II - Estimation d'un paramètre par intervalle de confiance

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "II - Estimation d'un paramètre par intervalle de confiance"

Transcription

1 II - Estimatio d'u paramètre par itervalle de cofiace 1 ) - Gééralités sur la costructio O veut estimer u paramètre (moyee, proportio ) d'u caractère das ue populatio P. Ue estimatio poctuelle à partir d'u échatillo doé e reseige pas beaucoup sur le degré d'approximatio du paramètre. O détermie des réels k 1 et k (dépedat évetuellemet du paramètre que l'o cherche à estimer) tels que P[k 1 Z k ] = 1 α où Z est ue variable aléatoire dot o coaît la loi d'après la théorie de l'échatilloage et α la proportio d'échatillos doat ue valeur observée de Z jugée comme peu probable, α est le seuil de cofiace et 1 α, le iveau de cofiace (e gééral α vaut 5 %, 10 % ou 1 %). U échatillo doe ue valeur observée z obs de Z, o fait cofiace au hasard à 1 α et o suppose que la valeur du paramètre cherchée fait e sorte que k 1 z obs k. Les valeurs du paramètre pour lesquelles cette iégalité est vraie costituet u itervalle de cofiace du paramètre au seuil de cofiace α. Plus o fait cofiace au hasard, plus α est petit (à la limite si o faisait totalemet cofiace au hasard, o devrait predre α = 0 et l'itervalle de cofiace du paramètre serait IR). ) - Estimatio d'ue proportio par itervalle de cofiace a) - Problème O veut estimer la proportio p d'idividus ayat ue certaie propriété das ue populatio P, à partir de l'observatio de la fréquece f é de la propriété das u échatillo E de taille. b) - Détermiatio Soit α u seuil de cofiace. Soit F la variable aléatoire qui, à chaque échatillo de taille, associe la proportio des idividus ayat la propriété étudiée. Examios ce qui se passe das les trois cas suivats. ❶ 50 : la loi de Y = est approchée par la loi ormale N (0 ; 1). La loi de Y e déped pas de p, elle permet de détermier le réel tel que P( Y ) = 1 α (k 1 = et k = ), alors P( Y ) = α et Φ( ) = 1 α où Φ est la foctio de répartitio de la loi ormale cetrée réduite. E répartissat le risque de faço symétrique, la logueur de l'itervalle [k 1 ; k ] est miimale car la loi ormale cetrée réduite est uimodale et distribuée de faço symétrique par rapport à 0. Das le cas où la variable aléatoire dot o coaît la loi e remplit pas ces coditios, o répartit quad même le risque de faço symétrique mais cela 'a rie d'optimal. O fait cofiace au hasard à 1 α et o admet que la valeur observée f é de F à partir de l'échatillo E vérifie l'iégalité f é p, o obtiet f é p f é + Stage "Eseiger la statistique iféretielle e BTSA" - B. Chaput - ENFA - Estimatio 3

2 Exercice 3 U itervalle de cofiace de p au iveau de cofiace 1 α est f é L'itervalle aléatoire F u α cofiace α. Remarque : ; F + u α Si α dimiue, augmete et l'amplitude de l'itervalle augmete. ; f é +. est u itervalle de cofiace de p au seuil de O cosidère la populatio d'ue grade ville. O veut estimer la proportio de persoes de la ville ées e javier et pour cela, o prélève das cette populatio u échatillo de 400 persoes das lequel o costate que 3 persoes sot ées au mois de javier. Doer ue estimatio de la proportio de persoes de la ville ées e javier par itervalle de cofiace au iveau de cofiace de 95 %. ❷ 30, p 15 et > 5 : la loi de X = est approchée par la loi ormale N (0 ; 1). O détermie le réel tel que P( X ) = 1 α. O fait cofiace au hasard à 1 α et o admet que f é vérifie l'iégalité f é p, e résolvat cette double iéquatio du secod degré e p,o obtiet : f é f é + + p U itervalle de cofiace de la proportio p au iveau de cofiace 1 α est f é + F + cofiace α f é + + ; F + + ; est u itervalle de cofiace de p au seuil de Stage "Eseiger la statistique iféretielle e BTSA" - B. Chaput - ENFA - Estimatio 4

3 ❸ Das tous les cas, la loi de F est la loi biomiale B ( ; p). La loi de F déped de p et est discrète, k 1 et k dépedet de p. O pred pour k 1 (p) le plus grad etier tel que P[F k 1 (p)] 1 α et pour k (p) le plus petit etier tel que P[F k (p)] 1 α. Aisi P[k 1(p) F k (p)] 1 α. O tire u échatillo au hasard, o admet que l'effectif observé f é du caractère das l'échatillo est compris etre k 1 (p) et k (p). O utilise alors ue table de la foctio de répartitio des lois biomiales de premier paramètre pour détermier u itervalle coteat les valeurs de p faisat e sorte que k 1 (p) < f é < k (p). L'itervalle aisi costitué est u itervalle de cofiace de p au seuil de cofiace α. Pour éviter ce travail fastidieux, o utilise des abaques de loi biomiale. U abaque est u réseau de courbes e coordoées cartésiees (f, p). Chaque courbe correspod à ue taille d'échatillo et doe les bores de l'itervalle de cofiace e foctio de l'observatio f é de F das l'échatillo E. Stage "Eseiger la statistique iféretielle e BTSA" - B. Chaput - ENFA - Estimatio 5

4 Itervalles de fluctuatio obteus trois méthodes pour ue proportio p f é E rouge avec Y = Pour ue valeur de p, l'itervalle de fluctuatio de la fréquece d'échatilloage F au iveau de probabilité de 95%, est l itervalle p 1,96 E oir avec Y = p (1 p) ; p + 1,96 p (1 p) Pour ue valeur de p, l'itervalle de fluctuatio de la fréquece d'échatilloage F au iveau de probabilité de 95%, est l itervalle p p + + ; E bleu avec l'approximatio du programme de secode Pour ue valeur de p, l'itervalle de fluctuatio de la fréquece d'échatilloage F au iveau de probabilité de 95%, est l itervalle p 1 ; p + 1. Stage "Eseiger la statistique iféretielle e BTSA" - B. Chaput - ENFA - Estimatio 6

5 3 ) - Estimatio d'ue moyee par itervalle de cofiace a) - Problème O veut estimer la moyee µ d'u caractère quatitatif das ue populatio P à partir de l'observatio d'u échatillo E de taille. Soit σ l'écart-type du caractère das la populatio. b) - Détermiatio Soit α u seuil de cofiace. Soit X et S les variables aléatoires qui, à chaque échatillo de taille, associet respectivemet la moyee du caractère étudié et so écart-type corrigé. X µ ❶ σ est cou, la loi de U = est σ la loi ormale N (0 ; 1) si le caractère est distribué ormalemet das la populatio, approchée par la loi ormale N (0 ; 1)si 30 La loi de U doée par la théorie de l'échatilloage e déped pas de µ, elle permet de détermier le réel tel que P( U ) = 1 α (k 1 = et k = ), alors P( U ) = α et Φ( ) = 1 α où Φ est la foctio de répartitio de la loi ormale cetrée réduite. Si o fait cofiace au hasard à 1 α, o peut supposer que la valeur observée m é de X das l'échatillo vérifie l'iégalité m é µ u σ α, o obtiet m é u σ α µ m é + u σ α U itervalle de cofiace de la moyee µ au seuil de cofiace α est m é u σ α ; m é + u σ α. L'itervalle aléatoire X σ uα ; X + u σ α est u itervalle de cofiace de µ au seuil de cofiace α. Stage "Eseiger la statistique iféretielle e BTSA" - B. Chaput - ENFA - Estimatio 7

6 X µ ❷ σ est icou et o coaît la loi de T = S La loi de T doée par la théorie de l'échatilloage e déped pas de µ, elle permet de détermier le réel t α tel que P( t α T t α ) = 1 α (k 1 = t α et k = t α ), alors P( T t α ) = α et Φ(t α ) = 1 α. O fait cofiace au hasard à 1 α et o admet que les valeurs observées m é et s é das l'échatillo de X et S respectivemet, vérifiet l'iégalité t α m é µ s é t α, o obtiet m é t α s é µ m é + t α s é. U itervalle de cofiace de la moyee µ au seuil de cofiace α est m é t s é α ; m é + t s é α L'itervalle aléatoire X t S α ; X + t S α est u itervalle de cofiace de µ au seuil de cofiace α. Exercice 4 U grossiste achète u lot de plusieurs milliers de poulets à ue coopérative agricole. Il voudrait u ecadremet de la masse moyee µ des poulets dot il serait "sûr" à 90 % (le iveau de cofiace est 0,9). Pour cela, il prélève au hasard 60 poulets du lot. La moyee de l échatillo est m é = 1,5 kg et so écart-type est s é = 0, kg. 1 ) - Doer s é l'écart-type corrigé de l'échatillo. ) - Doer ue estimatio de µ par u itervalle de cofiace au seuil de 10 %.. Exercice 5 U cetre de trasfusio saguie désire coaître, à 0,05 près, la proportio p de persoes du groupe sagui O (doeurs uiversels) das sa zoe d'actio et cela au iveau de cofiace de 99 %. Détermier la taille de l'échatillo à prélever das cette populatio pour satisfaire cette demade. Exercice 6 Ue semaie avat des électios, u istitut de sodage a iterrogé, au hasard, persoes ( est de l'ordre de plusieurs cetaies) sur leurs itetios de vote. L'istitut doe au iveau de cofiace de 95 %, l'itervalle de cofiace [34,7 % ; 43,37 %] pour le pourcetage d'électeurs favorables au cadidat Marti. Détermier la taille de l'échatillo iterrogé par l'istitut de sodage. Stage "Eseiger la statistique iféretielle e BTSA" - B. Chaput - ENFA - Estimatio 8

7 Exercice 7 O veut estimer le ombre N d'oiseaux d'ue certaie espèce das ue régio. Pour cela, o e capture 90 que l'o bague, puis que l'o relâche. O cherche esuite à estimer le pourcetage p d'oiseaux bagués das la populatio : quelque temps après, o capture 110 oiseaux ; après chaque capture, o observe si l'aimal est bagué ou o, puis o le relâche (tirage avec remise) ; le ombre d'oiseaux bagués aisi observés est 17. ❶ Détermier ue estimatio poctuelle de p. ❷ Détermier u itervalle de cofiace de p au iveau de 95 %. ❸ Utiliser les résultats précédets pour détermier u ecadremet de N. Exercice 8 U échatillo de 1 mesures de la résistace de rupture de certais fils de coto a pour moyee 7,38 kg et pour écart-type 1,4 kg. O suppose que les mesures de la résistace sot réparties selo ue loi ormale. Détermier u itervalle de cofiace de la résistace moyee de rupture au seuil de cofiace de a) 5 % b) 1 %. Exercice 9 U laboratoire vérifie la résistace à l'éclatemet (e kg/cm ) des réservoirs d'essece d'u fabricat. Des essais similaires, réalisés il y a u a, permettet de cosidérer que la résistace à l'éclatemet est distribuée ormalemet avec ue variace de 9. Des essais sur u échatillo de 10 réservoirs coduiset à ue résistace moyee à l'éclatemet de 19 kg/cm. Estimer par itervalle de cofiace la résistace moyee à l'éclatemet de ce type de réservoir au iveau de cofiace de 95 %. Exercice 10 Le comptable d'ue etreprise veut obteir ue estimatio du coût moye de la mai d'œuvre directe pour la fabricatio d'ue pièce particulière. Sur u échatillo aléatoire de 1 lots, o a obteu les coûts e euros suivats : 98 ; 990 ; 985 ; 855 ; 910 ; 947 ; 84 ; 964 ; 941 ; 760 ; 810 ; 90. O suppose que les coûts sot répartis ormalemet das l esemble des lots de la productio. 1 ) - Estimer poctuellemet la moyee et l'écart-type du coût de mai d'œuvre par lot produit. ) - Estimer par itervalle de cofiace, au iveau de cofiace de 95 %, la moyee du coût de mai d'œuvre par lot produit. Stage "Eseiger la statistique iféretielle e BTSA" - B. Chaput - ENFA - Estimatio 9

STATISTIQUES - ESTIMATION

STATISTIQUES - ESTIMATION STATISTIQUES - ESTIMATION I Echatilloage et estimatio : itroductio O se situe ici das 2 domaies des statistiques qui sot ceux de l «échatilloage» et de l «estimatio». Ces 2 domaies ot des cotextes d applicatio

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

Echantillon : Collection d'individus prélevés dans la population statistique.

Echantillon : Collection d'individus prélevés dans la population statistique. SONDAGE (ECHANTILLONNAGE) POPULATION STATISTIQUE N idividus possédat ue modalité yi de la (ou des) variable(s) y ( i N) PARAMETRES valeur cetrale dispersio corrélatio µ σ² ρ moyee variace coef. corr. ECHANTILLON

Plus en détail

COURS N 6 : Estimations

COURS N 6 : Estimations COURS N 6 : Estimatios O peut rappeler que les biostatistiques ot pour objectif de predre e compte la variabilité iteridividuelle, de résumer et décrire des doées et de comparer des échatillos. Nous avos

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

Estimation de paramètres

Estimation de paramètres CHAPITRE 8 Estimatio de paramètres 1. Distributio des moyees des échatillos Das ce chapitre, ous étudieros commet est distribué la moyee de tous les échatillos de taille possibles d ue certaie populatio.

Plus en détail

i la moyenne empirique de X n n v =

i la moyenne empirique de X n n v = Corrigé Statistiques iféretielle par par Pierre Veuillez Itervalle de cofiace. Exercice Détermier ue valeur approchée de la loi de la moyee empirique : E X E X, V X V X doc X N E X, V X Exercices. Variace

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

Tous les quatre pensent ensuite utiliser la formule bien connue : f

Tous les quatre pensent ensuite utiliser la formule bien connue : f Exercices sur les Itervalles de cofiace Exercice Le parti d u cadidat commade u sodage réalisé à partir de 600 persoes à l issue duquel il est doé gagat avec 52% des voix. A-t-il des raisos d être cofiat?

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

Introduction aux théorèmes limites et aux intervalles de confiance

Introduction aux théorèmes limites et aux intervalles de confiance Chapitre 5 Itroductio aux théorèmes limites et aux itervalles de cofiace Objectifs du chapitre. Savoir approcher ue loi biomiale par ue loi de Poisso ou ue loi ormale. 2. Savoir approcher ue loi e appliquat

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne 1 lois usuelles 11 Loi Biomiale B(, p) q = 1 p p(x = k) = C k p k q k Espérace E(X) = p Variace : V ar(x) = pq Écart type : σ = pq 12 Loi de Poisso P(λ) : loi de Poisso de paramètre λ > 0 : X(Ω) = N λ

Plus en détail

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation U.F.R. S.P.S.E. Licece de psychologie L3 PLPSTA0 Bases de la statistique iféretielle UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Distributios d'échatilloage - Itervalles de variatio Exercice 1

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Aée uiversitaire 2014 2015 L2 Écoomie Cours de B. Desgraupes Méthodes Statistiques Séace 07: Tests de coformité II Table des matières 1 Tests sur

Plus en détail

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3 Tests Chapitre Table des matières 1 Pricipe d u test 1 11 Défiitios 1 Méthode géérale 3 Test de coformité à u paramètre 3 1 Test de coformité à ue moyee 3 Test de coformité à ue proportio 4 3 Test d homogééité

Plus en détail

Intervalles de confiance

Intervalles de confiance Itervalles de cofiace H4 H4 Itervalles de cofiace Vocabulaire : u correspod à ue fiabilité (ou cofiace) de 95 %, u correspod à ue fiabilité (ou cofiace) de 99 % 0 ) Echatillo o exhaustif La théorie des

Plus en détail

DISTRIBUTIONS D'ECHANTILLONNAGE et INTERVALLES DE VARIATION

DISTRIBUTIONS D'ECHANTILLONNAGE et INTERVALLES DE VARIATION Chapitre 4 DISTRIBUTIONS D'ECHANTILLONNAGE et INTERVALLES DE VARIATION Bases de la statistique iféretielle PLPSTA0 119 Chapitre 4 (suite ) 1. Itroductio. Estimatio d'ue moyee Distributio d'échatilloage

Plus en détail

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne :

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne : I. Itroductio. LOIS NORMALES. Voici quelques exemples de courbes proveat de la vie quotidiee : La répartitio du QI das la populatio Le poids d ue populatio de chatos Répartitio des coscrits e 1907 Age

Plus en détail

Résumé de statistique inductive

Résumé de statistique inductive Uiversité de Bourgoge Faculté de Médecie et de Pharmacie Résumé de statistique iductive NB : les iformatios coteues das ce polycopié e fot e aucu cas office de référece pour le cocours, il s agit uiquemet

Plus en détail

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1.

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1. Statistiques iféretielles Pierre-Heri WUILLEMIN Licece d Iformatique Uiversité Paris 6 Itroductio Soit ue populatio de taille N sur laquelle o observe ue propriété, dot o veut calculer moyee µ et de variace

Plus en détail

Estimation par intervalle de confiance

Estimation par intervalle de confiance 62 CHAPITRE 12 Estimatio par itervalle de cofiace 1. Estimatio de la moyee par itervalle de cofiace 1.1. Calcul de la marge d erreur. O veut maiteat faire ue estimatio par itervalle de cofiace de la moyee

Plus en détail

Techniques d enquête

Techniques d enquête Sodage aléatoire simple Techiques d equête Exercice 1 Sur les 500 élèves de M1 de l Uiversité d Auverge, o veut coaître la proportio P qui souhaitet faire u Master à Clermot-Ferrad. Parmi les 150 élèves

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

Tests Statistiques. Tony Bourdier ESSTIN

Tests Statistiques. Tony Bourdier ESSTIN Tests Statistiques Toy Bourdier ESSTIN 9-1 1 Formulatio 1.1 Notio de test Soit X ue variable aléatoire réelle de desité f θ x dépedat d u paramètre θ de valeur icoue. O formule deux hypothèses sur la valeur

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple.

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple. Théorie des tests : Rappel très simplifié sur u exemple. Aexe I Test de l efficacité d u remède sur des malades atteit d u rhume. p 0 : probabilité de guérir das les huit jours avec u placebo p 1 : probabilité

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P.

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. 351-355) Page 1 1. Notio de «série statistique» Il s agit d ue série de doées recueillies auprès des différetes uités statistiques d u

Plus en détail

Master Eseec Statistique pour l expertise - partie2

Master Eseec Statistique pour l expertise - partie2 Master Eseec Statistique pour l expertise - partie2 Christia Laverge Uiversité Paul Valéry - Motpellier 3 http://moodle-miap.uiv-motp3.fr http://www.uiv-motp3.fr/miap/es (UPV) Eseec 1 / 57 Lois limites

Plus en détail

Intervalles de fluctuations et intervalles de confiance

Intervalles de fluctuations et intervalles de confiance Complémets e statistique. Préparatio au Capes. Uiversité de Rees 1. 2017. Complémets e Statistique Préparatio au Capes Uiversité de Rees 1 Itervalles de fluctuatios et itervalles de cofiace Table des matières

Plus en détail

Chapitre 14 Échantillonnage et estimation

Chapitre 14 Échantillonnage et estimation Chapitre 4 Échatilloage et estimatio I. Itroductio O se situe das deux domaies des statistiques : l'échatilloage et l'estimatio. Ces deux domaies appartieet au champ des statistiques iféretielles et ot

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

Intervalles de fluctuations et intervalles de confiance

Intervalles de fluctuations et intervalles de confiance Complémets e statistique. Préparatio au Capes. Uiversité de Rees 1. 2015. Complémets e Statistique Préparatio au Capes Uiversité de Rees 1 Itervalles de fluctuatios et itervalles de cofiace Table des matières

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

Lois normales et autres lois dérivées

Lois normales et autres lois dérivées Lois ormales et autres lois dérivées - Lois ormales a) - Défiitio O dit qu'ue variable aléatoire réelle X suit la loi ormale (ou gaussiee) de paramètres et, otée N ( ; ), si elle admet pour desité la foctio

Plus en détail

Terminale S Chapitre 10 «Loi Normale» 21/03/2013

Terminale S Chapitre 10 «Loi Normale» 21/03/2013 Termiale S Chapitre «Loi Normale» /3/3 I) Itroductio O fait ue étude statistique de la taille des idividus d'ue populatio. Das chaque cas, la taille moyee est de 7 cm, avec u écart type de cm. O trace

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

STATISTIQUE INFERENTIELLE TRAVAUX DIRIGES

STATISTIQUE INFERENTIELLE TRAVAUX DIRIGES Pôle Uiversitaire Léoard de Vici Statistique iféretielle STATISTIQUE INFERENTIELLE TRAVAUX DIRIGES C. GUILLOT STATINF_TD.pdf 1 Pôle Uiversitaire Léoard de Vici Statistique iféretielle EXERCICE 1: Ue populatio

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Calcul des probabilités 2 (M-2.1)

Calcul des probabilités 2 (M-2.1) Calcul des probabilités (M-.) I. Probabilités sur u esemble fii. Défiitios Défiitio Ue expériece aléatoire est ue expériece dot il est impossible de prévoir l issue (mais o coaît toutes les issues possibles)

Plus en détail

Divers exercices de probabilité

Divers exercices de probabilité Divers exercices de probabilité Traiter e priorité les quatre premiers exercices de chaque sectio. 1 Probabilité Exercice 1.1 Mo voisi a deux efats. 1- Le plus jeue est ue fille, quelle est la probabilité

Plus en détail

TUTORAT UE Biostatistiques Correction du concours blanc 03/11/2011

TUTORAT UE Biostatistiques Correction du concours blanc 03/11/2011 FACULTE De PHARMACIE TUTORAT UE4 2011-2012 Biostatistiques Correctio du cocours blac 03/11/2011 QCM 1 : b, c, d a Faux : P(AUB=P(A+P(B=0,55 et P(A B=Ø. b Vrai c Vrai d Vrai : C 5 - C 5 32 28 (ombre de

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

QUOI DE NOUVEAU EN PROBABILITE EN TERMINALE?

QUOI DE NOUVEAU EN PROBABILITE EN TERMINALE? QUOI DE NOUVEAU EN PROBABILITE EN TERMINALE? S ES et L STI2D et STL Probabilités Coditioemet Idépedace Coditioemet Lois à desité Loi uiforme Loi expoetielle Loi uiforme Loi uiforme Loi expoetielle Lois

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

B2 - Intervalle de confiance d une moyenne avec écart-type inconnu dans le cas d une population Gaussienne

B2 - Intervalle de confiance d une moyenne avec écart-type inconnu dans le cas d une population Gaussienne B2 - Itervalle de cofiace d ue moyee avec écart-type icou das le cas d ue populatio Gaussiee Das le cas précédet, o a costruit l IdC à partir de la var X m σ{?. Mais, maiteat σ état icou, il coviet de

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Amérique du Nord. Terminale S mai 2014

Amérique du Nord. Terminale S mai 2014 Termiale S mai 2014 Amérique du Nord 1 Exercice 1 (5 poits) Das cet exercice, tous les résultats demadés serot arrodis à 10 3 près Ue grade eseige de cosmétiques lace ue ouvelle crème hydratate Partie

Plus en détail

Contrôle du vendredi (45 minutes) 1 ère S1. II. (3 points) (E). Résoudre dans l équation sin 3x

Contrôle du vendredi (45 minutes) 1 ère S1. II. (3 points) (E). Résoudre dans l équation sin 3x 1 ère S1 Cotrôle du vedredi --01 ( miutes) Préom et om : ote : / 0 II ( poits) 1 Résoudre das l équatio si (E) Il est pas demadé d écrire l esemble des solutios I ( poits) f e foctio de cos et si O doera

Plus en détail

TD10. Loi des grands nombres, théorème central limite.

TD10. Loi des grands nombres, théorème central limite. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD10. Loi des grads ombres, théorème cetral limite. 1. Soit (U ) 1 ue suite de variables aléatoires

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

T. D. n o 2 Intervalles de confiance-correction

T. D. n o 2 Intervalles de confiance-correction T. D. o 2 Itervalles de cofiace-correctio Exercice 1. Les billes métalliques 1. Nous calculos la moyee µ 10 de l échatillo : µ 10 = 20. Calculos la variace corrigée puis l écart-type corrigé de l échatillo

Plus en détail

Convergence en loi. Théorème de la limite centrale.

Convergence en loi. Théorème de la limite centrale. Uiversité Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 10 (semaie du 2 au 6 décembre 2013 Covergece e loi. Théorème de la limite cetrale. Covergece e loi 1. Soiet (X N ue

Plus en détail

ENSEIGNEMENT DE SPÉCIALITÉ

ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

BASES DE LA STATISTIQUE INFERENTIELLE

BASES DE LA STATISTIQUE INFERENTIELLE Polytech Paris-UPMC Probabilités-statistiques Chapitre 4 BASES DE LA STATISTIQUE INFERENTIELLE Ue equête statistique est ue étude gééralemet réalisée sur u petit groupe d objets, d uités, de persoes que

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

P(X> ) = f(..) + f(...).. MAIS si on ne sait pas le max à 1-P(X< )* P(X< ) = f(..) + f( ).. Type de donnée Ex Main Excel

P(X> ) = f(..) + f(...).. MAIS si on ne sait pas le max à 1-P(X< )* P(X< ) = f(..) + f( ).. Type de donnée Ex Main Excel Les lois discrètes Réalisatios déombrables Poits portet probabilités P(X> ) = f(..) + f(...).. MAIS si o e sait pas le max à -P(X< )* P(X< )= f(..) + f(...).. P(X> ) = *-P(X< ) = F( ) è soit f( ) f( )

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

Ch.9 Fluctuation, estimation

Ch.9 Fluctuation, estimation T le ES - programme 2012 mathématiques ch.9 cahier élève Page 1 sur 10 Ch.9 Fluctuatio, estimatio Ue ure cotiet 50 % de boules blaches. O effectue, par simulatio, 20 séries de 100 tirages avec remise,

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Aée uiversitaire 2014 2015 L2 Écoomie Cours de B. Desgraupes Méthodes Statistiques Séace 11: Tests d adéquatio II Table des matières 1 Test de Kolmogorov-Smirov

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

CHAPITRE 4 Paramètres d'une série statistique

CHAPITRE 4 Paramètres d'une série statistique Cours de Mathématiques Classe de secode Statistiques CHAPITRE 4 Paramètres d'ue série statistique A) Diverses sortes de séries statistiques 1) Défiitio Ue série statistiques est u esemble de ombres, représetat

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Sessio 2016 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficiet : 4 Calculatrice autorisée coformémet

Plus en détail

Chapitre II: Notions sur les fautes et les erreurs.

Chapitre II: Notions sur les fautes et les erreurs. Chapitre II: Notios sur les fautes et les erreurs. Chapitre II: Notios sur les fautes et les erreurs.. Gééralités Mesurer c'est l'actio de comparer ue gradeur (quatité) par rapport à ue gradeur de même

Plus en détail

Estimation par intervalle de conance

Estimation par intervalle de conance SQ20 - ch7 Page 1/6 Estimatio par itervalle de coace Pricipe de costructio : Das le chapitre précédet, ous avos déi les estimateurs, et l'estimatio poctuelle d'u paramètre θ. Soit : X ue variable aléatoire

Plus en détail

Commentaires sur l'exercice 1

Commentaires sur l'exercice 1 Commetaires sur l'exercice 1 O pred comme populatio de référece le groupe des quatre efats. Cet exemple, bie que o pertiet du fait du faible effectif de la populatio, permet de mettre e place les otios

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé Baccalauréat S Nouvelle-Calédoie 7 mars 4 Corrigé A. P. M. E. P. EXERCICE 4 poits Commu à tous les cadidats Aucue justificatio était demadée das cet exercice.. Répose b. : 4e i π Le ombre i a pour écriture

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

ANOVA avec un facteur aléatoire

ANOVA avec un facteur aléatoire Chapitre 7 ANOVA avec u facteur aléatoire Jusqu à maiteat, o a supposé que les modalités du facteur étudié ot été choisies parce qu elles étaiet itrisèquemet itéressates. Le modèle à effets fixes porte

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00 MAT 2080 MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimache 15 mars 2009 de 14h00 à 17h00 INSTRUCTIONS 1. Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om,

Plus en détail

IICT BAS еissn: Lecture Notes in Computer Science and Technologies. Statistique inférentielle. Vera Angelova. eisbn:

IICT BAS еissn: Lecture Notes in Computer Science and Technologies. Statistique inférentielle. Vera Angelova. eisbn: IICT BAS еissn: 367-8666 Lecture Notes i Computer Sciece ad Techologies Statistique iféretielle Vera Agelova eisbn: 978-619-730-00-8 The series Lectures Notes i Computer Sciece ad Techologies of the Istitute

Plus en détail

Distributions d échantillonage

Distributions d échantillonage Chapitre 3 Distributios d échatilloage 3.1 Gééralités sur la otio d échatilloage 3.1.1 Populatio et échatillo O appelle populatio la totalité des uités de importe quel gere prises e cosidératio par le

Plus en détail

Echantillonnage. 1. Intervalle de fluctuation au seuil de 95% obtenu avec la loi binomiale.

Echantillonnage. 1. Intervalle de fluctuation au seuil de 95% obtenu avec la loi binomiale. Echatilloage A) Fluctuatio d échatilloage et prise de décisio 1 Itervalle de fluctuatio au seuil de 95% obteu avec la loi biomiale O s'itéresse à u caractère de proportio p das ue populatio doée O cosidère

Plus en détail

Intervenants : G.Saporta (CNAM), P.Périé (IPSOS), S.Rousseau (INSEE) Plan du cours:

Intervenants : G.Saporta (CNAM), P.Périé (IPSOS), S.Rousseau (INSEE) Plan du cours: EQUETES et SODAGES STA 108 011-01 Iterveats : G.Saporta (CAM), P.Périé (IPSOS), S.Rousseau (ISEE) Pla du cours: 1 Ouvrages recommadés: J.ATOIE Histoire des sodages (Odile Jacob, 005) P.ARDILLY Les techiques

Plus en détail

CONVERGENCE ET APPROXIMATION

CONVERGENCE ET APPROXIMATION 11-2- 2010 J.F.C. Cov. p. 1 CONVERGENCE ET APPROXIMATION I CONVERGENCE EN PROBABILITÉ 1. Défiitio 2. Ue coditio suffisate de covergece e probabilité 3. La loi faible des grads ombres 4. Ue coséquece de

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

Chapitre 7. Tests d hypothèse. Sommaire. 1. Introduction Principe des tests...3

Chapitre 7. Tests d hypothèse. Sommaire. 1. Introduction Principe des tests...3 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (8/0/003) Chapitre 7 Tests d hypothèse Sommaire. Itroductio.. 3. Pricipe des tests......3.. Choix de l hypothèse à tester.4... Hypothèse

Plus en détail

EXERCICES SIMULATION LOIS DISCRETES

EXERCICES SIMULATION LOIS DISCRETES EXERCICES SIMULATION LOIS DISCRETES EXERCICE 1 : 1) Ecrire u programme qui revoie le lacer d u lacer de dé équilibré 2) Trasformer le programme précédet pour qu il simule ue série de 100 lacers d u dé

Plus en détail

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

Echantillonnage, estimation, intervalle de confiance, test statistique Cas d une ou de deux proportions

Echantillonnage, estimation, intervalle de confiance, test statistique Cas d une ou de deux proportions S5 Gestio - Maagemet et Marketig 2015-2016 Statistiques appliquées Estimatio, tests - Proportio Uiversité de Picardie Jules Vere 2015-2016 IAE Amies Licece metio Gestio parcours Maagemet et Marketig Vete

Plus en détail

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3 3- Lois de distributio discrètes -1 Chapitre 3 : Lois de distributio discrètes 3.1 Loi de Berouilli...1 3. Loi Biomiale...1 3.3 Loi géométrique... 3.4 Loi de Pascal (loi égative biomiale)...3 3.5 Loi hypergéométrique...4

Plus en détail

On choisit de fixer le seuil de décision de telle sorte que la probabilité de rejeter l hypothèse, alors qu elle est vraie, soit inférieure à 5 %.

On choisit de fixer le seuil de décision de telle sorte que la probabilité de rejeter l hypothèse, alors qu elle est vraie, soit inférieure à 5 %. Vdouie Termiale S Activités Chapitre 9 Fluctuatio et estimatio Prise de décisio (avec la loi biomiale) O cosidère ue populatio das laquelle o suppose que la proportio d u certai caractère est p 0. Pour

Plus en détail

I] VARIABLE ALEATOIRE DISCRETE (A NOMBRE FINI DE VALEURS) : Une variable aléatoire X est une fonction définie sur Ω à valeurs dans R.

I] VARIABLE ALEATOIRE DISCRETE (A NOMBRE FINI DE VALEURS) : Une variable aléatoire X est une fonction définie sur Ω à valeurs dans R. Chapitre 5 VARIABLES ALEATOIRES LOIS FONDAMENTALES Objectifs : o o o Défiir la otio de variable aléatoire das les différets cas d uivers. Détermier la loi de probabilité d ue variable aléatoire et calculer

Plus en détail

Les mesures de tendance centrale

Les mesures de tendance centrale 6 CHAPITRE 7 Les mesures de tedace cetrale Les mesures de tedace cetrale servet à caractériser ue série statistique à l aide d ue valeur ou d ue modalité typique. Il existe trois mesures possibles : le

Plus en détail

Echantillonnage, estimation, intervalle de confiance, test statistique Cas d une ou de deux proportions

Echantillonnage, estimation, intervalle de confiance, test statistique Cas d une ou de deux proportions S3 Maths et Ifo-MIAGE 2011-2012 Statistique et Probabilités Estimatio, itervalle de cofiace, tests - Proportio Uiversité de Picardie Jules Vere 2011-2012 UFR des Scieces Licece metio Mathématiques et metio

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Statistiques

Statistiques BCPST2 9 5 2 15 Statistiques Déitio : Les esembles étudiés sot appelés populatio. Les élémets de la populatio sot appelés idividus et o appelle eectif le ombre de ces idividus. La populatio est étudiée

Plus en détail

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE MATTHIEU KOWALSKI 1. INTRODUCTION La démarche statistique cosiste à observer ue expériece aléatoire das le but de mieux coaître ses caractéristiques.

Plus en détail