Corrigé du baccalauréat ES Asie 23 juin 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé du baccalauréat ES Asie 23 juin 2016"

Transcription

1 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle [ 1; 5]. O ote f la foctio dérivée de f. La courbe C f passe par le poit A (; 1) et par le poit B d abscisse 1. La tagete T à la courbe au poit A passe par le poit C (; ) et la tagete T 1 au poit B est parallèle à l axe des abscisses., C,5, T 1,5 B T 1 1,,5 A C f ARTIE A 1. La valeur exacte de f (1) est : a. b. 1 c. 1,6 d. autre répose La tagete e B est horizotale doc so coefficiet directeur est ul :f (1)=.. La valeur exacte de f () est : a. b. 1 c. 1,6 d. autre répose Le coefficiet directeur de la droite (AC) est 1 : f ()=1.. La valeur exacte de f (1) est : a. b. 1 c. 1,6 d. autre répose L ordoée de B est u peu iférieure à 1,5.

2 4. U ecadremet de a. c. 1 f (x)dx 4 f (x)dx f (x) dx par des etiers aturels successifs est : E comptat les carreaux, o obtiet la répose. b. f (x)dx d. autre répose ARTIE B 1. O admet que la foctio F défiie sur [ 1; 5] par F (x) = (x + 4x+ 5)e x est ue primitive de la foctio f. a. f (x)=f (x)= (x+ 4)e x + ( (x + 4x+ 5))( 1)e x = ( x 4+ x + 4x+ 5)e x = (x + x+ 1)e x b. La foctio f est positive sur [ ; ] doc l aire du domaie du pla limité par la courbe C f, l axe des abscisses et les deux droites d équatios x = et x = est A = A = f (x)dx. f (x)dx = F () F()= ( (4+8+5)e ) ( (++5)e ) = 17e + 5 u.a. Ue valeur approchée de cette aire est,7 ce qui valide la répose de la questio 4 de la partie A.. La foctio f est dérivable doc cotiue sur [1; 5]. f (1)=4e 1 1,47>1et f (5)=6e 5,4<1doc, d après le théorème des valeurs itermédiaires, l équatio f (x)=1 admet au mois ue solutio das l itervalle [1 ; 5]. E étudiat les variatios de la foctio f sur l itervalle [1; 5], o peut démotrer que l équatio f (x) = 1 admet ue solutio uique sur cet itervalle. EXERCICE Commu à tous les cadidats 6 poits Ue etreprise produit e grade série des clés USB pour l idustrie iformatique. ARTIE A O prélève au hasard 1 clés das la productio de la jourée pour vérificatio. La productio est assez grade pour que l o puisse assimiler ce prélèvemet à u tirage avec remise de 1 clés. O admet que la probabilité qu ue clé USB prélevée au hasard das la productio d ue jourée soit défectueuse est égale à,15. O cosidère la variable aléatoire X qui, à tout prélèvemet aisi défii, associe le ombre de clés défectueuses de ce prélèvemet. 1. our ue clé, il y a que deux issues : elle est défectueuse, avec ue probabilité p =,15, ou elle est pas défectueuse, avec la probabilité 1 p. La productio est assez grade pour que l o puisse assimiler ce prélèvemet à u tirage avec remise de 1 clés. O peut e déduire que la variable aléatoire X qui doe le ombre de clés défectueuses das le lot de 1 clés suit la loi biomiale de paramètres = et p =,15.. Quad ue variable aléatoire X suit la loi biomiale de paramètres et p, la probabilité de l évéemet X = k est doée par : ( ) p(x = k)= p k (1 p) k. k O e déduit que p(x = ),1 et p(x = 1),6.. Au plus deux clés soiet défectueuses correspod à l évéemet X : p(x )= p(x = )+ p(x = 1)+ p(x = ),1+,6+,5,81 La probabilité qu au plus deux clés soiet défectueuses est eviro,81. Asie jui 16

3 ARTIE B Ue clé est dite coforme pour la lecture lorsque sa vitesse de lecture, exprimée e Mo/s, appartiet à l itervalle [98; 1]. Ue clé est dite coforme pour l écriture lorsque sa vitesse d écriture exprimée e Mo/s appartiet à l itervalle [8; ]. 1. O ote R la variable aléatoire qui, à chaque clé prélevée au hasard das le stock, associe sa vitesse de lecture. O suppose que la variable aléatoire R suit la loi ormale d espérace µ = 1 et d écart-type σ=1. Ue clé est coforme pour la lecture quad 98 R 1, sachat que la variable aléatoire R suit la loi ormale de paramètres µ=1 et σ=1. La calculatrice doe p(98 X 1),976.. O ote W la variable aléatoire qui, chaque clé prélevée au hasard das le stock, associe sa vitesse d"écriture O suppose que la variable aléatoire W suit ue loi ormale. Le graphique ci-après représete la desité de probabilité de la variable aléatoire W La foctio desité d ue loi ormale d espérace µ est représetée par ue courbe e cloche dot l axe de symétrie est la droite d équatio x = µ. O sait que la droite d équatio x = est axe de symétrie doc o peut e déduire que µ=. D après le cours, pour toute variable aléatoire W suivat ue loi ormale de paramètres µ et σ, o sait que p(µ σ W µ+σ),95. D après le texte, p(8 W ),95 et o sait que µ= ; doc σ= et doc σ=1. ARTIE C Das cette partie, o cosidère ue grade quatité de clés devat être livrées à u éditeur de logiciels. O cosidère u échatillo de 1 clés prélevées au hasard das cette livraiso. La livraiso est assez importate pour que l o puisse assimiler ce tirage à u tirage avec remise. O costate que 94 clés sot sas défaut doc la fréquece de clés sas défaut das cet échatillo est f = 94 1 =,94. [ U itervalle de cofiace, au iveau de cofiace 95 %, est doé par : I = f 1 ; f + 1 ]. f 1 =,94,1 =,84 ; f + 1 =,94+,1 = 1,4 que l o remplacera par 1 car ue probabilité e peut dépasser 1. L itervalle de cofiace est doc [,84 ; 1]. Remarque Le programme de la classe de termiale ES précise à propos de l itervalle de cofiace : «Il est importat de oter que, das d autres champs, o utilise l itervalle f 1,96 f (1 f ) ; f + 1,96 f (1 f ) qu il est pas possible de justifier das ce programme.» Asie jui 16

4 Das cet exercice o trouverait eviro [,89 ;,99] ce qui éloigerait l icovéiet de la bore supérieure dépassat 1. EXERCICE Élèves de ES ayat pas suivi la spécialité mathématiques, et élèves de L 5 poits Le 1 er septembre 15, u esemble scolaire compte élèves. Ue étude statistique itere a motré que chaque 1 er septembre : 1 % de l effectif quitte l établissemet ; 5 ouveaux élèves s iscrivet. O cherche à modéliser cette situatio par ue suite (u ) où, pour tout etier aturel, u représete le ombre d élèves le 1 er septembre de l aée L aée 15 correspod à = et o sait que cette aée-là, l établissemet compte élèves ; doc u =. O sait que 1 % des élèves quittet l établissemet, doc il e reste 9 %, ce qui reviet à multiplier par,9. Comme 5 ouveaux élèves s iscrivet chaque aée, il faut rajouter 5. Doc, pour tout, u +1 =,9u our tout etier aturel, o pose v = u 5, doc u = v + 5. a. v +1 = u +1 5=,9u + 5 5=,9(v + 5) 5=,9 v + 5 5=,9 v v = u 5= 5= 5 Doc la suite (v ) est géométrique de raiso q =,9 et de premier terme v = 5. b. D après le cours, o peut dire que pour tout, v = v q = 5,9. Comme u = v + 5, o peut e déduire que pour tout etier aturel, u = 5, u +1 u = ( 5, ) (5,9 + 5)= 5,9,9 5,9 = (45 5),9 = 5,9 our tout, 5,9 < ; o e déduit que u +1 u < et doc que la suite (u ) est décroissate. 4. La capacité optimale d accueil est de 8 élèves. Aisi, au 1 er septembre 15, l esemble scolaire compte u sureffectif de élèves. O veut détermier à partir de quelle aée, le cotexte restat le même, l esemble scolaire e sera plus e sureffectif ; cela arrivera la première aée pour laquelle l effectif sera iférieur ou égal à 8. Comme la suite (u ) est décroissate, ce sera égalemet le cas pour les aées qui suivrot. Voici u algorithme qui répod au problème : Variables etier et u réel Iitialisatio pred la valeur Traitemet Sortie u pred la valeur Tat que u > 8 faire pred la valeur + 1 u pred la valeur,9 u+ 5 Fi de Tat que Afficher Asie 4 jui 16

5 EXERCICE Élèves de ES ayat suivi la spécialité mathématiques 5 poits ARTIE A O cosidère le graphe G ci-dessous D G J A C F I K B E H 1. Ue chaîe eulériee coteue das u graphe est u chemi qui part d u sommet et qui passe par toutes les arêtes pour arriver à u autre sommet, ou au même (il s agit alors d u cycle eulérie). D après le théorème d EULER, u graphe admet ue chaîe eulériee si et seulemet s il possède exactemet zéro ou deux sommets de degrés impairs. Détermios les degrés des sommets de ce graphe : Sommets A B C D E F G H I J K Degrés Ce graphe possède plus de deux sommets de degrés impairs, doc il e cotiet pas de chaîe eulériee.. O cosidère la matrice M ci-après (a, b, c et d sot des ombres réels). M = a b c d a. La matrice d adjacece du graphe est composée de et de 1. O met u à la lige i et la coloe j s il existe pas d arête etre le sommet uméro i et le sommet uméro j. S il y e a ue, o met 1. La lettre a est située à la lige et la coloe 4 ; ce sera doc s il existe ue arête etre le sommet (C) et le sommet 4 (D). Il y a pas d arête reliat C à D doc a=. La lettre b, située lige 4 et coloe 7, marque s il existe ue arête etre le sommet 4 (D) et le sommet 7 (G). C est le cas doc b= 1. La lettre c marquera ue arête etre les sommets 9 (I ) et 5 (E) ; il y e a ue doc c = 1. La lettre d marquera ue arête etre les sommets 11 (K ) et 5 (E) ; il y e a pas doc d =. b. O doe M = Asie 5 jui 16

6 Le sommet A est le uméro 1 ; le sommet J est le uméro 1. Le ombre de chemis de logueur est le ombre situé das la matrice M à la lige 1 et la coloe 1. C est 5 doc il y a 5 chemis de logueur reliat A à J. Ce sot : AD DF F J ; AD DG G J ; AC CG G J ; AC CF F J ; AB BF F J ARTIE B O oriete et o podère le graphe G ci-dessus pour qu il représete u réseau d irrigatio. D 5 G 5 J A 5 C F 4 I K B 6 E 1 H Le sommet A correspod au départ d eau, le sommet K au bassi d ifiltratio et les autres sommets représetet les statios de régulatio. Les arêtes représetet les caaux d irrigatio et les flèches, le ses du ruissellemet. La podératio doe, e km, les distaces etre les différetes statios du réseau. our détermier u chemi de logueur miimale etre le départ d eau e A et le bassi d ifiltratio e K, o utilise l algorithme de Dijkstra : A B C D E F G H I J K O garde A A 5 A A B (A) 5 A A 8 B 4 B D (A) 5 A 8 B 4 B 7 D 8 D F (B) 5 A 8 B 8 D 7 F 8 F 9 F C (A) 8 B 8 D 7 F 8 F 9 F H (F ) 8 C 1 C 8 B 8 D 8 F 9 F 9 H E (B) 8 D 8 F 9 F 9 H G (D) 1 E 8 F 9 F 9 H I (F ) 1 G 9 F 9 H J (F ) 11 I 9 H K (H) 11 J Le chemi de logueur miimale 9 km etre A et K est : A B F H K Asie 6 jui 16

7 EXERCICE 4 Commu à tous les cadidats poits D après ue equête meée auprès d ue populatio, o a costaté que : 6 % de la populatio sot des femmes ; 56 % des femmes travaillet à temps partiel ; 6 % de la populatio travaillet à temps partiel. O iterroge ue persoe das la populatio. Elle affirme qu elle travaille à temps partiel. O ote : F l évéemet «la persoe iterrogée est ue femme» ; H l évéemet «la persoe iterrogée est u homme» ; l évéemet «la persoe iterrogée travaille à temps partiel» ; l évéemet «la persoe iterrogée e travaille pas à temps partiel». O regroupe les doées du texte das u arbre podéré :,6 F,56 1,56=,44 1,6=,4 O cherche à détermier la probabilité que la persoe iterrogée soit u homme, c est à dire : H p( H) p (H)=. p() D après le texte, p() =,6. D après la formule des probabilités totales : p()= p(f )+ p(h )= p(f ) p F ()+ p(h ). O e déduit que,6=,6,56+ p(h ) doc que p(h )=,6,6,56 =,4. p( H) Doc p (H)= =,4 p(),6 = 1 15 Asie 7 jui 16

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé Baccalauréat S Nouvelle-Calédoie 7 mars 4 Corrigé A. P. M. E. P. EXERCICE 4 poits Commu à tous les cadidats Aucue justificatio était demadée das cet exercice.. Répose b. : 4e i π Le ombre i a pour écriture

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève.

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève. Lycée Féelo Saite-Marie Aée 2011-2012 Durée : 3 heures BAC BLANC avril Toutes calculatrices autorisées. Classe de Termiale ES Mathématiques Le sujet comporte u total de 4 exercices par élève. EXERCICE

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Centres étrangers Enseignement spécifique. Corrigé

Centres étrangers Enseignement spécifique. Corrigé EXERCICE 1 Partie A Cetres étragers 13. Eseigemet spécifique. Corrigé 1) La durée de vie moyee d ue vae est l espérace de la variable aléatoire T. O sait que l espérace de la loi expoetielle de paramètre

Plus en détail

DAEUB EXAMEN PREMIERE SESSION 2013/2014

DAEUB EXAMEN PREMIERE SESSION 2013/2014 DAEUB EXAMEN PREMIERE SESSION 2013/2014 LE SUJET EST COMPOSE DE TROIS EXERCICES INDEPENDANTS. LE CANDIDAT DOIT TRAITER TOUS LES EXERCICES. Les calculatrices sot autorisées. Les portables doivet être éteits.

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

Correction Bac ES Liban juin 2010

Correction Bac ES Liban juin 2010 Correctio Bac ES Liba jui 2010 EXERCICE 1 (4 poits) Commu à tous les cadidats 1) A et B sot deux évéemets idépedats et o sait que p(a) = 0,5 et p(b) = 0,2. La probabilité de l évéemet A B est égale à :

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim NOM : Termiale S- ABC S3 ludi ovembre 06 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie. Le sujet est composé de 5 eercices idépedats.

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c.

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c. NOUVELLE CALEDONIE NOVEMBRE 2007 Exercice 4 poits Commu à tous les cadidats Pour chaque questio, ue seule des trois propositios est exacte. Le cadidat idiquera sur la copie le uméro de la questio et la

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

BACCALAURÉAT GÉNÉRAL Session 2014 MATHÉMATIQUES. Série ES ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures.

BACCALAURÉAT GÉNÉRAL Session 2014 MATHÉMATIQUES. Série ES ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures. BACCALAURÉAT GÉNÉRAL Sessio 04 MATHÉMATIQUES Série ES ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : heures Coeiciet : 7 Les calculatrices électroiques de poche sot autorisées, coormémet à la réglemetatio

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9 BACCALAUREAT BLANC 2014 LYCEE DES ILES SOUS LE VENT SERIE S EPREUVE DE MATHEMATIQUES Durée : 4h Coefficiet : 7 ou 9 La calculatrice est autorisée, mais est pas échageable de cadidat e cadidat. La qualité

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Décembre 2012 Durée : 3 heures BAC blanc N 1. La calculatrice est autorisée. Le sujet comporte un total de 5 exercices.

Décembre 2012 Durée : 3 heures BAC blanc N 1. La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. Lycée Féelo Saite-Marie Termiales ES Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas

Plus en détail

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe Termiale S mai 6 Cocours Fesic Calculatrice iterdite ; traiter eercices sur les 6 e h ; répodre par Vrai ou Fau sas justificatio + si boe répose, si mauvaise répose, si pas de répose, bous d poit pour

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i }

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i } Nom :........................ DS Préom :..................... Devoir o 7 Mars 6.../... Le soi et la rédactio serot pris e compte das la otatio. Faites des phrases claires et précises. Le barème est approximatif.

Plus en détail

ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures

ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Baque d épreuves FESIC Samedi 4 mai 06 ÉPREUVE DE MATHÉMATIQUES Durée : heures INSTRUCTIONS AUX CANDIDATS L'usage de la calculatrice ou de tout appareil électroique est iterdit L'épreuve comporte 6 exercices

Plus en détail

Calcul d'intégrales 2

Calcul d'intégrales 2 de même largeur égale à 5 de même largeur égale à 5 Mr ABIDI Farid Termiales Calcul d'itégrales Activité : méthode des rectagles I Résultats prélimiaires Démotrer par récurrece que, pour tout etier aturel,

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Soit n un entier supérieur ou égal à 0. On note b n la proportion des adhérents ayant un abonnement de type. l année n.

Soit n un entier supérieur ou égal à 0. On note b n la proportion des adhérents ayant un abonnement de type. l année n. Amérique du Nord Mai 1 Série ES Exercice U club de sport propose à ses adhérets deux types d aboemets : l aboemet de type A qui doe accès à toutes les istallatios sportives et l aboemet de type B qui,

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

i la moyenne empirique de X n n v =

i la moyenne empirique de X n n v = Corrigé Statistiques iféretielle par par Pierre Veuillez Itervalle de cofiace. Exercice Détermier ue valeur approchée de la loi de la moyee empirique : E X E X, V X V X doc X N E X, V X Exercices. Variace

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Corrigé du baccalauréat S Pondichéry du 26 avril points

Corrigé du baccalauréat S Pondichéry du 26 avril points EXERCICE 1 5 poits Comm a tous les cadidats Les parties A, B et C peuvet être traitées de faço idépedate Das tout l exercice, les résultats serot arrodis, si écessaire, au millième La chocolaterie «Choc

Plus en détail

BACCALAUREAT GENERAL. Bac blanc n 4 Mercredi 7 Mai 2014 MATHEMATIQUES. Série : S Enseignement Obligatoire ou de Spécialité

BACCALAUREAT GENERAL. Bac blanc n 4 Mercredi 7 Mai 2014 MATHEMATIQUES. Série : S Enseignement Obligatoire ou de Spécialité BACCALAUREAT GENERAL Bac blac 4 Mercredi 7 Mai 4 MATHEMATIQUES Série : S Eseigemet Obligatoire ou de Spécialité Durée de l épreuve : 4 heures Coefficiet : 7 ou 9 L utilisatio de la calculatrice est autorisée

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Sessio 2016 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficiet : 4 Calculatrice autorisée coformémet

Plus en détail

P U n est une suite géométrique.

P U n est une suite géométrique. Notre Dame de La Merci Exercices sur les suites arithmético-géométriques CORRIGES e deuxième partie Exercice : Das u pays, u orgaisme étudie l évolutio de la populatio Compte teu des aissaces et des décès,

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES ) PUISSANCES D'EXPOSANTS REELS A ) La otatio a Si est u etier aturel, la otatio a a u ses pour tout réel a Das le cas où est u

Plus en détail

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne :

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne : I. Itroductio. LOIS NORMALES. Voici quelques exemples de courbes proveat de la vie quotidiee : La répartitio du QI das la populatio Le poids d ue populatio de chatos Répartitio des coscrits e 1907 Age

Plus en détail

Question 3 Cet hypermarché vend des téléviseurs dont la durée de vie, exprimée en année, peut être modélisée par une variable aléatoire réelle 1

Question 3 Cet hypermarché vend des téléviseurs dont la durée de vie, exprimée en année, peut être modélisée par une variable aléatoire réelle 1 Das l esemble du sujet, et pour chaque questio, toute trace de recherche même icomplète, ou d iitiative même o fructueuse, sera prise e compte das l évaluatio. Exercice ( poits) Commu à tous les cadidats

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1.

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1. Statistiques iféretielles Pierre-Heri WUILLEMIN Licece d Iformatique Uiversité Paris 6 Itroductio Soit ue populatio de taille N sur laquelle o observe ue propriété, dot o veut calculer moyee µ et de variace

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2.

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2. BAC BLANC DE MATHEMATIQUES EN TM et TM2. L ordre des exercices a pas d importace. La clarté de la rédactio et des raisoemets iterviedrot pour ue part importate das l appréciatio des copies. La calculatrice

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Introduction aux théorèmes limites et aux intervalles de confiance

Introduction aux théorèmes limites et aux intervalles de confiance Chapitre 5 Itroductio aux théorèmes limites et aux itervalles de cofiace Objectifs du chapitre. Savoir approcher ue loi biomiale par ue loi de Poisso ou ue loi ormale. 2. Savoir approcher ue loi e appliquat

Plus en détail

Lycée de Souassi DEVOIR DE SYNTHESE N 3 08/05/2009 SECTIONS : 4 éme Scieces Expérimetales EPREUVE : Mathématiques DUREE : 3 heures PROFESSEUR : Mr FLIGENE Wissem EXERCICE N : (3 poits) Pour chacue des

Plus en détail

BAC BLANC de MATHEMATIQUES TS

BAC BLANC de MATHEMATIQUES TS BAC BLANC de MATHEMATIQUES TS Décembre 205 Lycée Jea Calvi - Noyo Exercice Das cet exercice, les probabilités serot arrodies a cetième. Partie A U grossiste achète d soja chez dex forissers. Il achète

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

Mardi 10 janvier h-13h

Mardi 10 janvier h-13h Mardi javier 27 8h-3h Il sera teu compte de faco importate de la qualité de la rédactio et de l argumetatio. E particulier, répodre juste à ue questio est valorisé, répodre faux est péalisé et e pas répodre

Plus en détail

Que de déchets!!!! Les trois parties de cet exercice sont indépendantes.

Que de déchets!!!! Les trois parties de cet exercice sont indépendantes. TES/L - Cotrôle 3 de mathématiques Que de déchets!!!! Les trois parties de cet exercice sot idépedates. Partie A Chaque aée, ous jetos des appareils électroiques: vieux téléphoes, mobiles, télévisios,

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

Partie commune (3 heures)

Partie commune (3 heures) TS Cotrôle du ludi 5 février 06 (4 heures) Partie commue ( heures) Le barème est doé sur 40 I (7 poits : ) poits ; ) poits ; ) poits + poit) Ue chaîe de magasis souhaite fidéliser ses cliets e offrat des

Plus en détail

TS Exercices sur les fonctions puissances et racines n-ièmes

TS Exercices sur les fonctions puissances et racines n-ièmes TS Eercices sur les octios puissaces et racies -ièmes Calculer sas utiliser la calculatrice e détaillat les étapes de calcul 4 4 A ; B 6 ; C 8 ) Développer et ) E déduire la valeur eacte de A 0 4 0 4 4

Plus en détail

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016 Correctio Baccalauréat STL biotechologies Polyésie 13 jui 2016 EXERCICE 1 4 poits Das cet exercice, o s itéresse au taux de cholestérol LDL de la populatio d adultes d u pays. O ote X la variable aléatoire

Plus en détail

FRLT Page 1 15/08/2014

FRLT Page 1 15/08/2014 Algorithmes à aalyser O cosidère l algorithme : - u est du type ombre - q est du type ombre - p est du type ombre - S est du type ombre - Lire u - Lire q - Lire p - S pred la valeur de u - Tat que (u >

Plus en détail

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Lois normales et autres lois dérivées

Lois normales et autres lois dérivées Lois ormales et autres lois dérivées - Lois ormales a) - Défiitio O dit qu'ue variable aléatoire réelle X suit la loi ormale (ou gaussiee) de paramètres et, otée N ( ; ), si elle admet pour desité la foctio

Plus en détail

II - Estimation d'un paramètre par intervalle de confiance

II - Estimation d'un paramètre par intervalle de confiance II - Estimatio d'u paramètre par itervalle de cofiace 1 ) - Gééralités sur la costructio O veut estimer u paramètre (moyee, proportio ) d'u caractère das ue populatio P. Ue estimatio poctuelle à partir

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne 1 lois usuelles 11 Loi Biomiale B(, p) q = 1 p p(x = k) = C k p k q k Espérace E(X) = p Variace : V ar(x) = pq Écart type : σ = pq 12 Loi de Poisso P(λ) : loi de Poisso de paramètre λ > 0 : X(Ω) = N λ

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Présentation du programme et des épreuves 6

Présentation du programme et des épreuves 6 SOMMAIRE Présetatio du programme et des épreuves 6 Algos à foiso 8 2 Le raisoemet par récurrece 3 Les suites géométriques 2 4 Ce qui est importat pour ue suite 4 5 Ce qu est la limite d ue suite 6 6 Détermier

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

Rappels. A-Oukhai Suites géométriques 2 e Science

Rappels. A-Oukhai Suites géométriques 2 e Science A-Oukhai Suites géométriques e Sciece Rappels Pour motrer que u est ue suite géométrique : Soit o exprime u +1 e foctio de u et o doit trouver ue relatio de la forme u +1 qu où q est u réel qui e déped

Plus en détail