Mots de longueur donnée à base de P lettres, et fonction génératrice

Dimension: px
Commencer à balayer dès la page:

Download "Mots de longueur donnée à base de P lettres, et fonction génératrice"

Transcription

1 Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des lettres, soit cas. A chaque fois il e est de même pour la deuxième lettre, et aisi de suite. Le ombre des mots est. ) Combie existe-t-il de mots de logueur e coteat qu ue seule lettre? Combie s ils ot que deux lettres différetes? Si les mots sot tous formés avec la même lettre répétée, il y a mots, autat qu il y a de lettres possibles. Si les mots de logueur cotieet seulemet deux lettres différetes, ce qui impose, o commece par choisir ces deux lettres, soit C cas. Ue fois les deux lettres choisies, il s agit de former tous les mots e coteat qu elles. Il existe mots à base de deux lettres, mais parmi eux il faut elever ceux qui e cotieet qu ue seule des deux lettres, soit deux mots. Fialemet le ombre de mots cherchés est C ( ). 3) O suppose das cette questio que =. Combie existe-t-il de mots coteat toutes les lettres? Combie e existe-t-il coteat exactemet K des lettres? Les mots de logueur coteat les lettres e sot autres que les permutatios de élémets, leur ombre est!. Supposos maiteat qu ils cotieet K lettres, avec K etre et. Commeços par choisir K lettres parmi, soit C K cas. uis plaços-ous das u de ces cas. our coaître le ombre des mots ayat K lettres doées, plaços-ous das le cotexte de la formule du crible, e cosidérat K propriétés, la propriété i, avec i etre et K, sigifiat que la lettre i est pas présete das le mot. Le ombre des mots cherchés est : S 0 S + S + (-) K S K (ous utilisos les otatios du livre Combie -Combiatoire, chapitre sur la formule du crible). Ici S 0 = K, S = C K (K ), S = C K (K ),, S K- = C K K- (K (K-)) p, S K = 0. D où le ombre de mots : C K ( K C K (K ) + C K (K ) + ( ) K- C K K- (K (K )) p ) ar exemple pour = 4, le ombre des mots est 4 4 = 56, et ils se diviset e quatre catégories: ceux coteat ue seule des 4 lettres, soit 4 mots

2 ceux coteat exactemet deux lettres, soit C 4 ( 4 ) = 84 ceux coteat exactemet trois lettres, soit C 4 3 ( ) = 44 ceux coteat les quatre lettres, soit C 4 4 ( ) = 4 Le ombre moye de lettres présetes das ces mots est,7. Remarquos au passage la formule : j= 0 j j ( ) C ( j) =! 4) O suppose doréavat que les mots sot fabriqués au hasard. Cela reviet à predre ue ure coteat boules umérotées de à, et à effectuer tirages successifs avec remise de la boule à chaque fois, ces tirages état équiprobables. E otat les uméros des boules successivemet tirées, o retrouve les mots de logueur à base de lettres. O appelle Y() la variable aléatoire correspodat au ombre de lettres (uméros) présetes das ces mots de logueur. a) Calculer les probabilités p(y() = ) et p(y() = ). Chaque mot a autat de chaces d être obteu qu u autre. Das ce cotexte d équiprobabilité, la probabilité est le ombre de cas favorables sur le ombre de cas possibles. E utilisat les résultats du et du, o trouve : p(y() = ) = = C( ) p(y() = ) = b) Calculer p(y()) = ) lorsque est iférieur ou égal à. Les cas favorables sot costitués par les mots de logueur ayat lettres différetes. Cela reviet à predre les arragemets de lettres prises parmi, soit A. D où la probabilité : A p(y()) = ) = c) Etablir ue relatio de récurrece etre le ombre de mots M( +, ) de logueur + et ayat exactemet lettres présetes, et les ombres M(, ) et M(, ) de mots de logueur et ayat respectivemet et lettres présetes. Les M( +, ) mots de diviset e deux catégories, selo leur derière lettre, la + ème.. Si la derière lettre est déjà présete das le reste du mot qui est de logueur (avec lettres présetes), il y a derières lettres possibles. O trouve aisi M(, ) mots. Si la derière lettre est pas déjà présete das le reste du mot de logueur et qui cotiet lettres différetes, il reste à choisir pour la derière lettre ue lettre autre que les, soit + cas. D où le ombre de mots M(, ) ( + ). O trouve fialemet la relatio :

3 3 M( +, ) = M(, ) + ( + )M(, ) d) E déduire ue relatio de récurrece etre probabilités O a, grâce à la relatio précédete : M ( +, ) M (, ) + ( + ) M (, ) p( Y ( + ) = ) = = = p( Y ( ) = ) + p( Y ( ) = ) 5) O pred la foctio géératrice G () associée à la loi de probabilité de Y, soit G ( ) = p( Y( ) = ) + = des 0, il suffit de predre le polyôme e : G ( ) = p( Y( ) = ) =, mais comme cette somme ifiie se termie par (quelques-us des termes de plus haut degré peuvet aussi être uls lorsque < ). E utilisat la relatio de récurrece précédete, détermier G + () e foctio de G () et de sa dérivée G (). Costatos d abord que du 4-d : G ( ) = p( Y ( + ) = ) + = = = G ' ( ) = p( Y ( ) = ) = ( ) = p( Y ( ) = ) + p( Y ( ) = ) ' ' +. E appliquat la formule = p( Y ( ) = ) + p( Y ( ) = ') = ' = 0 Das le premier Σ, o voit apparaître la dérivée, et das le deuxième Σ o a procédé à u chagemet de variable ' ' + = G ' ( ) + p( Y ( ) = ') =. ' = Das le Σ, o a elevé le terme avec = 0, puisqu il est ul, et l o a rajouté le terme avec =, qui est ul lui aussi. Si l o fait cela, c est das le but de voir apparaître les foctios géératrices, comme cela va se préciser maiteat, e cassat le Σ e deux. ' = ' = ' ' = G ' ( ) + p( Y ( ) = ') ' p( Y ( ) = ') = G ' ( ) + G ( ) G ' ( ) G+ ( ) = G ' ( ) + G ( )

4 4 6) Appelos E(Y()) la valeur moyee (ou espérace) de la variable aléatoire Y(). Utiliser la formule précédete pour trouver ue relatio de récurrece etre E(Y(+)) et E(Y()). uis doer la formule explicite de E(Y()). O sait que E(Y()) = G (). Comme o a aussi besoi de E(Y(+)) = G + (), o est ameé à dériver la formule précédete. G ' + ( ) = G '' ( ) + G ' ( ) + G ' ( ) + G ( ) Faisos maiteat =. La dérivée secode a le bo goût de disparaître, et o sait aussi que G () =. Il reste : E( Y ( + )) = E( Y ( )) + E( Y ( )) + = E ( Y ( )) + O recoaît la relatio de récurrece d ue suite arithmético-géométrique, de la forme u + = q u +, avec q =. So poit fixe est égal à. Itroduisos la suite (v ) telle que v = u. ar soustractio, o trouve : u + = q u + = q + v + = q v La suite (v ) est géométrique, sa forme explicite est v = q v avec v = u. Aisi u = q (u ) ou u = q (u ) +. Avec ici u = E(Y()) =, l espérace est égale à : ( ) E( Y ( )) = ( ) + = = 7) O pred ici =. Faire le programme qui permet d avoir E(Y()). our cela o réalise u grad ombre NBE d expérieces. Chaque expériece cosiste à faire tirages répétés avec remise das ue ure qui cotiet boules umérotées de à. A chaque fois, o compte le ombre de uméros différets obteus. E cumulat ces résultats de chaque expériece, et e divisat ce cumul par le ombre NBE d expérieces, o trouve la moyee demadée E(Y()). Costater expérimetalemet que le rapport E(Y()) / décroît lorsque augmete, e ayat tedace à se stabiliser sur ue valeur limite que l o précisera. Au cours de chaque expériece de tirages, o utilise u tableau fait[] mis iitialemet à 0. Lorsqu u uméro i est tiré, o met la case fait[i] à. Lorsque les tirages sot effectués, la somme des de ce tableau doe le ombre de uméros différets. O trouvera ci-dessous la partie stratégique du programme. O se doe le ombre d expérieces NBE, aisi que la valeur de. Comme les uméros vot de à, le tableau fait[] doit être déclaré it fait[+], la case 0 état ioccupée. cumul=0; for(experiece=0;experiece<nbe;experiece++) { for(i=;i<=;i++) fait[i]=0;

5 5 for(tirage=; tirage<=; tirage++) { umero=+radom(); fait[umero]=; } compteur=0; for(i=;i<=;i++) if (fait[i]==) compteur++; cumul+=(float)compteur; } moyee=cumul/(float)nbe; pritf("\n= %3.d valeur moyee/=: %3.4f ",,moyee/(float)); Le rapport E(Y()) / passe de 0,65 pour = 0, à 0,634 pour = 00, et 0,634 pour = 500. Il se stabilise sur ue valeur de cet ordre. 8) Calculer la valeur limite de E(Y()) / e utilisat le résultat du 6. O sait que E(Y()) = Or l( ) = e ( ) ou E( Y ( )) = ( ) et l o sait que pour grad : ted vers e. Le rapport E( Y ( ) ted vers, soit 0,63. e. l( ). Aisi Remarque fiale : O savait que l utilisatio de foctios géératrices était particulièremet efficace das les problèmes de temps d attete. O a là u exemple différet, où à défaut d être coue explicitemet, la foctio géératrice permet de calculer l espérace.

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

La Méthode de Monte Carlo

La Méthode de Monte Carlo La Méthode de Mote Carlo Etiee Pardoux UMR 6632 Laboratoire d Aalyse, Topologie, Probabilités et EA 3781 Evolutio Biologique Uiversité de Provece Etiee Pardoux (LATP) Marseille, 13/09/2006 1 / 33 Cotets

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Probabilités exercices corrigés

Probabilités exercices corrigés Termiale S Probabilités Exercices corrigés Combiatoire avec démostratio Ragemets Calcul d évéemets Calcul d évéemets Calcul d évéemets 6 Dés pipés 7 Pièces d or 8 Agriculteur pas écolo 9 Boules Jeux 6

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Arbres et dérivée d une fonction composée

Arbres et dérivée d une fonction composée Abes et déivée d ue foctio composée Nous allos voi ici commet l o peut epésete les déivées successives d ue foctio composée pa u esemble d abes fiis. f et g désigeot deux foctio idéfiimet déivables, et

Plus en détail

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 1

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 1 Licece iformatique - L Aée 0/0 Coceptio d algorithmes et applicatios (LI) COURS Résumé. Ce cours est ue iitiatio à quelques grads pricipes algorithmiques (Diviser pour Réger, Programmatio Dyamique, Algorithmes

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008 Prépa HEC Sait-Jea de Douai Probabilités Poly des exercices ECS1 2007-2008 Christia Skiada 4 septembre 2008 Spriger-Verlag Berli Heidelberg NewYork Lodo Paris Tokyo Hog Kog Barceloa Budapest Préface Voici

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Cryptographie et algorithmique

Cryptographie et algorithmique F.Gaudo 1 er ovembre 2010 Table des matières 1 Avat de commecer 2 2 Préformattage d'u texte pour aalyse 3 2.1 Élimiatio de la poctuatio et des espaces das u texte................. 3 2.2 Formatage du texte

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Divisibilité, division euclidienne, congruences

Divisibilité, division euclidienne, congruences Divisibilité, divisio euclidiee, cogrueces Résolutio de problèmes Des multiples et des diviseurs. Le code sigifie «allumée» et le code «éteite». lampe étape étape étape étape étape 5 étape 6 suivates 5

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête.

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête. Cliclasolutio Aée 2006/2007 REQUÊTES Utilité des requêtes QUESTIONNER LA BASE DE DONNÉES La foctio classique d'ue requête est de répodre à ue questio sur la base de doées. "Quels sot les cliets habitat

Plus en détail

Correction EDHEC 2007 Voie scienti que

Correction EDHEC 2007 Voie scienti que EDHE 7 ES Exercice Page orrectio EDHE 7 Voie scieti que La correctio comporte 4 pages. Exercice. Pour tout etier o ul, la foctio x 7! e x x est cotiue sur R e tat que quotiet (dot le déomiateur e s aule

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

Modes propres de vibration ; interprétation ondulatoire

Modes propres de vibration ; interprétation ondulatoire SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Ce type de compresseur est aussi appelée compresseur volumetrique.

Ce type de compresseur est aussi appelée compresseur volumetrique. Chapitre 4 Compresseurs Buts 1. Savoir que das ce cas if faut se redre compte qu il y a des effets thermique 2. Savoir qu il y a ue limite á l augmetatio de la pressio de gaz 3. Savoir quelles istabilités

Plus en détail

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011 Déombremet ECE Lycée Carot 0 ovembre 2011 Itroductio La combiatoire, sciece du déombremet, sert comme so om l idique à comter Il e s agit bie etedu as de reveir au stade du CP et d aredre à comter sur

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

Chapitre 1: Récursivité

Chapitre 1: Récursivité Chapitre 1: Récursivité 1 Rappel : la otio de foctio Cette sectio est u bref rappel de la otio de foctio e iformatique, et so utilisatio e Pytho 11 Défiitio E iformatique, ue foctio est ue routie qui retoure

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique Titre : Élémets fiis de joit mécaiques et élémets fi[...] Date : 28/10/2014 Pae : 1/10 Élémets fiis de joit mécaiques et élémets fiis de joit couplés hydromécaique Résumé : Cette documetatio porte sur

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS LES PREVISIONS DES CONSOMMATIONS Les logiciels utilisés pour la gestio des stocks itègret de ombreuses foctios de calcul. L ue des plus importates est l exécutio des prévisios des cosommatios futures d

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

chapitre VIII exercices et problèmes de synthèse algorithmique et turbo-pascal

chapitre VIII exercices et problèmes de synthèse algorithmique et turbo-pascal chapitre VIII eercices et problèmes de sythèse algorithmique et turbo-pascal Algèbre liéaire et probabilités : Chaîes de Marov (esco 93) Partie A 4 3 O cosidère la matrice M = 8 6 ) a) Détermier les valeurs

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Modèle de pointage et correction des dérives

Modèle de pointage et correction des dérives Ges de la Lue Observatoire astroomique de Plougastel Tél : 0 98 40 69 73 http://www.gesdelalue.org Modèle de poitage et correctio des dérives 1. Présetatio du problème Le poitage d u astre par u télescope

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR TI Nspire Documet de Formatio T3 Walloie TI-Nspire Le tout e u des mathématiques Suites umériques La loi de Verhulst Applicatio «Calculs» Applicatio «Graphiques» Applicatio «Tableur et listes» FR Formatios

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

= e 1, où e est la base des logarithmes népériens ; la relation de récurrence : n I N, u n+1

= e 1, où e est la base des logarithmes népériens ; la relation de récurrence : n I N, u n+1 ERREURS D'ARRONDIS ET CALCULATRICES par Christia Vassard et Didier Trotoux L'idée de cet article ous a été ispirée par u exemple illustrat ue cotributio de Jea-Michel Muller ("Ordiateur e quête d'arithmétique"

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Analyse de structures de données et d algorithmes

Analyse de structures de données et d algorithmes Uiversité Paris 3 Istitut Galilée Master Math-Ifo Aalyse de structures de doées et d algorithmes Polycopié 2006-2007 Christia Lavault Table des matières Combiatoire et déombremet. Permutatios, arragemets

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire HEC Gilles Mauffrey METHODES QUANTITATIVES AVEC EXCEL Programmatio liéaire, programmatio dyamique, simulatio, statistique élémetaire La Modélisatio LA MODELISATION Modèle et typologie des modèles. La otio

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS INTRODUCTION De ombreuses situatios pratiques peuvet être modélisées à l aide de variables aléatoires qui sot régies par des lois spécifiques. Il importe doc d

Plus en détail

Document ressource. Les états de surface

Document ressource. Les états de surface Lycée Vaucaso Tours Documet ressource Les états de surface PTSI Objectifs : Coaître les élémets caractéristiques d u état de surface, savoir lire les spécificatios ormalisées associées et coaître les moyes

Plus en détail

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites ANNALES BACCALAURÉAT 03 MATHÉMATIQUES TERMINALE S ANNALES 03 TERMINALE S Suites Foctios 9 3 Probabilités 4 Géométrie 9 8 5 Spécialité 34 6 Cocours 44 Suites - : Amérique du Nord 03, 5 poits, o spécialistes

Plus en détail

Terminale S. 1. Divers

Terminale S. 1. Divers Termiale S 1 Divers Bézout 3 Quadratique 4 Divisibilité 5 Equatio diophatiee 6 Equatio diophatiee (, Caracas 01_04) 7 Base de umératio 8 Base de umératio 3 9 Somme des cubes 10 PGCD 11 Somme des diviseurs

Plus en détail

b) la diminution de pression créée dans la bouche permet à la pression atmosphérique de pousser le liquide à monter dans la paille ;

b) la diminution de pression créée dans la bouche permet à la pression atmosphérique de pousser le liquide à monter dans la paille ; CHAITRE 4 LES GAZ QUESTIONS. a) uisque, das le coteat, et sot costats, la pressio est proportioelle à la température T. L augmetatio de T peut ameer à ue valeur dépassat la résistace des parois du coteat

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail