbutos - Chaptre : Varables aléatores et dstrbutos. Varable aléatore.... Focto de répartto....3 Focto de masse et de desté....4 Dstrbuto cojote de varables aléatores...5.4. Dstrbuto

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée gééral et techologque Ressources pour le cycle termal gééral et techologque Mesure et certtudes Ces documets peuvet être utlsés et modés lbremet das le cadre des actvtés

Plus en détail

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables.

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables. COUPLE DE VARIABLES ALEATOIRES O cosdère deux varables aléatores et. O amerat coatre s l y a fluece etre ces deux varables. I Coule de varables dscrètes : 1) Lo ote : Soet et deux varables dscrètes, à

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 005 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 010 SBN : 978--1-54754- Sommare Remercemets... troducto De l terchageablté à Sx Sgma... 1 V CHAPTRE 1 Du toléracemet tradtoel

Plus en détail

Cours 8 : Analyse de variance à un facteur

Cours 8 : Analyse de variance à un facteur PSY 004 Techques d aalyses e sychologe Cours 8 : alyse de varace à u facteur Table des matères Secto. "U cou de dé jamas 'abolra le hasard"... Secto. Itroducto à l aalyse de varace NOV... Secto 3. Réartto

Plus en détail

Pauvreté multidimensionnelle des enfants et des ménages Analyse appliquée à la République Centrafricaine

Pauvreté multidimensionnelle des enfants et des ménages Analyse appliquée à la République Centrafricaine PMMA Network Sesso Paper Pauvreté multdmesoelle des efats et des méages Aalyse applquée à la Républque Cetrafrcae Serge Matchdé Naretoudjou Tt Vaha Steve Apété-Matogo Eugèe Zabolo A paper preseted durg

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Historique de la fibre optique Les fontaines lumineuses de l antiquité

Historique de la fibre optique Les fontaines lumineuses de l antiquité stoque de la fbe optque Les fotaes lumeuses de l atquté Pcpe de la popagato de la lumèe? Pcpe du gudage plaae (1 Dmeso) Se place e codto de éfleo totale A 1 A 1 Gae g Gae g M < c Cœu c M > c Cœu c Fute

Plus en détail

Pricing Avancé pour Exotiques FINKEYS FRANCE

Pricing Avancé pour Exotiques FINKEYS FRANCE Prcg Avacé pour Exotques Esegat Phlppe DUCHEMIN, Cosultat Formateur. www.fkeys.com (accès au cours) Cosultat : «Product Cotrol» CNP, chox d u outl Frot to Compta SOCIETE GENERAL SGCIB - Product Cotrol

Plus en détail

Alain MORINEAU

Alain MORINEAU www.deeov.com Ala MORINEAU Cet artcle est ue reprse et u extrat de l artcle «Note sur la Caractérsato Statstque d'ue Classe et les Valeurs-tests», publé das la revue Bullet Techque du Cetre de Statstque

Plus en détail