classification non supervisée : pas de classes prédéfinies Applications typiques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "classification non supervisée : pas de classes prédéfinies Applications typiques"

Transcription

1 Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters classfcaton non supervsée : pas de classes prédéfnes Applcatons typques afn de meu comprendre les données comme prétratement avant d autres analyses

2 Qu est ce qu un bon clusterng? Une bonne méthode va produre des clusters dont les éléments ont une forte smlarté ntra classe une fable smlarté nter classe La qualté d un clusterng dépend d de la mesure de smlarté La qualté d une méthode peut auss être mesurée par sa capacté à trouver quelques ou tous les motfs ntéressants

3 Caractérstques des méthodes de clusterng 3 Mse à l échelle ll Capacté à gérer dfférents types d attrbuts Découverte de clusters avec des formes arbtrares Beson mnmum deconnassances du domane pour détermner les paramètres Capacté à gérer le brut et les eceptons Indfférent à l ordre des données en entrée Nombre de dmensons Incorporaton decontrantes par l utlsateur Interprétablté et utlsablté

4 Structure de données 4 Matrce de données Mt Matrce de dstance (ou dssmlarté) n f f nf p p np 0 d(,) 0 d(3, ) d (3,) 0 : : : d ( n,) d ( n,) 0

5 Smlarté et dssmlarté 5 Métrque de smlarté/dssmlarté l l é: eprmée en termes d une foncton de dstance, typquement d(,) Foncton de dstance dépend du type des données : bnares, nomnales, ordnales ou contnues Pondératon des dmensons selon l applcaton et la sémantque des données Dffculté de défnr «suffsamment smlares» la réponse est très subectve

6 Types de données 6 contnue sur un ntervalle e : pods, talle bnare nomnale e : couleur ordnale à échelle varable e : crossance optmale des bactéres, durée de Mte la radoactvté

7 Valeurs contnues sur un ntervalle, normalsaton 7 Normalser les données : s affranchr ff des untés é de mesures écart absolu à la moyenne s f ( n m m m f f f f nf f Calculer la mesure normalsée (z score) z f f m s L utlsaton de l écart absolu est plus robuste que celle de l écart lécart type f f )

8 Valeurs contnues sur un ntervalle, Foncton de dstance D t d M k k 8 Dstance de Mnkowsk : q q p p q q d ) ( ), ( avec (,,, p ) et (,,, p ) deu obets à p dmensons, et q un enter postf p p enter postf s q : dstance de Manhattan ) (, p p d s q :dstance eucldenne p p ) ( ) ( d Proprétés d( ) ) ( ), ( p p d d(,) 0 d(,) 0 (postve) d(,) d(,) (symétrque) d(,) d(,k) d(k,) (négalté trangulare)

9 Valeurs bnares 9 table de contngence Obet 0 Obet 0 a c b d coeffcent smple d apparement (nvarant, s la varable est symétrque) d (, ) a b b c c coeffcent de Jaccard (non nvarant, s la varable est asymétrque) d (, ) a b b c c d

10 Dssmlarté de valeurs bnares 0 Eemple Nom See Fèvre Tousse Test- Test- Test-3 Test-4 Jacques M O N P N N N Mare F O N P N P N Jean M O P N N N N see est symétrque les autres sont asymétrques sot O et P, et N 0 d d d ( ( ( acques, mare acques, ean ean, mare ) ) 0 )

11 Varables nomnales généralsaton é des valeurs bnares : plus de états t méthode : apparement smple m : nombre d apparements, p : nombre total de varables bl d (, ) p p m méthode : utlser un grand nombre de varables bnares créaton d une varable bnare pour chacun des états t d une varable bl nomnale

12 Varable ordnale l ordre est mportant t: rang peut être tratée comme une varable contnue sur un ntervalle remplace f par son rang {,, M { f transforme chaque varable sur [0,] en remplaçant le ème obet de la f ème varable z f r M f f r f calcule la dssmlarté en utlsant les méthodes de valeurs contnues sur un ntervalle }

13 à échelle varable 3 mesure postve sur une éhll échelle non lnéare, éhll échelle eponentelle qu sut appromatvement Ae BT ou Ae BT Méthodes les trater comme des varables contnues sur un ntervalles : mauvas cho applquer une transformaton logarthmque pus les trater comme des varables contnues sur un ntervalle y f log( f ) les trater comme des varables ordnales en tratant leur rang

14 Varables de type mte 4 Les obets peuvent être décrts avec tous les types de données bnare symétrque, bnare asymétrque, nomnale, ordnale, Utlsaton d une formule pondérée pour combner leurs effets d (, ) Σ p f Σ δ p f ( f δ ) ( d f ( ) f )

15 Prncpales approches 5 parttonnement parttonne les obets et évalue les parttons hérarchque décomposton hérarchque d ensembles d obets dobets densté basée sur une foncton de densté ou de connectvté grlle basée sur une structure de granularté à pluseurs nveau

16 Parttonnement 6 Construre une partton de la base de données D contenant tn obets en un ensemble de k clusters Etant donné ék, trouvé une partton en k clusters qu optmsent le crtère de parttonnement Optmum global l: trater toutes les parttons ehaustvement Heurstque : k means ou k médoïdes k means : chaque cluster est représenté par son centre k médoïdes ou PAM (partton around medods) : chaque cluster est représentéparundesobets par ducluster

17 k means 7 4 étapes. Parttonne les obets en k ensembles non vdes. Calcule le centroïde de chaque partton/cluster 3. Assgne à chaque obet le cluster dont le centroïde est le plus proche 4. boucle en, usqu à ce les clusters soent stables.

18 k means, eemple

19 k means. Remarques Avantages Relatvement effcace : O(tkn), avec n le nombre d obets, t le nombre d tératons et en général t et k << n Termne souvent sur un optmum local. L optmum global peut être attent en utlsant des technques telles que les algorthmes génétques Fablesses Utlsable seulement lorsque la moyenne est défne Que fare dans le Utlsable seulement lorsque la moyenne est défne. Que fare dans le cas de données nomnales? Beson de spécfer k à l avance Ne gère pas le brut et les eceptons Ne trouve que des clusters de forme convee 9

20 k médoïdes Trouve desreprésentants représentants, appelés médoïdes, dans les clusters PAM médoïde : l obet d un cluster pour lequel la dstance moyenne à tous les autres obets du cluster est mnmale k crtère d erreur : Algorthme E p C d( p, m. Sélectonner k obets arbtrarement. Assgner le reste des obets au médoïde le plus proche 3. Sélectonner un obet non médoïdeet échanger éh s le crtère d erreur peut être rédut 4. Répéter et 3 usqu à ne plus pouvor rédure le crtère d erreur ) 0

21 PAM. Eemple E -E<0 E -E>0 E -E<0

22 Clusterng hérarchque Utlsaton d une matrce de dstance : ne nécesste pas de spécfer le nombre de clusters Step 0 Step Step Step 3 Step 4 a a b b abcde c c d e d d e e Step 4 Step 3 Step Step Step 0 agglomeratve (AGNES) sépatatve (DIANA)

23 AGNES (Agglomeratve Nestng) é 3 Utlse une matrce de dssmlarté Fusonne les nœuds les mons dssmlares Fusonne les nœuds les mons dssmlares

24 Un dendrogramme llustre comment les clusters sont fusonnés hérarchquement 4 Décompose les données en pluseurs nveau mbrqués de parttonnement Un clusterng est obtenu en coupant le dendogramme au nveau chos

25 Mesures de smlarté entre clusters 5 complete lnkage plus pette smlarté/plus grande dstance entre toutes les pares de gènes entre clusters average lnkage smlarté l témoyenne entre les pares de gènes sngle lnkage plus grande smlarté/plus pette dstance entre gènes de clusters

26 Méthodes basées sur la densté 6 Prncpales caractérstques Cluster de forme arbtrare Geston du brut Beson d un paramètre de densté comme crtère è d arrêt paramètres Eps : rayon mamal de vosnage MnPts : nombre mnmal de ponts dans le vosnage défn par Eps q p N Eps (p) : { q D dst(p,q) Eps} un pont p est drectement attegnable d un dun pont q s p appartent à N Eps (q) N Eps (q) MnEps un pont p est attegnable d un pont q s l este une chaîne de ponts p,, p n telle que p q et p p et que les p sont drectement attegnables des p n p q un pont p est connecté à un pont q s l este un pont o tel que p et q sont attegnables depus o q o p p

27 Méthodes basées sur une grlle 7 Utlsaton d une grlle à des résolutons multples l l comme structure de données L espace est dvsé en cellules rectangulares

28 Méthodes basées sur une grlle Chaque cellule de nveau est dvsée en un certan nombre de cellules plus pettes au nveau Informatonsstatstques statstques calculées et stockées à chaque nveau Approche descendante Suppresson des cellules non pertnentes pour les tératons t suvantes Répéter le processus usqu à attendre le nveau le plus bas Avantages parallélsable, mse à our ncrémentale O(k), où k est le nombre de cellule au plus bas nveau Fablesse lesbords des clusters sont sot horzontau sot vertcau, pas de dagonale! 8

29 Salary (0, 000) Vacaton (week) age age Vacaton τ age

Proposition d'une solution au problème d initialisation cas du K-means

Proposition d'une solution au problème d initialisation cas du K-means Proposton d'une soluton au problème d ntalsaton cas du K-means Z.Guelll et L.Zaou, Unversté des scences et de la technologe d Oran MB, Unversté Mohamed Boudaf USTO -BP 505 El Mnaouer -ORAN - Algére g.zouaou@gmal.com,

Plus en détail

REDUCTION DE BASE DE DONNEES PAR LA CLASSIFICATION AUTOMATIQUE

REDUCTION DE BASE DE DONNEES PAR LA CLASSIFICATION AUTOMATIQUE INSTITUT DE LA FRANCOPHONIE POUR L INFORMATIQUE RAPPORT DU STAGE REDUCTION DE BASE DE DONNEES PAR LA CLASSIFICATION AUTOMATIQUE Sous la drecton de Pr. Georges HEBRAIL, ENST Pars Réalsé par LE Anh Tuan,

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Chapitre 5: La programmation dynamique

Chapitre 5: La programmation dynamique Chaptre 5: La programmaton dynamque. Introducton La programmaton dynamque est un paradgme de concepton qu l est possble de vor comme une améloraton ou une adaptaton de la méthode dvser et régner. Ce concept

Plus en détail

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010.

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010. Master 1ère année de Mathématques Analyse Numérque - Projet A rendre au plus tard le jour de l examen fnal, en Janver 2010. CMI, Unversté de Provence Année 2009-2010 Ce qu vous est demandé : Rédger les

Plus en détail

Méthodes d Extraction de Connaissances à partir de Données (ECD) appliquées aux Systèmes d Information Géographiques (SIG)

Méthodes d Extraction de Connaissances à partir de Données (ECD) appliquées aux Systèmes d Information Géographiques (SIG) UNIVERSITÉ DE NANTES FACULTÉ DES SCIENCES ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES DE L INFORMATION ET DES MATÉRIAUX Année 2006 N attrbué par la bblothèque Méthodes d Extracton de Connassances à partr

Plus en détail

5- Analyse discriminante

5- Analyse discriminante 5. ANALYSE DISCRIMINANTE... 5. NOTATION ET FORMULATION DU PROBLÈME... 5. ASPECT DESCRIPTIF...3 5.. RECHERCHE DU VECTEUR SÉPARANT LE MIEUX POSSIBLE LES GROUPES...4 5.. Cas partculer de deu groupes...7 5.3

Plus en détail

Discrimination linéaire et kppv

Discrimination linéaire et kppv Dscrmnaton lnéare et kppv Méthodes à noyau ntroducton à SVM UE SI22 Marne Campedel Année scolare 2008-2009 2008 Vos réponses? Qu est-ce que la dscrmnaton lnéare? Nonlnéare? Quel rapport avec la reconnassance

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Introduction. 1. le modèle de survie de COX utilisé par O. Brandmeyer dans son stage de Master 2 IMOI au Centre de Médecine Préventive de Nancy ;

Introduction. 1. le modèle de survie de COX utilisé par O. Brandmeyer dans son stage de Master 2 IMOI au Centre de Médecine Préventive de Nancy ; Introducton Le groupe de Bo-Statstque a eu une actvté soutenue en 2006-2007. Cette dernère s est concrétsée par des réunons de petts groupes de traval autour de thèmes de recherche partculers et par la

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Comparaison de méthodes d ajustement d une distribution de Weibull à 3 paramètres sur une base de données de mesures de ténacité

Comparaison de méthodes d ajustement d une distribution de Weibull à 3 paramètres sur une base de données de mesures de ténacité Comparason de méthodes d ajustement d une dstrbuton de Webull à 3 paramètres sur une base de données de mesures de ténacté M. Marquès, N. Pérot, N. Devctor Laboratore de Condute et Fablté des Réacteurs

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

M.Belahcene-Benatia Mebarka

M.Belahcene-Benatia Mebarka Authentfcaton et Identfcaton de Vsages basées sur les Ondelettes et les Réseaux de Neurones. M.BELAHCENE-BENATIA Mébarka. LI3C Unv.Med Khder.BISKRA Résumé : Notre but est de concevor un système d authentfcaton

Plus en détail

La décomposition en valeurs singulières: un outil fort utile

La décomposition en valeurs singulières: un outil fort utile La décomposton en valeurs sngulères: un outl fort utle Références utles: 1- Sonka et al.: sectons 3.2.9 et 3.2.1 2- Notes manuscrtes du cours 3- Press et al: Numercal recpes * Dernère révson: Patrck Hébert

Plus en détail

Sujets des projets. Informatique de Base Université Pierre et Marie Curie

Sujets des projets. Informatique de Base Université Pierre et Marie Curie 1 Sujets des projets Informatque de Base Unversté Perre et Mare Cure D Bernard, F Hecht, N Segun Master I / sesson 2004/2005 Table des matères 1 Sujet : Recherche rapde d un trangle contenant un pont dans

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Gestion et stratégie Utilisateur

Gestion et stratégie Utilisateur Geston et stratége Utlsateur GESTION ET STRATEGIE UTILISATEUR...2 1.) Comment gérer des utlsateurs?...2 1.1) Geston des utlsateurs en groupe de traval...2 1.2) Geston des utlsateurs par domane...2 Rôle

Plus en détail

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2 1 UNIVERSITE DE BOURGOGNE MM5: Analyse Numérque Elémentare FchedeTDno2 1 Que peut-on dre d une méthode tératve dont la matrce a un rayon spectral nul? 2 Etuder les méthodes de Jacob et Gauss-Sedel pour

Plus en détail

Mesurer la qualité de la prévision

Mesurer la qualité de la prévision Mesurer la qualté de la prévson Luc Baetens 24/11/2011 www.mobus.eu Luc Baetens 11 ans d expérence Planfcaton Optmsaton des stocks Organsaton de la Supply Chan Performance de la Supply Chan Geston de la

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Méthode de Vogel Modifiée pour la résolution du problème de transport simple

Méthode de Vogel Modifiée pour la résolution du problème de transport simple Appled Mathematcal Scences, Vol. 5, 2011, no. 48, 2373-2388 Méthode de Vogel Modfée pour la résoluton du problème de transport smple Salmata G. Dagne Département de Mathématques Unversté Chekh Anta Dop,

Plus en détail

DOCUMENT DE TRAVAIL 2004-023

DOCUMENT DE TRAVAIL 2004-023 Publé par : Publsed by : Publcacón de la : Édton électronque : Electronc publsng : Edcón electrónca : Dsponble sur Internet : Avalable on Internet Dsponble por Internet : Faculté des scences de l admnstraton

Plus en détail

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle Mrors spérques Doptres spérques Nous allons mantenant aborder des systèmes optques un peu plus complexes, couramment utlsés pour produre des mages. Nous allons commencer par étuder un mror spérque de façon

Plus en détail

Tableau croisé dynamique

Tableau croisé dynamique Tableau crosé dynamque Tableau crosé dynamque Excel 2010 Créer un tableau crosé dynamque Un tableau crosé dynamque permet de résumer, d analyser, d explorer et de présenter des données de synthèse. S la

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3.

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3. Chaptre 3 : Incerttudes CHAPITRE 3 INCERTITUDES Lgnes drectrces 2006 du GIEC pour les nventares natonaux de gaz à effet de serre 3.1 Volume 1 : Orentatons générales et établssement des rapports Auteurs

Plus en détail

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles La fournture de bens et facteurs publcs en présence de ménages et d entreprses mobles Pascale Duran-Vgneron évrer 007 Le modèle On suppose un pays drgé par un gouvernement central ayant compétence sur

Plus en détail

Exercices sur la géométrie plane

Exercices sur la géométrie plane Eercces sur la géoétre plane Sot un trangle équlatéral et M un pont ntéreur au trangle n note H, K, L les projetés orthogonau respectfs de M sur les tros côtés éontrer que la soe MH + MK + ML est constante

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

Apprentissage incrémental dans un système de filtrage adaptatif

Apprentissage incrémental dans un système de filtrage adaptatif VSST'200 32 TEXTES DES COMMUNICATIONS - Tome I Apprentssage ncrémental dans un système de fltrage adaptatf Mohand BOUGHANEM, Mohamed TMAR boughane@rt.fr, tmar@rt.fr IRIT/SIG, Campus Unv. Toulouse III,

Plus en détail

Équations différentielles et systèmes dynamiques. Jean-Christophe yoccoz, membre de l institut (Académie des sciences), professeur

Équations différentielles et systèmes dynamiques. Jean-Christophe yoccoz, membre de l institut (Académie des sciences), professeur Équatons dfférentelles et systèmes dynamques Jean-Chrstophe yoccoz, membre de l nsttut (Académe des scences), professeur enseignement Cours : Quelques aspects de la théore des systèmes dynamques quaspérodques

Plus en détail

Modélisation des Réseaux Ad hoc par Graphes

Modélisation des Réseaux Ad hoc par Graphes SETIT 009 5 th Internatonal Conference: Scences of Electronc, Technologes of Informaton and Telecommuncatons March -6, 009 TUNISIA Modélsaton des Réseaux Ad hoc par Graphes M hamed Abdelmadd ALLALI et

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes Snthèse de cours PanaMaths (Termnale S) L ensemble des nombres complees Défntons n pose tel que = 1 { } L ensemble des nombres complees, noté, est l ensemble : z /(, ) = + Le réel est appelé «parte réelle

Plus en détail

Mailing. Les étapes de conception d un mailing. Créer un mailing

Mailing. Les étapes de conception d un mailing. Créer un mailing Malng Malng Word 2011 pour Mac Les étapes de concepton d un malng Le malng ou publpostage permet l envo en nombre de documents à des destnatares répertorés dans un fcher de données. Cette technque sous-entend

Plus en détail

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Observatore Economque et Statstque d Afrque Subsaharenne LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Une contrbuton à la réunon commune CEE/BIT sur les ndces des prx

Plus en détail

Le raisonnement incertain

Le raisonnement incertain 1 Plan général 2 Le rasonnement ncertan dans les systèmes experts I- Introducton aux systèmes experts II- Fondements : organsaton et fonctonnement des SE III- Le rasonnement ncertan Introducton Antone

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

Youcef SMARA, Nadia OUARAB, Sihem LAAMA et Dalila CHERIFI, Algérie. Mots clés: fusion, classification floue, images multisources, zones urbaines.

Youcef SMARA, Nadia OUARAB, Sihem LAAMA et Dalila CHERIFI, Algérie. Mots clés: fusion, classification floue, images multisources, zones urbaines. Technques de fuson et de classfcaton floue d mages satelltares multsources pour la caractérsaton et le suv de l extenson du tssu urban de la régon d Alger (Algére) Youcef SMARA, Nada OARAB, Shem LAAMA

Plus en détail

Ajustement affine par les moindres carrés

Ajustement affine par les moindres carrés 1. Nveau Termnales STG et ES Ajustement affne par les mondres carrés 2. Stuaton-problème proposée Introducton à la méthode des mondres carrés. 3. Support utlsé Tableur et calculatrce. 4. Contenu mathématque

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

Editions ENI. Excel 2010. Collection Référence Bureautique. Extrait

Editions ENI. Excel 2010. Collection Référence Bureautique. Extrait Edtons ENI Excel 2010 Collecton Référence Bureautque Extrat Tableau crosé dynamque Tableau crosé dynamque Excel 2010 Créer un tableau crosé dynamque Un tableau crosé dynamque permet de résumer, d analyser,

Plus en détail

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui Mnstère de la Jeunesse et des Sports Insttut Royal de Formaton des Cadres Département des Scences de la Ve A. Arfaou Défntons La statstque est l ensemble des méthodes et technques permettant de trater

Plus en détail

Activité Intitulé de l'activité Volume horaire

Activité Intitulé de l'activité Volume horaire Informatons de l'unté d'ensegnement Implantaton Cursus de Inttulé ECAM Insttut Supéreur Industrel Bacheler en Scences ndustrelles fnalté électromécanque Concepton et producton M3050 Cycle 1 Bloc 3 Quadrmestre

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

Fiche technique : diagonalisation, trigonalisation.

Fiche technique : diagonalisation, trigonalisation. Fche technque 4 : dagonalsaton trgonalsaton - - Fche technque : dagonalsaton trgonalsaton Dagonalsaton de matrces le prncpe pour dagonalser en pratque une matrce est smple : calculer les espaces propres

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

hal-00409942, version 1-14 Aug 2009

hal-00409942, version 1-14 Aug 2009 Manuscrt auteur, publé dans "MOSIM' 008, Pars : France (008)" 7 e Conférence Francophone de MOdélsaton et SIMulaton - MOSIM 08 - du mars au avrl 008 - Pars - France «Modélsaton, Optmsaton et Smulaton des

Plus en détail

Comparaison d approches pour la détection et l identification de visages 2D

Comparaison d approches pour la détection et l identification de visages 2D Comparason d approches pour la détecton et l dentfcaton de vsages 2D Ans CHAARI,2,3 Sylve LELANDAIS,2 Mohamed SAAIDIA 2 Vncent VIGNERON 2 - Mohamed BEN AHMED 3 () IU d Evry Département Qualté, Logstque

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Paramétrer le diaporama

Paramétrer le diaporama PowerPont 2013 - Fonctons avancées Daporama Daporama PowerPont 2013 - Fonctons avancées Paramétrer le daporama Le daporama est la projecton de la présentaton à l écran. Ouvrez la présentaton à projeter.

Plus en détail

Utilisez cette application pour numériser, convertir puis enregistrer l'image numérisée dans un dossier spécifique.

Utilisez cette application pour numériser, convertir puis enregistrer l'image numérisée dans un dossier spécifique. 3ULVHHQPDLQ %RXWRQ )RQFWLRQ Start Numérse et envoe l'mage capturée en une seule étape à l'applcaton affectée au bouton. Photo Prnt Numérse et envoe l'mage capturée à l'utltare Photo Prnt de EPSON Smart

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

Chapitre 1 : Images données par une lentille mince convergente

Chapitre 1 : Images données par une lentille mince convergente Chaptre 1 : Images données par une lentlle mnce convergente Termnale S Spécalté Chaptre 1 : Images données par une lentlle mnce convergente bectfs : - Constructon graphque de l mage d un obet plan perpendculare

Plus en détail

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7 Premère parte Proportonnalté 1 Reconnaître des stuatons de proportonnalté....... 7 2 Trater des stuatons de proportonnalté en utlsant un rapport de lnéarté........................ 8 3 Trater des stuatons

Plus en détail

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 1. Introducton La factorsaton est l un des ponts où l analoge entre nombres enters et polynômes se rompt. Par exemple, en caractérstque nulle, on peut trouver

Plus en détail

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 1. Quadrimestre 1-2. Pondération 5. Nombre de crédits 5

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 1. Quadrimestre 1-2. Pondération 5. Nombre de crédits 5 Informatons de l'unté d'ensegnement Implantaton ECAM Cursus de Bacheler en Scences ndustrelles Informatque et communcaton B1030 Cycle 1 Bloc 1 Quadrmestre 1-2 Pondératon 5 Nombre de crédts 5 Nombre d heures

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

Classification des images des dattes par SVM : contribution à l amélioration du processus de tri

Classification des images des dattes par SVM : contribution à l amélioration du processus de tri Classfcaton des mages des dattes par SVM : contrbuton à l améloraton du processus de tr Djeffal Abdelhamd 1, Regueb Salah 1, Babahenn Mohamed Chaouk 1,Taleb Ahmed Abdelmalk 2, 1 Département d Informatque,

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Prévision des ventes des articles textiles confectionnés. B. Zitouni*, S. Msahli* * Unité de Recherches Textiles, Ksar-Hellal, Tunisie.

Prévision des ventes des articles textiles confectionnés. B. Zitouni*, S. Msahli* * Unité de Recherches Textiles, Ksar-Hellal, Tunisie. Prévson des ventes des artcles textles confectonnés B Ztoun*, S Msahl* * Unté de Recherches Textles, Ksar-Hellal, Tunse Résumé Dans cette étude, on se propose de détermner s le recours à des réseaux de

Plus en détail

Amélioration d une reconstruction 3D par voxels ( Visual Hull ) à l aide de la stéréo-vision

Amélioration d une reconstruction 3D par voxels ( Visual Hull ) à l aide de la stéréo-vision Améloraton d une reconstructon 3D par voxels ( Vsual Hull ) à l ade de la stéréo-vson Erc Nowak DEA IARFA 2002/2003 Rapport de stage de DEA Leu du stage : INRIA de Rocquencourt Projet : MIRAGES Responsable

Plus en détail

Organisation et optimisation des données pour l apprentissage de structure d un réseau bayésien multi-entités

Organisation et optimisation des données pour l apprentissage de structure d un réseau bayésien multi-entités Organsaton et optmsaton des données pour l apprentssage de structure d un réseau bayésen mult-enttés 1 1 3 H. Bouhamed, A. Reba,. Lecroq, M. Jaoua 1 3 Laboratore d'informatque, du ratement de l'informaton

Plus en détail

Cours #8 Optimisation de code

Cours #8 Optimisation de code ELE-784 Ordnateurs et programmaton système Cours #8 Optmsaton de code Bruno De Kelper Ste nternet : http://www.ele.etsmtl.ca/academque/ele784/ Cours # 8 ELE784 - Ordnateurs et programmaton système 1 Plan

Plus en détail

Application du système immunitaire artificiel ordinaire et amélioré pour la reconnaissance des caractères artificiels

Application du système immunitaire artificiel ordinaire et amélioré pour la reconnaissance des caractères artificiels 9 Nature & Technology Applcaton du système mmuntare artfcel ordnare et améloré pour la reconnassance des caractères artfcels Hba Khell a, Abdelkader Benyettou a a Laboratore Sgnal Image Parole SIMPA-,

Plus en détail

Impact de la chirurgie sur une cohorte d adultes d souffrant d éd. épilepsie partielle pharmacorésistante

Impact de la chirurgie sur une cohorte d adultes d souffrant d éd. épilepsie partielle pharmacorésistante Impact de la chrurge sur une cohorte d adultes d souffrant d éd éplepse partelle pharmacorésstante sstante: Analyse par score de propenson 4 ème Conférence Francophone d Epdémologe Clnque - Congrès thématque

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Interface OneNote 2013

Interface OneNote 2013 Interface OneNote 2013 Interface OneNote 2013 Offce 2013 - Fonctons avancées Lancer OneNote 2013 À partr de l'nterface Wndows 8, utlsez une des méthodes suvantes : - Clquez sur la vgnette OneNote 2013

Plus en détail

RAPPORT DE STAGE. Approcher la frontière d'une sous-partie de l'espace ainsi que la distance à cette frontière. Sujet : Master II : SIAD

RAPPORT DE STAGE. Approcher la frontière d'une sous-partie de l'espace ainsi que la distance à cette frontière. Sujet : Master II : SIAD UFR SCIENCES ET TECHNOLOGIES DEPARTEMENT DE MATHEMATIQUES ET INFORMATIQUE 63 177 AUBIERE CEDEX Année 2008-2009 Master II : SIAD RAPPORT DE STAGE Sujet : Approcher la frontère d'une sous-parte de l'espace

Plus en détail

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE C. NOTICE TECHNIQUE C.1. Introducton et grands prncpes... 5 C.1.1. Objet du calcul et champ d applcaton... 5 C.1.2. Introducton aux méthodes de calcul et vérfcatons proposées... 6 C.1.2.1. Présentaton

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation)

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation) GENESS - Generalzed System for mputaton Smulatons (Système généralsé pour smuler l mputaton) GENESS est un système qu permet d exécuter des smulatons en présence d mputaton. L utlsateur fournt un ensemble

Plus en détail

Analyses de sensibilité et Recalage de modèles thermiques spatiaux à l aide d algorithmes génétiques.

Analyses de sensibilité et Recalage de modèles thermiques spatiaux à l aide d algorithmes génétiques. Analyses de sensblté et Recalage de modèles thermques spataux à l ade d algorthmes génétques. Approches stochastques et Industre 2&3/02/2006 F.JOUFFROY/A.CAPITAINE Plan de la présentaton Contexte Modélsaton

Plus en détail

Partie I: Différences finies avec centrage partiel

Partie I: Différences finies avec centrage partiel U. PARIS VI et ÉCOLE POLYTECHNIQUE 7 anver 04 Spécalté Probablté et Fnance du Master de Scences et Technologe EXAMEN DU COURS ANALYSE NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES EN FINANCE verson 03/0/04

Plus en détail

0HVXUHGH ODPDWULFHGHGLVWULEXWLRQGHWUDILF. GDQVXQUpVHDXDYHFGpERUGHPHQW. (Exercices inclus) Mr. H. Leijon, ITU

0HVXUHGH ODPDWULFHGHGLVWULEXWLRQGHWUDILF. GDQVXQUpVHDXDYHFGpERUGHPHQW. (Exercices inclus) Mr. H. Leijon, ITU /$,78'RF) 0HVXUHGH ODPDWULFHGHGLVWULEXWLRQGHWUDILF GDQVXQUpVHDXDYHFGpERUGHPHQW (Exercces nclus) Mr. H. Leon, ITU 8,,7($7,$/('(67(/(&008,&$7,6,7($7,$/7(/(&008,&$7,8, 8,,7($&,$/'(7(/(&08,&$&,(6 - - 0(68('(/$0$7,&('(',67,%87,'(7$),&'$68(6($8$9(&'(%'(0(7

Plus en détail

Feuilles de style CSS

Feuilles de style CSS Feulles de style CSS 71 Feulles de style CSS Les standards du web Les langages du web : le HTML et les CSS Depus la verson 4 de l'html (décembre 1999), le W3C propose les feulles de style en cascade, les

Plus en détail

Détection et suivi de visages par Support Vector Machine robustes aux changements d échelle

Détection et suivi de visages par Support Vector Machine robustes aux changements d échelle Détecton et suv de vsages par Support Vector Machne robustes au changements d échelle Lonel CARMINATI Drectrce de Thèse : Jenny Benos-Pneau Projet Analyse et Indeaton Vdéo lcarmna@labr.fr http://www.labr.fr/recherche/imageson/aiv/

Plus en détail

Schlüter -KERDI-BOARD. Support de pose, panneau d agencement, étanchéité composite (SPEC)

Schlüter -KERDI-BOARD. Support de pose, panneau d agencement, étanchéité composite (SPEC) Schlüter -KERDI-BOARD Support de pose, panneau d agencement, étanchété composte (SPEC) Schlüter -KERDI-BOARD Schlüter -KERDI-BOARD Le support de pose unversel pour carrelages Important! Qu l s agsse d

Plus en détail

10.1 Inférence dans la régression linéaire

10.1 Inférence dans la régression linéaire 0. Inférence dans la régresson lnéare La régresson lnéare tente de modeler le rapport entre deux varables en adaptant une équaton lnéare avec des données observées. Chaque valeur de la varable ndépendante

Plus en détail

éléments d'analyse statistique

éléments d'analyse statistique éléments danalse statstque applcaton à lhdrologe deuxème édton D. Ther octobre 989 R 30 73 EAU 4S 89 BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES SERVICES SOL ET SOUS-SOL Département Eau B.P. 6009-45060

Plus en détail

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique Analyse fonctonnelle Chaptre S. Antone Tahan, ng. Ph.D. Département de géne mécanque Ma 009 Manuel : Métrologe MEC66 Auteur : Antone Tahan, ng., Ph.D. atahan@mec.etsmtl.ca ère édton : novembre 004 ème

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

Banque d exercices pour le cours de "mise à niveau" de statistique de M1 AgroParisTech

Banque d exercices pour le cours de mise à niveau de statistique de M1 AgroParisTech Banque d exercces pour le cours de "mse à nveau" de statstque de M1 AgroParsTech Instructons pour les exercces 1. Lorsque ren n est précsé, on suppose que la dstrbuton étudée est gaussenne. Pour les exercces

Plus en détail

EXEMPLES D UTILISATION DE LA TECHNIQUE DES OBSERVATIONS INSTANTANÉES.

EXEMPLES D UTILISATION DE LA TECHNIQUE DES OBSERVATIONS INSTANTANÉES. EXEMPLES D UTILISATIN DE LA TECHNIQUE DES BSERVATINS INSTANTANÉES. Chrstan Fortn, ng., Ph.D. Ergonome et hygénste du traval Centre of santé et servces socaux de la Montagne, Montréal. Résumé La technque

Plus en détail

1. INTRODUCTION. MOT-CLÉS : tâches, ordonnancement, optimisation, ressource, coût

1. INTRODUCTION. MOT-CLÉS : tâches, ordonnancement, optimisation, ressource, coût Algorthme d ades à la décson pour Optmser l Ordonnancement des tâches de mantenance en temps-réel. Mr Aboussalm Assam, Mr Medoun Mohamed LGII- Laboratore du Géne Industrel et nformatque Ensa Agadr Emal

Plus en détail

UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL

UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL Yohan KABLA ECP - 3 EME ANNEE MAP SMF UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL 5 MAI NOVEMBRE 00 MAITRES DE

Plus en détail

COMPARAISON DE MÉTHODES POUR LA CORRECTION

COMPARAISON DE MÉTHODES POUR LA CORRECTION COMPARAISON DE MÉTHODES POUR LA CORRECTION DE LA NON-RÉPONSE TOTALE : MÉTHODE DES SCORES ET SEGMENTATION Émle Dequdt, Benoît Busson 2 & Ncolas Sgler 3 Insee, Drecton régonale des Pays de la Lore, Servce

Plus en détail

DÉCLARATIONS POUR LA BALANCE DES PAIEMENTS

DÉCLARATIONS POUR LA BALANCE DES PAIEMENTS DÉCLARATIONS POUR LA BALANCE DES PAIEMENTS GUICHET D ÉCHANGES DE FICHIERS SUR INTERNET GFIN TABLE DES MATIÈRES 1 1. PRINCIPES GÉNÉRAUX... 3 1.1 GÉNÉRALITÉS... 3 1.2 ÉLÉMENTS TECHNIQUES... 3 1.3 SPÉCIFICITÉS

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

TP Programmation de protocoles de communication Basé sur un TP de M1- Master IST, Université Paris-Sud

TP Programmation de protocoles de communication Basé sur un TP de M1- Master IST, Université Paris-Sud IUT Bordeaux 1 2008-2009 Département Informatque ASR2-Réseaux TP Programmaton de protocoles de communcaton Basé sur un TP de M1- Master IST, Unversté Pars-Sud Ce TP a pour objectf d'nter à la programmaton

Plus en détail

Globalisation de l Algorithme de Nelder-Mead : Application aux Composites

Globalisation de l Algorithme de Nelder-Mead : Application aux Composites INSA de Rouen LMR - Laboratore de Mécanque UMR 638 Rapport Technque : Globalsaton de l Algorthme de Nelder-Mead : Applcaton aux Compostes Marco Antôno Luersen, Doctorant au LMR Rodolphe Le Rche, Chargé

Plus en détail

Modélisation et conception d algorithmes pour la planification automatique du personnel de compagnies

Modélisation et conception d algorithmes pour la planification automatique du personnel de compagnies Modélsaton et concepton d algorthmes pour la planfcaton automatque du personnel de compagnes aérennes Carmen Draghc To cte ths verson: Carmen Draghc. Modélsaton et concepton d algorthmes pour la planfcaton

Plus en détail