Extrait du programme : Chapitre X : Intervalle de fluctuation et estimation

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Extrait du programme : Chapitre X : Intervalle de fluctuation et estimation"

Transcription

1 Extrait du programme : Chapitre X : Itervalle de fluctuatio et estimatio

2 Das ce chapitre, o s itéresse à u caractère das ue populatio doée dot la proportio est otée p. Cette proportio sera das quelques cas coue (échatilloage), das certais cas supposée coue (prise de décisio) et das d autres cas icoue (estimatio). Echatilloage Ue ure cotiet u très grad ombre de boules blaches et de boules oires dot o coaît la proportio p de boules blaches. O tire avec remise boules (échatillo) et o observe la fréquece d'apparitio des boules blaches. Cette fréquece observée appartiet à u itervalle, appelé itervalle de fluctuatio de cetre p. Estimatio Ue ure cotiet u très grad ombre de boules blaches et de boules oires dot o igore la proportio p de boules blaches. O tire avec remise boules das le but d'estimer la proportio p de boules blaches. Cette estimatio s'obtiet à l'aide d'u itervalle de cofiace costruit selo u iveau de cofiace que l'o attribue à l'estimatio. Das le cas où o e coaît pas la proportio p mais o est capable de faire ue hypothèse sur sa valeur, o parle de la prise de décisio. O veut par exemple savoir si u dé est bie équilibré. O peut faire l'hypothèse que l'apparitio de chaque face est égale à 1/6 et o va tester cette hypothèse. I. Echatilloage et prise de décisio 1. Itervalle de fluctuatio asymptotique Das ce paragraphe, o suppose que la proportio p du caractère étudié est coue Exemple : O dispose d'ue ure coteat u grad ombre de boules blaches et oires. La proportio de boules blaches coteues das l'ure est p = 0,3. O tire successivemet avec remise = 50 boules. Soit X 50 la variable aléatoire déombrat le ombre de boules blaches tirées. X 50 suit la loi biomiale b(50 ;0,3). E effectuat 50 tirages das cette ure, o va trouver das ce chapitre u itervalle auquel appartiet la fréquece d'apparitio d'ue boule blache avec ue probabilité de 0,95. Cet itervalle s'appelle l'itervalle de fluctuatio asymptotique au seuil 0,95 (ou 95%). a. Méthodes de secode et de première Défiitio de secode: Pour 0,2 p 0,8 et 25, l itervalle de fluctuatio au seuil de 95% de f est l itervalle [ ]. Exemple : Les coditios de l itervalle de secode sot vérifiées et o trouve : I=, ;, = [0,16 ; 0,44]

3 Défiitio de première: O cosidère ue populatio dot ue proportio p des idividus possède u caractère doé. O prélève das cette populatio u échatillo de taille. Soit X la variable aléatoire associée au ombre d'idividus possédat ce caractère. O a alors : X~b( ;p) L'itervalle de fluctuatio au seuil de 95 % associée à la variable aléatoire X est : a ; b Où - a est le plus petit etier tel que : P(X a) > 2,5% - b est le plus petit etier tel que : P(X b) 97,5% Exemple : Aucue coditio est à vérifier et o trouve : I = ; = [0,16 ;0,42] Remarque : O ote parfois X la variable aléatoire plutôt que X afi de spécifier alors la taille de l échatillo. Das otre exemple, o pourrait la oter X 50. b. Itervalle de fluctuatio asymptotique de Termiale Das ce paragraphe, o suppose toujours que la proportio p du caractère étudié est coue. Coditios requises des paramètres : Das toute la suite du cours, sauf metio cotraire, les paramètres et p vérifiet : ; p et p Défiitio : Soit X ue variable aléatoire suivat la loi biomiale b( ;p). La variable aléatoire F défiie par : F = X représeta alors la fréquece de succès pour u schéma de Berouilli paramètres et p. Propriété- défiitio : L itervalle de fluctuatio asymptotique au seuil de 95% de la variable aléatoire F est défii par : I = p, p p ; p, p p Cela veut dire que la probabilité que la fréquece F pree ses valeurs das I se rapproche de 0,95 lorsque la taille de l échatillo deviet grade. Remarque : La probabilité défiie das la propriété se rapproche de 0,95 sas être écessairemet égale d'où l'emploi du terme "asymptotique". Exemple : Toujours sur l exemple précédet, o trouve : I 50 0,31,96 0,3 0,7 ; 0,31, ,3 0,7 = [0,172 ; 0,427] 50

4 Poit méthode : Détermier u itervalle de fluctuatio asymptotique au seuil de 95% O coait p la proportio du caractère étudié das la populatio O coait la taille de l échatillo La proportio de chômeurs das la populatio active est de 10%. Détermier u itervalle de fluctuatio asymptotique au seuil de 95% de la fréquece des chômeurs das les échatillos de taille O vérifie les coditios d applicatios : ; p ; p 2. O calcule les bores de l itervalle : p, p p e arrodissat par défaut la bore iférieure p p p, e arrodissat par excès la bore supérieure O e déduit que l itervalle de fluctuatio cherché est : [0,070 ;0,130] 2. Prise de décisio La détermiatio d u itervalle de fluctuatio permet de predre ue décisio lorsqu o fait ue hypothèse sur ue proportio p das ue populatio. Propriété (règle de décisio) : Soit f la fréquece du caractère étudié d u échatillo de taille. Soit l hypothèse : «la proportio de ce caractère das la populatio est p». Soit I l itervalle de fluctuatio asymptotique au seuil 0,95. - Si fi alors o e remet pas e questio l hypothèse faite sur p. - Si fi alors o rejette l hypothèse faite sur p avec u risque d erreur de 5%. Poit-méthode : Predre ue décisio - O fait ue hypothèse sur p la proportio du caractère das la populatio - O coait la taille de l échatillo - O coait f la fréquece du caractère das l échatillo - O vérifie que fi (I calculé grâce à p et ) Ue marque de bobos chocolatés ved des paquets costitués de bobos de 5 couleurs différetes, das des proportios affichées sur le site iteret de la marque. Aisi, les bobos de couleur marro sot aocés comme représetat 20% de l esemble des bobos. Les élèves d ue classe de Termiale ot voulu vérifier cette iformatio. Pour cela, ils ot costitués u échatillo de 690 bobos et ot déombré 152 bobos marros. Que peut-o coclure? Das u même échatillo, il y avait 125 bobos rouges pour ue proportio aocée de 10%. Que peut-o coclure?

5 1. O idetifie les 3 valeurs écessaires : =690 p=0,2 f = 0,22 2. O vérifie que les coditios de détermiatio de l itervalle de fluctuatio asymptotique sot réuies : 30 p 5 p 5 3. O calcule l itervalle de fluctuatio asymptotique e état vigilat sur les valeurs approchées des bores :,,,,,,,, Doc I=[0,17 ;0,23] 4. O vérifie si f appartiet ou o à l itervalle J calculé, et o pred la décisio qui coviet. f 0,22 I doc o e peut pas rejeter l hypothèse selo laquelle les bobos marros représetet 20% des bobos. 5. O réitère le processus pour : =690 p=0,10 f = 0,18 30 p 5 p 5,,,,,,,, Doc J = [0,07 ;0,13] Or f0,18 J doc o rejette l hypothèse selo laquelle les bobos rouges représetet 10% des bobos avec u risque d erreur de 5 %. II. Estimatio Das ce paragraphe, o suppose que la proportio p du caractère étudié das la populatio est icoue. Il s agit du problème iverse de l échatilloage. L estimatio cosiste à détermier le mieux possible la proportio p d u caractère das la populatio toute etière, coaissat la fréquece f observée de ce caractère das u échatillo extrait de cette populatio. Ce problème de l estimatio se pose e particulier das les sodages. Propriété : Soit F la variable aléatoire fréquece qui, à tout échatillo de taille extrait d ue populatio das laquelle la proportio est p associe la fréquece obteue. Alors l itervalle F ; F cotiet, pour assez grad, la proportio p avec ue probabilité au mois égale à 0,95. Défiitio : Soit f la fréquece observée d u caractère das u échatillo de taille extrait d ue populatio das laquelle la proportio de ce caractère est p. Alors l itervalle f ; f est appelé itervalle de cofiace de la proportio p au iveau de cofiace 95%

6 Remarques : - O utilise cet itervalle dès que ; f et f - Il 'est pas vrai d'affirmer que p est égal au cetre de l'itervalle de cofiace. Il 'est pas possible d'évaluer la positio de p das l'itervalle de cofiace. - U autre itervalle de cofiace au seuil de 95%, plus précis existe. Il est égal à f f f f f, ; f,. Cet itervalle e sera pas utilisé das les exercices e mathématiques, mais il pourra être utilisé das d autres matières Poit-méthode : Estimer par itervalle ue proportio icoue Das ue populatio doée, o s itéresse à la proportio de myopes. Das u échatillo de taille 100 extrait de cette populatio, o a trouvé 22 myopes. Détermier u itervalle de cofiace de la proportio de myopes das la populatio au iveau de cofiace 95% 1. O vérifie que les coditios de validités sot vérifiées : ici = 100 et f = = 0,22 = f = 22 5 f = O calcule l itervalle de cofiace : Aisi, au seuil de 95% de cofiace : p, ;, doc p[0,12 ;0,32] Poit-méthode : Détermier ue taille d échatillo O réalise u sodage sur u échatillo de persoes afi de coaître le pourcetage de persoes qui vot partir e vacaces l été suivat. Quelle doit être la taille miimale de l échatillo afi que l itervalle de cofiace 0,95 de cette proportio ous doe celle-ci avec ue amplitude d au plus 0,04? Soit f la fréquece observée das l échatillo. U itervalle de cofiace de la proportio p das la populatio est f ; f au iveau de cofiace 95%. Cet itervalle a pour logueur, o doit doc avoir : 0,04 doc 2 0,04 soit doc 50, et aisi 2500 O doit doc iterroger au mois 2500 persoes.

II - Estimation d'un paramètre par intervalle de confiance

II - Estimation d'un paramètre par intervalle de confiance II - Estimatio d'u paramètre par itervalle de cofiace 1 ) - Gééralités sur la costructio O veut estimer u paramètre (moyee, proportio ) d'u caractère das ue populatio P. Ue estimatio poctuelle à partir

Plus en détail

Tous les quatre pensent ensuite utiliser la formule bien connue : f

Tous les quatre pensent ensuite utiliser la formule bien connue : f Exercices sur les Itervalles de cofiace Exercice Le parti d u cadidat commade u sodage réalisé à partir de 600 persoes à l issue duquel il est doé gagat avec 52% des voix. A-t-il des raisos d être cofiat?

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

Techniques d enquête

Techniques d enquête Sodage aléatoire simple Techiques d equête Exercice 1 Sur les 500 élèves de M1 de l Uiversité d Auverge, o veut coaître la proportio P qui souhaitet faire u Master à Clermot-Ferrad. Parmi les 150 élèves

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Estimation par intervalle de confiance

Estimation par intervalle de confiance 62 CHAPITRE 12 Estimatio par itervalle de cofiace 1. Estimatio de la moyee par itervalle de cofiace 1.1. Calcul de la marge d erreur. O veut maiteat faire ue estimatio par itervalle de cofiace de la moyee

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3 Tests Chapitre Table des matières 1 Pricipe d u test 1 11 Défiitios 1 Méthode géérale 3 Test de coformité à u paramètre 3 1 Test de coformité à ue moyee 3 Test de coformité à ue proportio 4 3 Test d homogééité

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

Terminale S Chapitre 10 «Loi Normale» 21/03/2013

Terminale S Chapitre 10 «Loi Normale» 21/03/2013 Termiale S Chapitre «Loi Normale» /3/3 I) Itroductio O fait ue étude statistique de la taille des idividus d'ue populatio. Das chaque cas, la taille moyee est de 7 cm, avec u écart type de cm. O trace

Plus en détail

i la moyenne empirique de X n n v =

i la moyenne empirique de X n n v = Corrigé Statistiques iféretielle par par Pierre Veuillez Itervalle de cofiace. Exercice Détermier ue valeur approchée de la loi de la moyee empirique : E X E X, V X V X doc X N E X, V X Exercices. Variace

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Résumé de statistique inductive

Résumé de statistique inductive Uiversité de Bourgoge Faculté de Médecie et de Pharmacie Résumé de statistique iductive NB : les iformatios coteues das ce polycopié e fot e aucu cas office de référece pour le cocours, il s agit uiquemet

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Intervalles de confiance

Intervalles de confiance Itervalles de cofiace H4 H4 Itervalles de cofiace Vocabulaire : u correspod à ue fiabilité (ou cofiace) de 95 %, u correspod à ue fiabilité (ou cofiace) de 99 % 0 ) Echatillo o exhaustif La théorie des

Plus en détail

Solutions de Laurent Chéno (Lycée Dorian, Paris 11 e ), Michel Lafond (Dijon), Jean Lefort (Wintzenheim), Joël Payen (Gagny), Sophie Toursel (Lycée

Solutions de Laurent Chéno (Lycée Dorian, Paris 11 e ), Michel Lafond (Dijon), Jean Lefort (Wintzenheim), Joël Payen (Gagny), Sophie Toursel (Lycée Solutios de Lauret Chéo (Lycée Doria, Paris 11 e ), Michel Lafod (Dijo), Jea Lefort (Witzeheim), Joël Paye (Gagy), Sophie Toursel (Lycée Fourcade, Gardae) Plusieurs lecteurs otet l ambiguïté de la uestio

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P.

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. 351-355) Page 1 1. Notio de «série statistique» Il s agit d ue série de doées recueillies auprès des différetes uités statistiques d u

Plus en détail

Master Eseec Statistique pour l expertise - partie2

Master Eseec Statistique pour l expertise - partie2 Master Eseec Statistique pour l expertise - partie2 Christia Laverge Uiversité Paul Valéry - Motpellier 3 http://moodle-miap.uiv-motp3.fr http://www.uiv-motp3.fr/miap/es (UPV) Eseec 1 / 57 Lois limites

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

Activités. 3. a. X n prend des valeurs entières. L entier i tel que P X. PX i est le plus grand entier strictement inférieur à 0, 5n-

Activités. 3. a. X n prend des valeurs entières. L entier i tel que P X. PX i est le plus grand entier strictement inférieur à 0, 5n- Échatilloage 4 et estimatio Pour repredre cotact Avec l échatilloage et le loi biomiale. O répète 00 fois le tirage d ue boule, avec remise, où le succès : «La boule est rouge» a pour probabilité p 06,.

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

Ch.9 Fluctuation, estimation

Ch.9 Fluctuation, estimation T le ES - programme 2012 mathématiques ch.9 cahier élève Page 1 sur 10 Ch.9 Fluctuatio, estimatio Ue ure cotiet 50 % de boules blaches. O effectue, par simulatio, 20 séries de 100 tirages avec remise,

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE MATTHIEU KOWALSKI 1. INTRODUCTION La démarche statistique cosiste à observer ue expériece aléatoire das le but de mieux coaître ses caractéristiques.

Plus en détail

T. D. n o 2 Intervalles de confiance-correction

T. D. n o 2 Intervalles de confiance-correction T. D. o 2 Itervalles de cofiace-correctio Exercice 1. Les billes métalliques 1. Nous calculos la moyee µ 10 de l échatillo : µ 10 = 20. Calculos la variace corrigée puis l écart-type corrigé de l échatillo

Plus en détail

Intervalles de fluctuations et intervalles de confiance

Intervalles de fluctuations et intervalles de confiance Complémets e statistique. Préparatio au Capes. Uiversité de Rees 1. 2015. Complémets e Statistique Préparatio au Capes Uiversité de Rees 1 Itervalles de fluctuatios et itervalles de cofiace Table des matières

Plus en détail

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation U.F.R. S.P.S.E. Licece de psychologie L3 PLPSTA0 Bases de la statistique iféretielle UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Distributios d'échatilloage - Itervalles de variatio Exercice 1

Plus en détail

Distributions d échantillonage

Distributions d échantillonage Chapitre 3 Distributios d échatilloage 3.1 Gééralités sur la otio d échatilloage 3.1.1 Populatio et échatillo O appelle populatio la totalité des uités de importe quel gere prises e cosidératio par le

Plus en détail

TUTORAT UE Biostatistiques Correction du concours blanc 03/11/2011

TUTORAT UE Biostatistiques Correction du concours blanc 03/11/2011 FACULTE De PHARMACIE TUTORAT UE4 2011-2012 Biostatistiques Correctio du cocours blac 03/11/2011 QCM 1 : b, c, d a Faux : P(AUB=P(A+P(B=0,55 et P(A B=Ø. b Vrai c Vrai d Vrai : C 5 - C 5 32 28 (ombre de

Plus en détail

CHAPITRE 4 Paramètres d'une série statistique

CHAPITRE 4 Paramètres d'une série statistique Cours de Mathématiques Classe de secode Statistiques CHAPITRE 4 Paramètres d'ue série statistique A) Diverses sortes de séries statistiques 1) Défiitio Ue série statistiques est u esemble de ombres, représetat

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Calcul des probabilités 2 (M-2.1)

Calcul des probabilités 2 (M-2.1) Calcul des probabilités (M-.) I. Probabilités sur u esemble fii. Défiitios Défiitio Ue expériece aléatoire est ue expériece dot il est impossible de prévoir l issue (mais o coaît toutes les issues possibles)

Plus en détail

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1.

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1. Cours 5 Idépedace 1 Das le cours précédet, ous avos vu que la variable Y était idépedate de la variable X si ses distributios coditioelles e fréquece sot égales ; das ce cas e effet, la mesure de X sur

Plus en détail

Echantillonnage. 1. Intervalle de fluctuation au seuil de 95% obtenu avec la loi binomiale.

Echantillonnage. 1. Intervalle de fluctuation au seuil de 95% obtenu avec la loi binomiale. Echatilloage A) Fluctuatio d échatilloage et prise de décisio 1 Itervalle de fluctuatio au seuil de 95% obteu avec la loi biomiale O s'itéresse à u caractère de proportio p das ue populatio doée O cosidère

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

ANOVA avec un facteur aléatoire

ANOVA avec un facteur aléatoire Chapitre 7 ANOVA avec u facteur aléatoire Jusqu à maiteat, o a supposé que les modalités du facteur étudié ot été choisies parce qu elles étaiet itrisèquemet itéressates. Le modèle à effets fixes porte

Plus en détail

EXERCICES SIMULATION LOIS DISCRETES

EXERCICES SIMULATION LOIS DISCRETES EXERCICES SIMULATION LOIS DISCRETES EXERCICE 1 : 1) Ecrire u programme qui revoie le lacer d u lacer de dé équilibré 2) Trasformer le programme précédet pour qu il simule ue série de 100 lacers d u dé

Plus en détail

Chapitre 7. Tests d hypothèse. Sommaire. 1. Introduction Principe des tests...3

Chapitre 7. Tests d hypothèse. Sommaire. 1. Introduction Principe des tests...3 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (8/0/003) Chapitre 7 Tests d hypothèse Sommaire. Itroductio.. 3. Pricipe des tests......3.. Choix de l hypothèse à tester.4... Hypothèse

Plus en détail

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite.

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite. ECG JP A 00-00 F. FRANZOSI & A. WENGER http://math.aki.ch 5. Défiitio et gééralités Défiitio : Ue suite réelle est ue applicatio de * N das R, doc si U est ue telle suite, o aura : U : N * R U ( ) U U

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00 MAT 2080 MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimache 15 mars 2009 de 14h00 à 17h00 INSTRUCTIONS 1. Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om,

Plus en détail

12 Intervalles de fluctuation

12 Intervalles de fluctuation Leço o 12 Itervalles de fluctuatio 9 Niveau Lycée Prérequis Variable aléatoire, espérace, variace, théorème limite cetral, loi biomiale, loi ormale, foctios Référeces [34], [35], [36], [37], [38] 12.1

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Sessio 2016 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficiet : 4 Calculatrice autorisée coformémet

Plus en détail

Les mesures de tendance centrale

Les mesures de tendance centrale 6 CHAPITRE 7 Les mesures de tedace cetrale Les mesures de tedace cetrale servet à caractériser ue série statistique à l aide d ue valeur ou d ue modalité typique. Il existe trois mesures possibles : le

Plus en détail

CONVERGENCE ET APPROXIMATION

CONVERGENCE ET APPROXIMATION 11-2- 2010 J.F.C. Cov. p. 1 CONVERGENCE ET APPROXIMATION I CONVERGENCE EN PROBABILITÉ 1. Défiitio 2. Ue coditio suffisate de covergece e probabilité 3. La loi faible des grads ombres 4. Ue coséquece de

Plus en détail

Variables aléatoires finies Présentation

Variables aléatoires finies Présentation Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola... 3 3. Espérace mathématique d ue variable aléatoire fiie... 4 4. Variace et écart type

Plus en détail

CH V : Variables aléatoires - généralités

CH V : Variables aléatoires - généralités CH V : Variables aléatoires - gééralités I. Notio de variable aléatoire réelle Soit (Ω, A ) u espace probabilisable. O dit que X est ue variable aléatoire réelle défiie sur (Ω, A ) si : (i) X est ue applicatio

Plus en détail

On choisit de fixer le seuil de décision de telle sorte que la probabilité de rejeter l hypothèse, alors qu elle est vraie, soit inférieure à 5 %.

On choisit de fixer le seuil de décision de telle sorte que la probabilité de rejeter l hypothèse, alors qu elle est vraie, soit inférieure à 5 %. Vdouie Termiale S Activités Chapitre 9 Fluctuatio et estimatio Prise de décisio (avec la loi biomiale) O cosidère ue populatio das laquelle o suppose que la proportio d u certai caractère est p 0. Pour

Plus en détail

D.S. nº9 : Produit scalaire, Primitives, Échantillonnage. Jeudi 23 mai 2013, 2h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº9 : Produit scalaire, Primitives, Échantillonnage. Jeudi 23 mai 2013, 2h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º9 : Produit scalaire, Primitives, Échatilloage TS Jeudi 2 mai 20, 2h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio:

Plus en détail

Echantillonnage, estimation, intervalle de confiance, test statistique Cas d une ou de deux proportions

Echantillonnage, estimation, intervalle de confiance, test statistique Cas d une ou de deux proportions S3 Maths et Ifo-MIAGE 2011-2012 Statistique et Probabilités Estimatio, itervalle de cofiace, tests - Proportio Uiversité de Picardie Jules Vere 2011-2012 UFR des Scieces Licece metio Mathématiques et metio

Plus en détail

Correction du devoir Surveillé 6 : Probabilités

Correction du devoir Surveillé 6 : Probabilités S www.wicky-math.fr.f DS - Probabilités Correctio du devoir Surveillé : Probabilités Exercice. ROC Démotrer le théorème suivat : ( poits) Théorème : La probabilité de la réuio de deux évéemetsaetb est

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

MÉTHODES STATISTIQUES EXAMEN FINAL HIVER 2007 Date : Dimanche 29 avril de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN FINAL HIVER 2007 Date : Dimanche 29 avril de 14h00 à 17h00 MAT 080 MÉTHODES STATISTIQUES EXAME IAL HIVER 007 Date : Dimache 9 avril de 14h00 à 17h00 ISTRUCTIOS Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om, votre code permaet

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Comportement asymptotique

Comportement asymptotique Comportemet asymptotique NB: Les phrases écrites etre guillemets e italique sot écessaires à la compréhesio de la otio de ite, mais sot peu utilisées das la pratique où l o fait plutôt appel au propriétés

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

10ème cours Une variable numérique : indices de localisation

10ème cours Une variable numérique : indices de localisation 10ème cours Ue variable umérique : idices de localisatio Das ce cours, o fait u rappel sur les idices de localisatio, médiae, quatiles et moyee, et o étudie la faço de les utiliser pour comparer les distributios

Plus en détail

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9 BACCALAUREAT BLANC 2014 LYCEE DES ILES SOUS LE VENT SERIE S EPREUVE DE MATHEMATIQUES Durée : 4h Coefficiet : 7 ou 9 La calculatrice est autorisée, mais est pas échageable de cadidat e cadidat. La qualité

Plus en détail

A RETENIR TERMINALE ES

A RETENIR TERMINALE ES A RETENIR TERMINALE ES Ce documet est destié à "résumer" le cours de termiale. Il e préted pas coteir tout ce que vous devez savoir pour réussir l épreuve. Il est coçu pour que vous puissiez l utiliser

Plus en détail

Corrigé Fiche 6 Septembre 2016

Corrigé Fiche 6 Septembre 2016 Corrigé Fiche 6 Septembre 2016 1. Estimatio de la moyee, variace coue, cas gaussie O dispose d u -échatillo X 1,..., X i.i.d. tel que X i suit ue loi ormale N µ, σ 2 ). L objectif est d estimer µ. Supposos

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

PROBABILITÉS. Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans!.

PROBABILITÉS. Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans!. PROBABILITÉS E 654, Blaise Pascal (63 ; 66) etretiet avec Pierre de Fermat (60 ; 665) des correspodaces sur le thème des jeux de hasard et d'espérace de gai qui les mèet à exposer ue théorie ouvelle :

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

Chapitre 11 Loi binomiale. Table des matières. Chapitre 11 Loi binomiale TABLE DES MATIÈRES page -1

Chapitre 11 Loi binomiale. Table des matières. Chapitre 11 Loi binomiale TABLE DES MATIÈRES page -1 Chapitre Loi biomiale TABLE DES MATIÈRES page - Chapitre Loi biomiale Table des matières I Exercices I-................................................ I-................................................

Plus en détail

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016 Correctio Baccalauréat STL biotechologies Polyésie 13 jui 2016 EXERCICE 1 4 poits Das cet exercice, o s itéresse au taux de cholestérol LDL de la populatio d adultes d u pays. O ote X la variable aléatoire

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

ANOVA Analyse de la Variance

ANOVA Analyse de la Variance Chapitre 8 ANOVA Aalyse de la Variace. Obectif de la méthode Chap 8.. Obectif de la méthode. Approche ituitive 3. Décompositio de la variace 4. ANOVA: le test et le modèle statistique sous-acet O s itéresse

Plus en détail

Corrigé. Exercice 1 : (5 points)

Corrigé. Exercice 1 : (5 points) Corrigé Exercice : (5 poits) Pour les questios. et. o doera les résultats sous forme de fractios et sous forme décimale par défaut à 0 3 près. U efat joue avec 0 billes, 3 rouges et 7 vertes. Il met 0

Plus en détail

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3 3- Lois de distributio discrètes -1 Chapitre 3 : Lois de distributio discrètes 3.1 Loi de Berouilli...1 3. Loi Biomiale...1 3.3 Loi géométrique... 3.4 Loi de Pascal (loi égative biomiale)...3 3.5 Loi hypergéométrique...4

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

Mathématiques Colle n o 22 Combinatoire. Probabilités. Lycée Charlemagne PCSI. Exercice 10. Exercice 7.

Mathématiques Colle n o 22 Combinatoire. Probabilités. Lycée Charlemagne PCSI. Exercice 10. Exercice 7. Mathématiques 205-206 Colle o 22 Combiatoire. Probabilités Lycée Charlemage PCSI Exercice. Exercice 5. O dispose de différets vêtemets : quatre slips, trois patalos, deux tee-shirts et ciq paires de chaussures.

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Statistique inférentielle I - Estimation

Statistique inférentielle I - Estimation Statistique iféretielle I - Estimatio Nathalie Cheze July 9, 2007 Itroductio. Notio d échatillo Soit u esemble de taille N, appelé populatio. O veut étudier la populatio relativemet à u caractère statistique

Plus en détail

Variables aléatoires. Exercices

Variables aléatoires. Exercices Variables aléatoires Exercices 04-05 Les idispesables Loi d ue variable aléatoire, espérace et variace O répète idéfiimet le lacer d u dé équilibré à 6 faces Soit la variable aléatoire doat la valeur du

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Reformulation du problème par la classe

Reformulation du problème par la classe La partie du programme traitée, les coaissaces et les capacités visées : O repred ue partie du programme : 1.1 Statistique à ue variable partie 1 Capacités Expérimeter, à l aide d ue simulatio iformatique,

Plus en détail

STATISTIQUES. En première les statistiques étudiées étaient à une seule variable ; en terminale l étude porte sur deux variables statistiques

STATISTIQUES. En première les statistiques étudiées étaient à une seule variable ; en terminale l étude porte sur deux variables statistiques Tle ES Statistiques H. Kereïs STATISTIQUES E première les statistiques étudiées étaiet à ue seule variable ; e termiale l étude porte sur deu variables statistiques 1. Nuage de poits, poit moe et covariace

Plus en détail