BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001
|
|
- Beatrice Lamarche
- il y a 2 ans
- Total affichages :
Transcription
1 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai. Ces températures ( à l istat t ) sot respectivemet otées α(t) et β(t). Le temps t est exprimé e secodes et le températures e C. Partie A : 5,5 pt Les températures α(t) et β(t) vérifiet les coditios suivates : (1) : α (t) = -0,011 ( α(t) - β(t) ) (2) : β (t) = 0,021 ( α(t) - β(t) ) avec α(0) = 40 β(0) = 10 ❶ O pose f(t) = α(t) - β(t) ; 1 pt ❶ a ) Vérifier que f est ue solutio de l équatio différetielle : y + 0,032 y = 0 ; 1 pt ❶ b ) Résoudre l équatio précédete ; 1 pt ❶ c ) Calculer f(0) et motrer que f(t) = 30 e -0,032t ; ; ❷ Soit F la primitive de f qui vérifie F(0) = 0 ;. 1 pt ❷ a ) Exprimer F(t) e foctio de t ; 0,5 pt ❷ b ) A l aide de la coditio (2), justifier que β(t) = K + 0,021F(t) où K est ue costate 1 pt ❷ c ) Détermier K et doer ue expressio de β(t) e foctio de t ; Partie B : 6,5 pt Pour tout t das [ 0 ; + [ o pose : α(t) = e -4t 125 β(t) = e -4t 125 1,5 pt ❶ Détermier la limite de α aisi que celle de β e + ; que peut-o e déduire pour les courbes représetatives de ces foctios ; 2 pts ❷ Calculer la dérivée et doer les variatios de chacue des foctios α et β ; 1,5 pt ❸ Costruire les courbes représetatives des foctios α et β das u repère orthogoal ( sur papier millimétré ; uités graphiques : 1 cm pour 5 secodes e abscisse et 2 cm pour 5 C e ordoée ; o fera varier t etre 0 et 120 secodes ) ; 1,5 pt ❹ A partir de quel istat la différece de température etre le solide et le bai estelle iférieure à 1 C? ELSA Productios NANTES Septembre 2002 Page 1 ;
2 EXERCICE II : (8 POINTS) U médium préted qu il peut souvet devier à distace la couleur d ue carte tirée au hasard d u jeu de cartes bie battu et comportat des cartes de deux couleurs différetes e ombre égal. O appelle p la probabilité que le médium doe ue répose juste ( succès ) lors d u tirage. Si le médium est u imposteur o a p = 1 / 2 ; sio p > 1 / 2. O appellera échatillo de taille toute réalisatio de tirages successifs d ue carte das le jeu, avec remise. Partie A : 5 pt O suppose p = 1 / 2 et o ote Y la variable aléatoire qui, à tout échatillo de taille, associe le ombre de succès du médium. ( o arrodira les probabilités au dix millième le plus proche ). ❶ Das cette questio o pred = 20 ; 1 pt ❶ a ) Quelle est la loi suivie par Y? Doer ses paramètres ; 1,5 pt ❶ b ) Calculer la probabilité P( Y = 15 ) ; ❷ Das cette questio o pred = 100. O admet que la variable Y peut-être approchée par ue variable aléatoire Z suivat ue loi ormale ; 1,25 pt ❷ a ) Préciser les paramètres de cette loi ormale ; 1,25 pt ❷ b ) Utiliser cette approximatio pour calculer P( Y > 60 ) ; Partie B : 3 pt O appelle F la variable aléatoire qui, à tout échatillo de taille, associe la fréquece des succès obteus par le médium au cours des tirages d ue carte. p( 1-p) O admet que F suit la loi ormale de moyee icoue p et d'écart-type O costruit u test uilatéral permettat de détecter pour u échatillo de taille = 100, au risque 5%, si le médium est u imposteur. O choisit comme hypothèse ulle H 0 : p = 1/2 ; et comme hypothèse alterative H 1 : p > 1/2 1,5 pt ❶ Calculer, sous l hypothèse H 0, le réel positif h tel que P( F 1/2 + h ) = 0,95 ; 1 pt ❷ Eocer la règle de décisio du test ; 0,5 pt ❸ Sur u échatillo de taille = 100, le médium a obteu 64 succès. Peut-o cosidérer, au risque 5%, que le médium est u imposteur? ELSA Productios NANTES Septembre 2002 Page 2 ;
3 EXERCICE II : (8 POINTS) U médium préted qu il peut souvet devier à distace la couleur d ue carte tirée au hasard d u jeu de cartes bie battu et comportat des cartes de deux couleurs différetes e ombre égal.o appelle p la probabilité que le médium doe ue répose juste ( succès ) lors d u tirage. Si le médium est u imposteur o a p = 1 / 2 ; sio p > 1 / 2. O appellera échatillo de taille toute réalisatio de tirages successifs d ue carte das le jeu, avec remise. Partie A : O suppose p = 1 / 2 et o ote Y la variable aléatoire qui, à tout échatillo de taille, associe le ombre de succès du médium. ( o arrodira les probabilités au dix millième le plus proche ). O appellera échatillo de taille toute réalisatio de tirages successifs d ue carte das le jeu, avec remise. ❶ Das cette questio o pred = 20 ; ❶ a ) Quelle est la loi suivie par Y? Doer ses paramètres ;. 1 pt L expériece aléatoire qui cosiste, après chaque tirage, à cosidérer la répose du médiu, coduit à deux issues cotradictoires: S : répose juste ou succès avec la probabilité p = 0,5 ; S(barre) : répose fausse avec la probabilité q = 1 - p = 0,5 ; O peut cosidérer que les réposes doées par le médium sot idépedates les ues des autres sachat que la compositio des cartes est pas modifiée d u tirage sur l autre puisque les tirages ayat lieu avec remise e perturbe pas le rapport iitial de cartes rouges et oires. Aisi Y la variable aléatoire qui, aux 20 tirages de cartes, associe le ombre de réposes positives ( succès ) suit la loi biomiale B (, p ) c est à dire B ( 20, 0,5 ) De plus E(Y) = p = 20.0,5 = 10 et V(X) = p(1-p) = 20 0,5.0,5 = 5. ❶ b ) Calculer la probabilité P( Y = 15 ) ; 1,5 pt ( 0,5 ; 0,5 ; - 0,25 ) P(Y=15)= 20C15. 0, ,5 15 = 20C15. 0,5 20. = 0, , ❷ Das cette questio o pred = 100. O admet que la variable Y peut-être approchée par ue variable aléatoire Z suivat ue loi ormale ; ❷ a ) Préciser les paramètres de cette loi ormale ; 1,25 pt Aisi Y la variable aléatoire qui, aux 100 tirages de cartes, associe le ombre de réposes positives ( succès ) suit la loi biomiale B (, p ) c est à dire B ( 100, 0,5 ). De plus E(Y) = p = 100.0,5 = 50 et V(X) = p(1-p) = 100 0,5.0,5 = 25. Coditios d approximatio d ue loi biomiale par ue loi ormale : >30 et pq 10 Puisque = 100 et V(X) = pq = 25 doc les coditios d approximatio de Y par ue loi ormale Z défiie par N ( 50 ; 5 ), avec E(Y) = E(Z) = 50 et σ(y) = σ(z) = 5. ❷ b ) Utiliser cette approximatio pour calculer P( Y > 60 ) ; 1,25 pt Soit T la variable aléatoire défiie par T = Z Z suit la loi ormale N 50, 5 équivalet à T suit la loi ormale N 0,1 Calcul de p( Y > 60 ) : Z > 60 équivalet à Z - 50 > Z 60 équivalet à Z - 50 > 2 équivalet à T > 2 5 Aisi : p( Y > 60 ) = p( T > 2 ) = 1 - p( T 2 ) = 1 - (2) 1-0,977 2 = 0,222 8 Partie B : O appelle F la variable aléatoire qui, à tout échatillo de taille, associe la fréquece des succès obteus par le médium au cours des tirages d ue carte. O costruit u test uilatéral permettat de détecter pour u échatillo de de taille = 100, au risque 5%, si le médium est u imposteur. O choisit comme hypothèse ulle H 0 : p = 1/2 ; et comme hypothèse alterative H 1 : p > 1/2 Cosidéros la populatio P costituée par les tirages d ue carte das u jeu coteat autat de cartes rouges que de cartes oires. K la variable aléatoire qui à u tirage de carte associe la répose du médium ; la probabilité de répodre avec succès est otée p 0 covetioellemet. O estime que si p 0 > 0,5 le médium est pas u imposteur. ❶ Calculer, sous l hypothèse H 0, le réel positif h tel que P( F 1/2 + h ) = 0,95 ; CONSTRUCTION DU TEST UNILATÉRAL: ➀ LOI D ÉCHANTILLONNAGE : La variable aléatoire F qui, à tout échatillo de taille = 100, associe la fréquece des succès obteus par le medium au cours des = 100 tirages d ue carte, suit la loi ormale N p ; p( 1 - p) où p admet pour estimateur p ELSA Productios NANTES Septembre 2002 Page 3 ;
4 2 HYPOTHESE À TESTER : ( hypothèse ulle ) la valeur stadard p 0 = 0,5 (H 0 ) hypothèse ulle : «p = p 0»et évetuellemet «p < p 0» ; de part les hypothèses du problème «le médium est u imposteur» 3 HYPOTHESE ALTERNATIVE - NATURE DU TEST : (H 1 ) : «p > p 0» c est à dire «le médium est pas u imposteur» et le test est uilatéral. 4 CONDITIONS DE REJET (H 0 ) AU RISQUE 5% : Remarque : il s agit de vérifier que la probabilité p de succès à savoir ici 64% appartiet ou o à u itervalle d acceptatio du type ] - 0,5 + h [, dot l amplitude déped du seuil de cofiace. Pour réaliser ce calcul ous disposos d u outil : c est la loi ormale qui, e foctio de ses caractéristiques p et σ(f) permettra de calculer cette amplitude. Sous l hypothèse (H 0) : p =p 0 doc F suit la loi ormale N ( 0,02, σ(f) ) ; σ(f) = 0,05 ; ❷ Eocer la règle de décisio du test ; Remarque : à partir de là deux méthodes sot précoisées : Première méthode : la coditio de rejet sera formulée sur la foctio F,sur u itervalle de valeurs prises par F ;. Secode méthode : la coditio de rejet sera formulée e utilisat la variable T = Y / σ(y) T variable suivat la loi ormale cetrée réduite. Première méthode 1,5 pt O recherche u itervalle du type ] - ; 0,5 + h [ tel que l o ait 95% de chaces d avoir p apparteat à cet itervalle, c est à dire p(f < 0,5 + h ) = 0,95 ; 1 pt E coclusio : Si p appartiet ] - ; 0,59 [: o accepte (H 0 ) au risque 5 % ; Si p appartiet pas à ] - ; 0,59 [ : o refuse (H 0 ) au risque 5 % ; Secode méthode : 1,5 pt p F suit la loi ormale N p 0, 0 ( 1 - p 0 ) équivalet à T= F - p 0 suit la loi ormale N 0,1 σ(y) Aisi : p( F 0,5 + h ) = 0,95 équivalet à p( T tα) = 0,95 ( tα) = 0,95 Par lecture das la table t α = 1,645 1 pt E coclusio : Si T 1,645 : o accepte (H 0 ) au risque 5 % ; Si T 1,645 : o refuse (H 0 ) au risque 5 % ; ❸ Sur u échatillo de taille = 100, le médium a obteu 64 succès. Peut-o cosidérer, au risque 5%, que le médium est u imposteur? ; 1 pt 5 MISE EN OEUVRE DU TEST : Première méthode : Calcul de ] - ; 0,5 + 1,645 0,05 [ = ] - ; 0,59 [ e hypothèse p= 0,64 puisque p > 0,59 ; o refuse (H 0 ) au risque 5 % Secode méthode : σ(f) = p 0 ( 1 - p 0 ) = 0,5 ( 1-0,5 ) 100 p F suit la loi ormale N p 0, 0 ( 1 - p 0 ) équivalet à T= F - p 0 suit la loi ormale N 0,1 σ(y) Aisi : p( F 0,5 + h ) = 0,95 équivalet à p( T tα) = 0,95 ( tα) = 0,95 Par lecture das la table t α = 1,645 Aisi : T 1,645 équivalet à F - 0,5 1,645 équivalet à : F - 0,5 1,645. 0,05 0,05 ou ecore : F 0,5 + 1,645. 0,05 ; F 0,5 + 0,083 Aisi l'itervalle d'acceptatio de l'hypothèse (H0) est : ] - ; 0,5 + h ] et h 0,09 calcul de t = p - p 0 p 0 ( 1 - p 0 ) = 0,64-0,5 0,5 ( 1-0,5 ) 100 = 2,8 ; = 0,05 puisque t > 1,645 o refuse (H 0 ) au risque 5 % 6 DÉCISION : Au risque 5 % o affirme que le médium est pas u imposteur. ELSA Productios NANTES Septembre 2002 Page 4 ;
5 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai. Ces températures ( à l istat t ) sot respectivemet otées α(t) et β(t). Le temps t est exprimé e secodes et le températures e C. Partie A : Les températures α(t) et β(t) vérifiet les coditios suivates : ❶ O pose f(t) = α(t) - β(t) ; ❶ a ) Vérifier que f est ue solutio de l équatio différetielle : y + 0,032 y = 0 ; Cosidéros le système (E) : α (t) = -0,011 (α(t) - β(t) ) ; β (t) = 0,021 (α(t) - β(t) ) ; f(t) = α(t) - β(t) ; α(0) = 40 ; β(0) = 10. Calcul de f (t) : f (t) = α (t) - β (t) = -0,011 f(t) - 0,021 f(t) = -0,032 f(t) ; doc f (t) = -0,032 f(t) ; doc f vérifie l équatio différetielle y + 0,032 y = 0 ; 1 pt ( 0,25 ; 0,75 ) ❶ b ) Résoudre l équatio précédete ; 1 pt La solutio géérale de (E) est l esemble des foctios f défiies sur [ 0, + [ par f(t) = C e -0,032t avec C costate réelle positive ❶ c ) Calculer f(0) et motrer que f(t) = 30 e -0,032t ; f(0) = C e -0,032 0 = C = α(0) - β(0) = = 30 La solutio particulière de (E) est la foctio f défiie sur [ 0, + [ par f(t) = 30 e -0,032t. 1 pt ( 0,25 ; 0,25 ; 0,5 ) ❷ Soit F la primitive de f qui vérifie F(0) = 0 ;. ❷ a ) Exprimer F(t) e foctio de t ; Ue primitive de f(t) = 30 e -0,032t est F(t) = - 30 / 0,032 e -0,032t + k ; F(0) = 0 = - 30 / 0,032 e -0, k = - 30 / 0,032 + k = 0. Doc k = 30 / 0,032. La primitive qui s aule pour t=0 est F(t) = 30 / 0,032 ( 1 - e -0,032t ) 1,5 pt ( 0,5 ; 0,5 ; 0,5 ) ❷ b ) A l aide de la coditio (2), justifier que β(t) = K + 0,021F(t) où K est ue costate ; Puisque : β (t) = 0,021 f(t) doc par itégratio : β(t) = 0,021 F(t) + K 1 pt ❷ c ) Détermier K et doer ue expressio de β(t) e foctio de t ; Puisque β(t) = 0,021 F(t) + K doc : β(t) = 0, / 0,032 ( 1 - e -0,032t ) + K = 315/ ( 1 - e -0,032t ) + K Puisque β(0) = 315/ ( 1 - e -0,032 0 ) + K = K = 10 = 0 / Doc :β(t) = 315/ ( 1 - e -0,032t ) + 0 / = 315/ + 0 / - 315/ e -0,032t = 475/ - 315/ e -0,032t 1 pt ( 0,5 ; 0,5 ) Partie C : Pour tout t das [ 0 ; + [ o pose : ❶ Détermier la limite de α aisi que celle de β e + e déduire pour les courbes représetatives de ces foctios ; Etude de la limite de α et β quad t ted vers + : puisque lim e -0,032 t = 0 t + doc lim α(t) = 475 t + ; que peut-o Doc la courbe représetative de α et β admet pour assymptote la droite d équatio y = 475/ quad t ted vers + : 1,5 pt ( 0,5 ; 0,5 ; 0,5 ) ❷ Calculer la dérivée et doer les variatios de chacue des foctios α et β ; 05 ptcalcul de la dérivée de α : par défiitio, α (x) = -0,011 (α(t) - β(t) ) = -0,011f(t) =-0, e -0,032 x ; 0,5 ptcalcul de la dérivée de β : par défiitio, β (x) = 0,021 (α(t) - β(t) ) = 0,021 f(t) = 0, e -0,032 x ; 0,5pt puisque e -0,032t > 0 pour t réel positif, doc α (t) < 0 pour t réel positif, doc la foctio α est strictemet décroissate pour t réel positif ; 0,5ptpuisque e -0,032t > 0 pour t réel positif, doc β (t) > 0 pour t réel positif, doc la foctio β est strictemet croissate pour t réel positif. ELSA Productios NANTES Septembre 2002 Page 5 ; et α(t) = e β(t) = 5 doc lim β(t) = 475 t + -4t 125-4t e
6 2 pts ( 0,5 ; 0,5 ; 0,5 ; 0,5 ) Tableau de variatios : x 0 + x 0 + α (x) égatif β (x) positif α(x) 40 β(x) 475/ ❸ Costruire les courbes représetatives des foctios α et β das u repère orthogoal ( sur papier millimétré ; uités graphiques : 1 cm pour 5 secodes e abscisse et 2 cm pour 5 C e ordoée ; o fera varier t etre 0 et 120 secodes ) ; 1,5 pt ( 0,5 ; 0,5 ; 0,5 ; 0,5 ) ❹ A partir de quel istat la différece de température etre le solide et le bai est-elle iférieure à 1 C? 1,5 ❹ Résoudre f(t) l équatio 1 équivalet f(t) 1 das à 30 l itervalle ē 0,032t 1[ 0, + [ ; f(t) 1 équivalet à ē 0,032t 1 30 f(t) 1 équivalet à l ( ē 0,032t ) l ( 1 30 ) f(t) 1 équivalet à -0,032t l ( 1 30 ) f(t) 1 équivalet à t - 1 0,032 l ( 1 30 ) f(t) 1 équivalet à t 107 C ; - 1 0,032 l ( 1 30 ) 106,2 C 0,5 A partir de 107 s la différece de température etre la solide et le bai est iférieure à 1 C. 1,5 pt ( 1 ; 0,5 ) ELSA Productios NANTES Septembre 2002 Page 6 ;
7 ELSA Productios NANTES Septembre 2002 Page 7 ;
8 0,2 0,19 0,18 0,17 0, 0,15 0,14 0,13 0,12 0,11 0,1 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 Tirage de cartes au hasard Loi Biomiale B (, p ) ; =20 ; p= 0,5 p( X=k ) = f( x ) = 20! 0,5 x 0,5 20-x ( 20-x )! x! BTS Biochimie & Aalyses Biologiques 2001 N ( 10 ; 5 ) f( x ) = 20! ( 20-k )! k! ( 0,5) k ( 0,5) 20-k exp x , ,02 BTS Biochimie & Aalyses Biologiques 2001 N ( 50 ; 5 ) f( x ) = exp x ELSA Productios NANTES Septembre 2002 Page 8 ;
9 ELSA Productios NANTES Septembre 2002 Page 9
Fluctuation et estimation
Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle
Racine nième Corrigés d exercices
Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =
Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL
Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées
Correction du devoir surveillé de mathématiques n o 5
Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,
SESSION DE 2004 CA/PLP
SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de
Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.
Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau
E(X i ) par linéarité de l espérance.
Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux
On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.
T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule
Mots de longueur donnée à base de P lettres, et fonction génératrice
Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des
Chapitre 4 Lois discrètes
Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec
Estimations et intervalles de confiance
Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio
STATISTIQUE : ESTIMATION
STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples
DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée
DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio
Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :
Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau
Questions pour un champion en ligne
Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite
VARIABLES ALEATOIRES
VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.
Baccalauréat S Nouvelle-Calédonie 7 mars 2014
Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule
MA401 : Probabilités TD3
MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de
1 Programme de l agrégation interne
Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude
FONCTION EXPONENTIELLE
FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher
Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations
UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.
Intervalles de fluctuation et de confiance
Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle
Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire
Séquece 9 Lois ormales, itervalle de fluctuatio, estimatio Sommaire 1. Prérequis. Lois ormales 3. Itervalles de fluctuatio 4. Estimatio 5. Sythèse de la séquece Séquece 9 MA0 1 Ced - Académie e lige Das
FLUCTUATION ET ESTIMATION
1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie
TS Intervalle de fluctuation et estimation Cours
Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
Feuille d exercices 5
Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece
1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression
Pla du cours Méthodes de statistique iféretielle. A. Philippe Laboratoire de mathématiques Jea Leray Uiversité de Nates Ae.Philippe@uiv-ates.fr 1 Itroductio 2 Probabilités : Variables Aléatoires Cotiues
Devoir de statistiques: CORRIGE
CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère
Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques
Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige
CORRECTION DU BAC BLANC 2
CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie
Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse
Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio
Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.
Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios
Séries entières. Chap. 09 : cours complet.
Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série
PROBABILITES EXERCICES CORRIGES
PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au
Sciences Po Option Mathématiques
Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,
Informatique TP2 : Calcul numérique d une intégrale CPP 1A
Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer
Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"
Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat
f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède).
#4 Itégrale de Riema Khôlles - Classes prépa Thierry Sageaux, Lycée Gustave Eiel Exercice Soit f ue foctio cotiue sur [, ] telle que Motrer que f ab f(t)dt = O pose a = mi f et b = max f Exercice x ) Motrer
Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski
Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce
Concours de l Iscae. Épreuve Commune de Mathématiques (2015)
Mohiieddie Beayad Cocours de l Iscae Épreuve Commue de Mathématiques (5) Voici l éocé de l épreuve commue de Mathématiques du cocours d etrée à l ISCAE de l aée 5, aisi que l itégralité du corrigé. Les
I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".
Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages
Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH
R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift
Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a.
Échatilloage 9 Pour repredre cotact Les réposes exactes sot : Répose c. Répose a. Répose c. 3 Répose a. 4 Répose b. Répose c. Activité. La populatio étudiée est la productio d automobiles. Le caractère
I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)
Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose
Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson
4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit
Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)
Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée
ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II
CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS
Septembre 2011 CPI 317. Exercices. Agnès Bachelot
Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................
Travaux dirigés de transports et transferts thermiques
Travaux dirigés de trasports et trasferts thermiques Aée 015-016 Araud LE PADELLEC alepadellec@irap.omp.eu page page 3 P r é s e t a t i o Tous les exercices de trasports et de trasferts thermiques qui
Correction Bac ES France juin 2010
Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio
BTS Mécanique et Automatismes Industriels. Statistiques inférentielles
BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes
Inégalités souvent rencontrées
Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de
Exercices de Khôlles de Mathématiques, second trimestre
Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice
Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6
Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier
Introduction to Econometrics
MPRA Muich Persoal RePEc Archive Itroductio to Ecoometrics Moussa Keita September 015 Olie at https://mpra.ub.ui-mueche.de/66840/ MPRA Paper No. 66840, posted. September 015 04:1 UTC INTRODUCTION A L ECONOMETRIE
1. Probabilités sur les ensembles finis
. Probabilités sur les esembles fiis.. RAPPELS ET COMPLEMENTS. VOCABULAIRE DES EVENEMENTS Das ue expériece aléatoire, l'uivers Ω est l'esemble des résultats possibles. U évéemet est ue partie de l'uivers.
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1
1 Statistique iferetielle. Relatios Iteratioales Lucya Firlej Pl. E.Bataillo, Bat.11, cc.06 34095 Motpellier cedex 5 Frace lucya.firlej@umotpellier.fr S3. Statistics. 30 h d eseigemet: 10 cours, 10 TD,
Terminale S. Terminale S 1 F. Laroche
Termiale S exercices 1 Exercices de base 1 1 Divisio Euclidiee - 1 (c) 1 Divisio Euclidiee- 1 3 Divisio Euclidiee-3 (c) 1 4 Multiples - 1 1 5 PGCD - 1 (c) 3 1 6 PPCM et PGCD - 1 7 PPCM et PGCD - 3 3 3
1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ
Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles
Chapitre 6 Théorèmes de convergence
Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :
Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u
Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur
Test de validité et d'hypothèse
Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des
Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h
Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,
PROBABILITES EXERCICES CORRIGES
PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au
Développement d une fonction en série entière. Exemples et applications
Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio
Fonctions convexes. Prologue
Foctios covexes Prologue Ce chapître développe les propriétés des foctios covexes f C E R défiies sur ue partie covexe C d u espace de dimesio fiie E. Si, fodametalemet, la covexité est ue propriété uidimesioelle
La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )
Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les
et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.
Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice
Annexe : Leçon 10 - Échantillonnage
Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio
Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015
1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.
Utilisation du bootstrap pour les problèmes statistiques liés à l estimation des paramètres
B A S E Biotechol Agro Soc Eviro 00 6 (3) 43 53 Utilisatio du bootstrap pour les problèmes statistiques liés à l estimatio des paramètres Rudy Palm Uité de Statistique et Iformatique Faculté uiversitaire
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES
Corrigé Exercice Sujets Bac Maths Aales Mathématiques Bac Sujets + Corrigés - Alai Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL Aales Bac Maths SESSION MATHÉMATIQUES Série S Cadidats ayat pas suivi l eseigemet
Chapitre 3 Détermination de la taille de l'échantillon
Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit
Terminale S (2014-2015) Suites numériques
Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale
Séquence 1. Suites numériques
Séquece Suites umériques Objectifs de la séquece Recoaître des situatios faisat iterveir des suites géométriques ou des suites arithmético-géométriques. Modéliser ces situatios par des suites géométriques
STATISTIQUES - ESTIMATION
STATISTIQUES - ESTIMATION I Echatilloage et estimatio : itroductio O se situe ici das 2 domaies des statistiques qui sot ceux de l «échatilloage» et de l «estimatio». Ces 2 domaies ot des cotextes d applicatio
Aide Mémoire de Statistique
Aide Mémoire de Statistique (E, E, P) modèle statistique (E, E, P) modèle probabiliste E probabilité, o coaît la loi P et o fait des calculs E statistique, o e coaît pas la loi (seulemet ue famille de
Dénombrement - Combinatoire Cours
Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
Suites géométriques suite géométrique suite géométrique de raison q
Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =
LES SUITES. u n = 1 n, pour n 1. u n = n 3
LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé
Promenades aléatoires : vers les chaînes de Markov
AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das
Modélisation stochastique
Uiversité de Lorraie Master 2 IMOI 2014-2015 Modélisatio stochastique Madalia Deacou 2 Table des matières Itroductio 5 1 Simulatio de variables aléatoires 7 1.1 Itroductio............................ 7
ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites
ANNALES BACCALAURÉAT 03 MATHÉMATIQUES TERMINALE S ANNALES 03 TERMINALE S Suites Foctios 9 3 Probabilités 4 Géométrie 9 8 5 Spécialité 34 6 Cocours 44 Suites - : Amérique du Nord 03, 5 poits, o spécialistes
Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart
Uiversité Joseph Fourier, Greoble Maths e Lige Séries umériques Luc Rozoy, Berard Ycart Disos-le tout et, ce chapitre est pas idispesable : d ailleurs, vous e verrez pas vraimet la différece avec les suites.
Probabilités et Statistiques MATH-F-315. Simone GUTT
Probabilités et Statistiques MATH-F-315 Simoe GUTT 2012 Das la vie, ous sommes cotiuellemet cofrotés à des collectios de faits ou doées. Les statistiques formet ue brache scietifique qui fourit des méthodes
SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes
SUITES ET FONCTIONS. Espaces vectoriels ormés réels ou complexes.. Normes et distaces. Exercice... F Soit E l espace vectoriel des foctios de classe C sur [a, b], o pose Nf = fc + f où c [a, b], f désigat
COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion
COURS DE STATISTIQUES INFERENTIELLES Licece d écoomie et de gestio Laurece GRAMMONT Laurece.Grammot@uiv-st-etiee.fr http://www.uiv-st-etiee.fr/maths/cvlaurece.html September 19, 003 Cotets 1 Rappels 5
Corrigé du DS n 1. Exercice 1 (6 points)
Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves
Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.
Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet
Équations différentielles - Cours no 6 Approximation numérique
Équatios différetielles - Cours o 6 Approximatio umérique 1 Itroductio De très ombreux problèmes scietifiques sot mis e équatio à l aide d u système d équatios différetielles ẋt) = ft, xt)) voir par exemple
Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques
Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est
Quelques inégalités classiques
Quelques iégalités classiques O se propose de motrer, sous forme d exercices, quelques iégalités classiques. Les preuves de ces iégalités e écessitet que quelques coaissaces élémetaires.. Exercices classiques