Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13,
|
|
|
- Nadine Éthier
- il y a 10 ans
- Total affichages :
Transcription
1 LYCEE GRAND AIR Correctio Devoir commu Classes de Secodes cocerées : de 10, de 11, de13, feuilles + papier millimétré. 08/0/013
2 Exercice 1 : L aée lumière. 1. D après le texte, la vitesse de la lumière das le vide vaut km/s ce qui correspod à 3, m/s.. Vitesse du so das l air so 8 c 3,00.10 v : v so 3,00.10 m/ s Explicatio de la phrase : «E regardat «loi», ous regardos «tôt»» : Plus la distace qui ous sépare de l objet céleste observé est grade, plus il a fallu de temps à la lumière pour ous parveir. O voit doc l objet à u momet de so passé d autat plus éloigé das le temps que l objet est éloigé de ous das l espace. 4. Défiitio de l aée-lumière : distace parcourue par la lumière das le vide e ue aée. 5. O veut motrer qu ue aée lumière (1 a.l.) est égale à 9,46x10 15 m. 1 a. l. c T avec c la vitesse de la lumière et T la durée d ue aée e secode. A.N. : 8 1a. l. 3, , Défiitio d ue galaxie : Ue galaxie est u esemble de Millios d'étoiles et autres structures astroomiques reteues etre elles par la gravité. L'uivers est formé de plus de 50 Milliards de galaxies, dot la otre : la Voie lactée. 7. La galaxie d Adromède se trouve à u distace d =.10 6 a.l. 8. O covertie la distace Terre-cetre de otre galaxie D e aée de lumière : D 31,7.10 a. l. 1 9,46.10 L ordre de gradeur de d est 10 6 et celui de D est Doc o peut dire que la galaxie d Adromède est 100 fois plus éloigée de ous que le cetre de otre galaxie. Exercice : Le caillou das l eau. 15 m A l aide d u poiteur laser, u efat éclaire u caillou se trouvat das l eau à ue profodeur h = IJ = 1,8 m. Le faisceau laser fait u agle de 40 avec la surface de l eau. L idice de réfractio de l eau est de 1,33, celui de l air est de 1,00 et la distace OJ est égale à 1,0 m. 1. Lois de Sell-Descartes pour la réfractio : Soit u dioptre qui sépare deux milieux homogèes et isotropes d idices optiques respectifs 1 et. Le milieu 1 est supposé celui du rayo icidet. Première loi : pour u rayo icidet, il existe u seul rayo réfracté qui est das le pla d icidece. Deuxième loi : l agle d icidece i 1 et l agle de réfractio i vérifiet la relatio : 1 si i 1 = si i. milieu icidet : air milieu de réfractio : eau 3. Refaire u schéma légedé faisat apparaître : le dioptre, la ormale, l agle d icidece et l agle réfracté : cf questio 1 4. L agle d icidece i 1 du faisceau laser vaut 90-40=50 5. D après la deuxième loi de Sell-Descartes, o a : d où si( i1 ) si( ) 1 i si( i A.N. : ) 0, 576 ) 1 si( i1 ) 1,00 si(50) si( i d où i 35, 1,33
3 6. D après le schéma, o a OC OJ JC et JC IJ i ). D où OC OJ IJ i ) A.N. : ta( OC 1,0 1,8 ta(35,), 3m ta( 7. O refait la même expériece mais cette fois-ci le poiteur laser ploge das de l eau salée. a) si(i) e foctio si(r). b) Calcul de l idice de réfractio de l eau salée. O a d après la loi de Descartes, eausalée la droite du 7.a) A.N. : 1, 41 eausalée air si( i) 1,00 si( i) si( i) si( r) si( r) si( r) 8. Le faisceau est plus das l eau de mer? Exercice 3 : Le calcium et le chlore fot bo méage., ce qui correspod au cœfficiet directeur de A. Le uméro atomique du Ca est Z = Ca a pour structure électroique : (K) (L) 8 (M) 8 (N). Positio das la classificatio périodique : 4 couches remplies doc 4 ième lige électros exteres doc ième lige 3. L atome situé immédiatemet avat le calcium possède 1 électro sur sa couche extere. 4. l atome situé juste au dessus du calcium possède électros sur sa couche extere. E effet s il se trouve juste au dessus, cela sigifie qu il se trouve das la même coloe (même famille). 5. La charge d u atome de calcium est ulle comme tout atome. L atome est électriquemet eutre. 6. Pour respecter la règle de l octet et doc gager e stabilité, le calcium va chercher à avoir sa couche extere saturée. La structure électroique de l atome (K) (L) 8 (M) 8 (N) va deveir (K) (L) 8 (M) 8, il perd électros. L io a doc pour formule Ca Charge de l io calcium Q Ca e 1,6.10 3,.10 C 8. Les élémets de la derière coloe de la classificatio périodique appartieet aux gaz obles (rares). Leur pricipale propriété est d être chimiquemet ierte. B. Le Chlore a pour représetatio 1. Cet élémet appartiet à la famille des halogèes.. L atome de chlore possède 17 protos et 18 eutros das so oyau et 17 électros. 3. O a estimé la masse de l atome de chlore a m (atome) = 3,09x10-6 kg. m Cl 35 m ucléo 35 1, , kg. La valeur est icorrecte.
4 4. U atome qui possède 17 protos et 0 eutros est u isotope du chlore. Sa positio das la classificatio périodique est doc idetique au : 3 ième lige et avat derière coloe car il a pour structure électroique : (K) (L) 8 (M) 7 5. L atome de chlore peut doer aissace à u io. a) La charge de cet io est Q =- 1,6 x10-19 C. Cela correspod à ue charge élémetaire égative e. E effet il maque u électro à la structure électroique de l atome pour respecter la règle de l octet. La formule de l io est Cl -. b) Le test permettat de mettre e évidece cet io est le test au itrate d arget. Il doir se former u précipité blac. c) Compositio du oyau de cet io : 17 protos et 0 eutros C. Le chlorure de calcium. Formule du chlorure de calcium CaCl
5 Exercice 1 : L aée lumière. Etude de documet. La machie à remoter le temps. Nous savos aujourd hui que, comme le so, la lumière se propage à ue vitesse bie détermiée [ ]Cela équivaut à ue vitesse d eviro trois cet mille kilomètres par secode, u millio de fois plus vite que le so das l air. Il faut bie recoaître que, par rapport aux dimesios dot ous parlos maiteat, cette vitesse est plutôt faible. A l échelle astroomique, la lumière progresse à pas de tortue. Les ouvelles qu elle ous apporte e sot plus fraîches du tout! Pour ous, c est plutôt u avatage. Nous avos trouvé la machie à remoter le temps! E regardat «loi», ous regardos»tôt». La ébuleuse d Orio ous apparaît telle qu elle était à la fi de l empire romai, et la galaxie d Adromède telle qu elle était au momet de l apparitio des premiers hommes, il y a deux millios d aées. A l iverse, d hypothétiques habitats d Adromède, muis de puissats télescopes, pourraiet voir aujourd hui l éveil de l humaité sur otre plaète Les objets les plus loitais visibles aux télescopes sot les quasars. Ce sot e fait des galaxies [ ] Certais quasars sot situés à douze milliards d aées-lumière. La lumière qui ous e arrive a voyagé pedat douze milliards d aées. C est-à-dire quatre-vigts pour cet de l âge de l uivers C est la jeuesse du mode que leur lumière ous doe à voir au terme de cet icroyable voyage. Das ces coditios, il est aturellemet impossible d avoir u portrait»istataé» de l uivers. U «istataé», das le lagage photographique, c est ue vue qui fige u paysage e u istat précis de sa durée. Ici, ous sommes comme au sommet de la motage «temps». Das otre visio du mode, le poit le plus avacé das le temps est celui où ous sommes. Tout autour, otre regard ploge das le passé. Hubert Reeves, Patiece das l azur, le seuil Quelle est la vitesse de la lumière das le vide d après le texte? La covertir e mètre par secode e utilisat la otatio scietifique avec 3 chiffres sigificatifs. 10. Calculer alors la vitesse du so das l air. 11. Expliquer la phrase : «E regardat «loi», ous regardos «tôt». 1. Proposer ue défiitio de l aée-lumière. 13. A partir de la défiitio précédete et de la valeur de la vitesse de la lumière,, motrer qu ue aée lumière est égale à 9,46x10 15 m. 14. Doer la défiitio d ue galaxie. 15. A quelle distace se trouve la galaxie d Adromède? 16. La distace etre la Terre et le Cetre de otre Galaxie est de 300 millios de milliards de km. Comparer les ordres de gradeur de ces deux distaces : Terre/otre galaxie et Terre/Adromède. Exercice : Le caillou das l eau. 9. Eocer les lois de Sell-Descartes pour la réfractio. 10. Quel est le milieu icidet? Le milieu de réfractio? A l aide d u poiteur laser, u efat éclaire u caillou se trouvat das l eau à ue profodeur h = IJ = 1,8 m. Le faisceau laser fait u agle de 40 avec la surface de l eau. L idice de réfractio de l eau est de 1,33, celui de l air est de 1,00 et la distace OJ est égale à 1,0 m.
6 11. Refaire u schéma légedé faisat apparaitre : le dioptre, la ormale, l agle d icidece et l agle réfracté. 1. Quelle est la valeur de l agle d icidece i du faisceau laser? 13. Détermier la valeur de l agle de réfractio r. 14. A quelle distace OC du rivage se trouve le caillou? 15. O refait la même expériece mais cette fois-ci le poiteur laser ploge das de l eau salée. Les résultats d agle d icidece i e degré et l agle de réfractio r e degré sot mesurés à la surface air-eau salée. Les si(i) et si(r) sot calculés : Si(i) 0 0,1 0,4 0,36 0,48 0,59 0,71 0,81 0,91 0,99 Si(r) 0 0,09 0,17 0,5 0,34 0,4 0,50 0,57 0,64 0,71 c) Tracer si(i) e foctio si(r). d) E déduire l idice de réfractio de l eau salée, (eau salée). 16. Le faisceau est-il plus ou mois dévié das l eau ou l eau de mer? Doée : si(agle) = ; cos(agle) ; ta (agle) =. Exercice 3 : Le calcium et le chlore fot bo méage. D. Le uméro atomique du Ca est Z = Quelle est la structure électroique du calcium? 10. E déduire sa positio das la classificatio périodique. 11. Combie d électros sur sa couche extere possède l atome situé immédiatemet avat le calcium? 1. Combie d électros sur sa couche extere possède l atome situé juste au dessus du calcium. Justifier votre répose. 13. Quelle est la charge d u atome de calcium? 14. Pourquoi l atome de calcium deviet l io Ca + lorsqu il réagit? 15. Calculer alors la charge de l io calcium. 16. Commet appelle-t-o les élémets de la derière coloe de la classificatio périodique? Quelle est leur pricipale propriété? E. Le Chlore a pour représetatio 6. A quelle famille appartiet cet élémet? 7. Doer la compositio de l atome de chlore. 8. O a estimé la masse de l atome de chlore a m (atome) = 3,09x10-6 kg. Cette valeur est-elle correcte? 9. Que peut-o dire d u atome qui possède 17 protos et 0 eutros? Quelle sa positio das la classificatio périodique? 10. L atome de chlore peut doer aissace à u io. d) La charge de cet io est Q =- 1,6 x10-19 C. Justifier et écrire la formule de l io. e) Quel test permet de mettre e évidece cet io? f) Quel est la compositio du oyau de cet io? F. Le chlorure de calcium. Ecrire la formule du chlorure de calcium. Doées : e = 1,6*10-19 C et m(ucléos) = 1,67*10-7 kg.
7
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI
FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue
Les Nombres Parfaits.
Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie
Dénombrement. Chapitre 1. 1.1 Enoncés des exercices
Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.
LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.
Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la
La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe
1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios
UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4
UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»
Convergences 2/2 - le théorème du point fixe - Page 1 sur 9
Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios
[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =
[http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
55 - EXEMPLES D UTILISATION DU TABLEUR.
55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique
Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe
Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
Télé OPTIK. Plus spectaculaire que jamais.
Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise
CHAPITRE 2 SÉRIES ENTIÈRES
CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.
Chapitre 3 : Transistor bipolaire à jonction
Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats
Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X
Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour
Chap. 5 : Les intérêts (Les calculs financiers)
Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
Statistiques appliquées à la gestion Cours d analyse de donnés Master 1
Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques
Initiation à l analyse factorielle des correspondances
Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique
Chapitre 6 La lumière des étoiles Physique
Chapitre 6 La lumière des étoiles Physique Introduction : On ne peut ni aller sur les étoiles, ni envoyer directement des sondes pour les analyser, en revanche on les voit, ce qui signifie qu'on reçoit
Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :
Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +
Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES
DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces
14 Chapitre 14. Théorème du point fixe
Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus
Divorce et séparation
Coup d oeil sur Divorce et séparatio Être attetif aux besois de votre efat Divorce et séparatio «Les premiers mois suivat u divorce ou ue séparatio sot très stressats. Votre patiece, votre cohérece et
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1
Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S
STATISTIQUE AVANCÉE : MÉTHODES
STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................
II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009
M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted
Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.
II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café
capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...
Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1
2 ième partie : MATHÉMATIQUES FINANCIÈRES
2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul
Module 3 : Inversion de matrices
Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que
Gérer les applications
Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces
Comprendre l Univers grâce aux messages de la lumière
Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,
Sommaire Chapitre 1 - L interface de Windows 7 9
Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18
UNIVERSITÉ DE SFAX École Supérieure de Commerce
UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première
Séries réelles ou complexes
6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
Séquence 5. La fonction logarithme népérien. Sommaire
Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa
Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.
Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
Formation d un ester à partir d un acide et d un alcool
CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester
UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. [email protected] ) page 1
UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. [email protected] ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
Statistique descriptive bidimensionnelle
1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets
MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB
MUTUELLE D&O MUTUELLE D&O Copilote de votre saté AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyace CRC CRIS CRPB-AFB DOMISSIMO-Assuraces DOMISSIMO-Services FONGECFA-Trasport IPRIAC MUTUELLE D&O OREPA-Prévoyace
La fibre optique arrive chez vous Devenez acteur de la révolution numérique
2 e éditio Edité par l Autorité de régulatio des commuicatios électroiques et des postes RÉPUBLIQUE FRANÇAISE DÉCEMBRE 2010 La fibre optique arrive chez vous Deveez acteur de la révolutio umérique Petit
Les algorithmes de tri
CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....
Processus et martingales en temps continu
Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de
n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :...
Nom:... Préom :... Chaque répose peut valoir : c) 2 poits si le choix est totalemet exact + poit si le choix est partiellemet exact + 0 poit si le choix est erroé + -i poit si le choix est u coeses Ue
Probabilités et statistique pour le CAPES
Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes
Principes et Méthodes Statistiques
Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............
Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions
Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter
Exercices de mathématiques
MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris
Comment les Canadiens classent-ils leur système de soins de santé?
Novembre Les sois de saté au Caada, c est capital bulleti o 4 Commet les Caadies classet-ils leur système de sois de saté? Résultats du sodage iteratioal du Fods du Commowealth sur les politiques de saté
Solutions particulières d une équation différentielle...
Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod
Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3
1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que
Compte Sélect Banque Manuvie Guide du débutant
GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de
Petit recueil d'énigmes
Petit recueil d'éigmes Patxi RITTER (*) facile (**) mois facile (***) pas facile (****) il faudra de l aide Solutios e rouge. 1) Cryptarithme (**) Trouvez la valeur de A, B et C satisfaisat l équatio suivate.
DETERMINANTS. a b et a'
2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio
3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.
3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios
Un accès direct à vos comptes 24h/24 VOTRE NUMÉRO CLIENT. www.bnpparibas.net. Centre de Relations Clients 0 820 820 001 (0,12 /min)
* selo coditios cotractuelles e vigueur. U accès direct à vos comptes 24h/24 VOTRE NUMÉRO CLIENT + VOTRE CODE SECRET * : www.bpparibas.et Cetre de Relatios Cliets 0 820 820 001 (0,12 /mi) Appli Mes Comptes
STATISTIQUE : TESTS D HYPOTHESES
STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie
Cours de Statistiques inférentielles
Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios
RECHERCHE DE CLIENTS simplifiée
RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **
Suites et séries de fonctions
[http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de
Augmentation de la demande du produit «P» Prévision d accroître la capacité de production (nécessité d investir) Investissement
Augmetatio de la demade du produit «P» Prévisio d accroître la capacité de productio (écessité d ivestir) Ivestissemet Etude de retabilité du produit «P» Jugemet de l opportuité et de la retabilité du
LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE
LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe
Renseignements et monitoring. Renseignements commerciaux et de solvabilité sur les entreprises et les particuliers.
Reseigemets et moitorig. Reseigemets commerciaux et de solvabilité sur les etreprises et les particuliers. ENSEMBLE CONTRE LES PERTES. Reseigemets Creditreform. Pour plus de trasparece. Etreteir des rapports
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE
Guide des logiciels installés sur votre ordinateur portable Sony PCG-C1MHP
Guide des logiciels istallés sur votre ordiateur portable Soy PCG-C1MHP Commecez par lire ce documet! Commecez par lire ce documet! Importat Ce produit comporte des logiciels acquis par Soy sous licece
TARIFS BANCAIRES. Opérations bancaires avec l étranger Extrait des conditions bancaires au 1 er juillet 2014. Opérations à destination de l étranger
Opératios bacaires avec l étrager Extrait des coditios bacaires au 1 er juillet Opératios à destiatio de l étrager Viremets émis vers l étrager : Frais d émissio de viremets e euros (3) vers l Espace écoomique
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice
Copyright 2001 2006 Hewlett-Packard Development Company, L.P.
Guide des logiciels Media Ceter Les garaties des produits et services HP sot exclusivemet présetées das les déclaratios expresses de garatie accompagat ces produits et services. Aucu élémet de ce documet
Si la source se rapproche alors v<0 Donc λ- λo <0. La longueur d onde perçue est donc plus petite que si la source était immobile
Red shift or blue shift, that is the question. a) Quand une source d onde se rapproche d un observateur immobile, la longueur d onde λ perçue par l observateur est-elle plus grande ou plus petite que λo
Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot
Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars
Logiciel de synchronisation de flotte de baladeurs MP3 / MP4 ou tablettes Androïd
easylab Le logiciel de gestio de fichiers pour baladeurs et tablettes Visualisatio simplifiée de la flotte Gestio des baladeurs par idividus / classes / groupes / activités Activatio des foctios par simple
One Office Voice Pack Vos appels fixes et mobiles en un seul pack
Uique! Exteded Fleet Appels illimités vers les uméros Mobistar et les liges fixes! Oe Office Voice Pack Vos appels fixes et mobiles e u seul pack Commuiquez et travaillez e toute liberté Mobistar offre
Exercices de révision
Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi
Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR
Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets
Le Sphinx. Enquêtes, Sondages. Analyse de données. Internet : http://www.lesphinxdeveloppement.fr/club/index.html
Equêtes, Sodages Aalyse de doées Le Sphix! Iteret : http://www.lesphixdeveloppemet.fr/club/idex.html Lagarde J. Aalyse statistique de doées, Duod. Réaliser vos equêtes Questioaire Traitemets et aalyses
Régulation analogique industrielle ESTF- G.Thermique
Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité
Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012
Mobile Busiess Commuiquez efficacemet avec vos relatios commerciales 9040412 09/2012 U choix capital pour mes affaires Pour gérer efficacemet ses affaires, il y a pas de secret : il faut savoir predre
Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?
Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres
S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui.
S-PENSION Costituez-vous u capital retraite complémetaire pour demai tout e bééficiat d avatages fiscaux dès aujourd hui. Sommaire 1. Il est temps de predre l iitiative 4 2. Profitez dès aujourd hui des
Guide des logiciels de l ordinateur HP Media Center
Guide des logiciels de l ordiateur HP Media Ceter Les garaties des produits et services HP sot exclusivemet présetées das les déclaratios expresses de garatie accompagat ces produits et services. Aucu
Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME
Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par
COMMENT ÇA MARCHE GUIDE DE L ENSEIGNANT 9 E ANNÉE
GUIDE DE L ENSEIGNANT 9 E ANNÉE TROUSSE PÉDAGOGIQUE 9 E ANNÉE Le préset Guide de l eseigat, qui accompage la trousse pédagogique COMMENT ÇA MARCHE : PRODUCTION D ÉLECTRICITÉ 9 e aée a été coçu à l itetio
PROMENADE ALÉATOIRE : Chaînes de Markov et martingales
PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées [email protected] Novembre 2013 2 Table des matières
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
A11 : La représentation chaînée (1ère partie)
A11 : L représettio chîée (1ère prtie) - Défiitio et schéms de cosulttio - Schéms de mise à jour (isertio, suppressio) - Exemples J-P. Peyri - L représettio chîée (première prtie) 0 Pricipe de l représettio
GUIDE METHODOLOGIQUE INDUSTRIES, OUVREZ VOS PORTES
GUIDE METHODOLOGIQUE INDUSTRIES, OUVREZ VOS PORTES SOMMAIRE Les visites d etreprises : pourquoi ouvrir ses portes?.... 8 1.1 Des motivatios variées pour les etreprises... 8 1.2 Les freis à l ouverture
