Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Dimension: px
Commencer à balayer dès la page:

Download "Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé"

Transcription

1 Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices pourrot être traités das l ordre de votre choix. Bie idiquer les uméros des exercices Les élèves suivat l eseigemet de Spécialité rédigerot l exercice qui leur est réservé sur ue feuille à part. Exercice : Commu à tous les cadidats L espace est mui d u repère orthoormé O, ı, j, ) k. O cosidère les poits A ; ; 5), B ; 6 ; 4) et C7 ; 0 ; 8). / 3 poits. Les poits A, B et C défiisset-ils u pla? répose à justifier) O va étudier la coliéarité des vecteurs AB et AC e détermiat leurs coordoées : AB = ; 4 ; ) et AC = 6 ; ; 3) ; o a doc : AC = 3AB Les vecteurs état coliéaires, les poits A, B et C sot aligés et e défiisset doc pas de pla.. Détermier ue équatio paramétrique de paramètre t) de la droite AB). Mx ; y ; z) AB) AM et AB sot coliéaires il existe u réel t tel que AM = t. AB x x = t x = t y = t 4 y = 4t y = + 4t z 5 z 5 = t z = 5 t x = t AB) a pour représetatio paramétrique y = + 4t avec t R. z = 5 t 3. Soit P le pla d équatio paramétrique de paramètres u et v) x = 3 + u y = v z = 5 u Détermier AB) P. Mx ; y ; z) AB) P O résout t = 3 + u + 4t = v 5 t = 5 u x = t y = + 4t z = 5 t x = 3 + u et y = v z = 5 u La derière lige doe : t = u et e remplaçat u par t das la première lige, o obtiet : t = 3 Esuite, e remplaçat t par sa valeur das l équatio paramétrique de la droite AB), o obtiet : x = 7 3, y = 3 et z = Coclusio : la droite AB) et le pla P se coupet au poit M de coordoées 3 ; 3 ; 7 ) 3

2 Exercice : / poits Commu à tous les cadidats O cosidère le polyôme P défii sur C par Pz) = z 3 + i ) z + + i ) z i.. Motrer que le ombre complexe z 0 = i est solutio de l équatio Pz) = 0. P i ) = i ) 3 + i ) i ) + + i ) i ) i = i i + i 4 i = 0 i est solutio das C de l équatio Pz) = 0.. a. Détermier les réels a et b tels que Pz) = z i ) z + az + b ). Développos : z i ) z + az + b ) = z 3 +az +bz z i azi bi = z 3 + a i ) z + b ai ) z bi. Par idetificatio avec l éocé, o obtiet : a i = i b ai = + i bi = i a = b = b = O a doc Pz) = z i ) z z + ) a = b + i = + i b = b. E déduire les solutios das C de l équatio Pz) = 0. E utilisat la factorisatio précédete : Pz) = 0 z i ) z z + ) = 0 { z i = 0 z z + = 0 O retrouve la racie i ; résolutio de l équatio du secod degré : z z + = 0 z ) + = 0 z ) + = 0 { { z = i z = + i z ) = z ) = i z = i z = i Les solutios sot doc : i, + i, i.

3 Exercice 3 : / 5 poits Commu à tous les cadidats Pour chacue des six affirmatios suivates, idiquer si elle est vraie ou fausse et justifier la répose. Ue répose o justifiée est pas prise e compte. Ue absece de répose est pas péalisée.. Zoé se red à so travail à pied ou e voiture. Là où elle habite, il pleut u jour sur quatre. Lorsqu il pleut, Zoé se red e voiture à so travail das 80 % des cas. Lorsqu il e pleut pas, elle se red à pied à so travail avec ue probabilité égale à 0,6. Affirmatio o : «Zoé utilise la voiture u jour sur deux.» Affirmatio o : VRAIE Arbre de probabilités : 0,8 V Pl 0,5 0, P. V 0,75 0,4 Pl 0,6 P Pl : il pleut ; V : e voiture ; P : à pied O cherche pv ) : pv ) = pv Pl) + pv Pl) = p Pl V ) ppl) + p Pl V ) ppl) = 0,8 0,5 + 0,4 0,75 = 0,5 «Zoé utilise la voiture u jour sur deux.» Affirmatio o : «Si Zoé arrive à so travail à pied, la probabilité qu il pleuve ce jour là est égale à 0,.» Affirmatio o : FAUSSE PP Pl) 0,5 0, Il s agit de calculer P P Pl) ; o a : P P Pl) = = = 0, PP) 0,5. Das l esemble E des issues d ue expériece aléatoire, o cosidère deux évèemets A et B. Affirmatio o 3 : «Si A et B sot idépedats, alors A et B sot aussi idépedats.» Affirmatio o 3 : VRAIE A et B sot idépedats sigifie que pa B) = pa) pb) : pa) = pa B) + pa B) = pa) pb) + pa B) = pa B) = pa) pa) pb) = pa) pb) ) = pa) pb) 3. O sait que 39 % de la populatio fraçaise est du groupe sagui A+. O cherche à savoir si cette proportio est la même parmi les doeurs de sag. O iterroge 83 doeurs de sag et parmi eux, 34 % sot du groupe sagui A+. Affirmatio o 4 : «O e peut pas rejeter, au seuil de 5 %, l hypothèse selo laquelle la proportio de persoes du groupe sagui A+ parmi les doeurs de sag est de 39 % comme das l esemble de la populatio.» Affirmatio o 4 : VRAIE

4 Comme 0, < p < 0,8, o peut utiliser la formule doat l itervalle de fluctuatio : [ p ; p + ] ; cela doe ici valeurs approchées au cetième) : [0,3 ; 0,46] : comme 0,34 appartiet à cet itervalle, rie e permet de rejeter l hypothèse doat ue proportio égale à 39 % de persoes du groupe A+ au sei de la populatio. Autre méthode avec la loi biomiale : o s atted, sur 83 persoes, à avoir eviro 7 qui sot du groupe A+ 39 % de 83) ; comme o e a que 34 % soit eviro 6 persoes), o va se demader si 6 est iférieur ou pas à la bore iférieure de l itervalle de fluctuatio doé par ue loi biomiale de paramètres = 83 et p = 0,39. Pour cela, o calcule PX 6), où X est ue variable aléatoire suivat ue loi biomiale de paramètres = 83 et p = 0,39. Or, PX 6) 0,09 > 0,05 : cet effectif est bie à l itérieur de l itervalle de fluctuatio ; o a heureusemet!) la même coclusio que précédemmet. 4. Ue ure opaque est composée de deux boules oires et d ue boule rouge, idiscerables au toucher. O tire au hasard ue boule das l ure. Si elle est rouge, o la coserve, sio o la remet das l ure et o procède à u ouveau tirage. O ote X la variable aléatoire qui doe le rag de sortie de la boule rouge par exemple, si la boule rouge sort au deuxième tirage, o obtiet X = ). Affirmatio o 5 : «Si o effectue essais, X suit ue loi biomiale de paramètres et p = 3» Affirmatio o 5 : FAUSSE La variable aléatoire X e compte pas u ombre de succès : elle e suit pas ue loi biomiale. Affirmatio o 6 : ) «pour tout etier aturel strictemet positif, PX = ) = 3 3» Affirmatio o 6 : VRAIE 3 N 3 N 3 R. 3 R N : obteir ue boule oire ; R : obteir ue boule rouge Si o obtiet la boule rouge au ième tirage, cela sigifie que l o a obteu que des boules oires aux tirages précédets il y e a eu ). Aisi, o a braches podérées par la probabilité 3 et ue seule celle qui sigifie qu o a obteu la boule rouge au derier tirage) podérée par la probabilité 3 : e multipliat les probabilités iscrites sur les braches, cela doe ue probabilité égale à ) 3 3.

5 Exercice 4 : Commu à tous les cadidats Soit f la foctio défiie sur R par : f x) = e x x.. Émettre ue cojecture sur le sige de f ; expliquer votre démarche. / 5 poits O peut cojecturer, e utilisat ue représetatio graphique, que f 0.. Démotrer votre cojecture. O peut étudier rapidemet cette foctio e dérivat f : f x) = e x ; et doc f est décroissate sur ] ; 0] et croissate sur [0 ; + [ ; elle présete u miimum e 0 égal à f 0) = e 0 0 = 0 et doc pour tout x R, f x) 0 : la cojecture est démotrée. 3. E déduire pour tout etier aturel o ul les iégalités suivates : ) e + ) e + + O utilise le résultat précédet avec x = : e 0 e + De même avec x = + : e + ) 0 e E utilisat l iégalité ), démotrer que pour tout etier aturel o ul + ) e O utilise l égalité ) et o utilise la foctio ) x x qui est croissate sur [0 ; + [ pour obteir l iégalité voulue e remarquat que e = e 5. E utilisat l iégalité ), démotrer que pour tout etier aturel o ul e + ) + O utilise l égalité ) et o utilise la foctio x x + qui est croissate sur [0 ; + [ ; o obtiet : ) e + + ) e + e + ) + ) + ) + + e par iverse) e + ) +

6 6. Déduire des questios précédetes u ecadremet de + ), puis sa limite e +. O a doc questio 4) : + ) e D après la questio 5 : e + ) + e + ) + e + + ) Aisi, e + + ) e Comme e ted vers e quad ted vers +, o coclut par le théorème d ecadremet que : + lim + ) = e + Exercice 5 : Cadidats ayat pas suivi l eseigemet de spécialité / 5 poits Das u pays de populatio costate égale à 0 millios, les habitats vivet soit e zoe rurale, soit e ville. Les mouvemets de populatio peuvet être modélisés de la faço suivate : e 00, la populatio compte 90 millios de ruraux et 30 millios de citadis ; chaque aée, 0 % des ruraux émigret à la ville ; chaque aée, 5 % des citadis émigret e zoe rurale. Pour tout etier aturel, o ote : u la populatio e zoe rurale, e l aée 00 +, exprimée e millios d habitats ; v la populatio e ville, e l aée 00 +, exprimée e millios d habitats. O a doc u 0 = 90 et v 0 = 30. Partie A. Traduire le fait que la populatio totale est costate par ue relatio liat u et v. La populatio totale est costate et égale à 0 millios doc, pour tout etier aturel, o peut dire que u + v = 0.

7 . O utilise u tableur pour visualiser l évolutio des suites u ) et v ). Quelles formules peut-o saisir das les cellules B3 et C3 qui, recopiées vers le bas, permettet d obteir la feuille de calcul ci-dessous : A B C Populatio e zoe rurale Populatio e ville ,5 37,5 4 76,5 43, ,706 49, ,00 53, , ,857 6, ,09 63, ,65 66, ,58 68, ,844 70, ,367 7, , 7, ,045 73, ,38 74, ,368 75, ,73 76, ,56 76, ,005 79, ,004 79, ,003 79, ,003 79, ,00 79,998 Das B3 o etre la formule =0,9*B+0,05*C. Das C3 o etre la formule =0,*B+0,95*C. 3. Quelles cojectures peut-o faire cocerat l évolutio à log terme de cette populatio? D après les doées du tableur, la suite u ) doc le ombre de ruraux) semble décroitre et tedre vers 40 millios, et la suite v ) doc le ombre de citadis) semble croitre et tedre vers 80 millios. Partie B O admet das cette partie que, pour tout etier aturel, u + = 0,85u a. Démotrer par récurrece que la suite u ) est décroissate. Soit P la propriété u > u +. u 0 = 90 et u = 0,85u 0 = 0, = 8,5 doc u 0 > u La propriété est vraie au rag 0. O suppose la propriété vraie au rag p 0, c est-à-dire u p > u p+. u p > u p+ 0,85u p > 0,85u p+ 0,85u p + 6 > 0,85u p+ + 6 u p+ > u p+ Doc la propriété est vraie au rag p + ; elle est héréditaire. P est vraie au rag 0 et est héréditaire, doc elle est vraie pour tout etier aturel.

8 Pour tout, u > u + doc la suite u ) est décroissate. b. O admet que u est positif pour tout etier aturel. Que peut-o e déduire quat à la suite u )? O a vu que la suite était décroissate. Doc, d après le théorème de la covergece mootoe, la suite u ) est covergete.. O cosidère la suite w ), défiie par : w = u 40, pour tout 0. a. Démotrer que w ) est ue suite géométrique de raiso 0,85. w + = u + 40 = 0,85u = 0,85w + 40) 34 = 0,85w = 0,85w w 0 = u 0 40 = = 50 Doc la suite w ) est géométrique de raiso q = 0,85 et de premier terme w 0 = 50. b. E déduire l expressio de w puis de u e foctio de. D après les propriétés des suites géométriques, pour tout : w = w 0 q = 50 0,85 Comme pour tout, u = w + 40, o peut dire que u = 50 0, c. Détermier l expressio de v e foctio de. } u + v = 0 Pour tout, u = 50 0,85 = v + 40 = ,85 3. Valider ou ivalider les cojectures effectuées à la questio 3. de la partie A. Pour tout, w = 50 0,85 doc w > 0 w + = 0,85w < w et doc la suite w ) est décroissate. Comme pour tout, u = w + 40, la suite u ) est décroissate. w ) est géométrique de raiso 0,85 ; or < 0,85 < doc la suite w ) coverge vers 0. Comme pour tout, u = w + 40, la suite u ) coverge vers 40. Pour tout, v = 0 u et la suite u ) est décroissate, doc la suite v ) est croissate. La suite u ) est covergete vers 40 et, pour tout, v = 0 u, doc la suite v ) est covergete vers 0 40 = O cosidère l algorithme suivat : Etrée : et u sot des ombres Iitialisatio : pred la valeur 0 u pred la valeur 90 Traitemet : Tat que u 0 u faire pred la valeur + u pred la valeur 0,85 u + 6 Fi Tat que Sortie : Afficher a. Que fait cet algorithme? Das cet algorithme, la variable u, iitialisée à 90, représete le terme u, et 0 u représete doc v. O sort de la boucle «tat que» dès que u < 0 u c est-à-dire dès que u < v ; l algorithme affiche doc la plus petite valeur pour laquelle u < v. C est la plus petite valeur de pour laquelle le ombre de ruraux est deveu iférieur au ombre de citadis. b. Quelle valeur affiche-t-il? D après le tableur, u 5 > v 5 et u 6 < v 6 doc la valeur affichée sera 6.

9 Exercice 6 : /5 poits Cadidats ayat suivi l eseigemet de spécialité : exercice à rédiger sur feuille à part Les deux parties sot totalemet idépedates. Partie,5 poits O appelle triplet pythagoricie trois etiers o uls x, y, z vérifiat x + y = z. a. Dresser u tableau avec les cogrueces possibles d u etier N et de so carré, modulo 3. b. E déduire que das u triplet pythagoricie, au mois x ou y est u multiple de 3.. Das cette questio, o pourra admettre que puisque x + y = z avec x, y et z o uls, o a y < z. 3. a. Justifier que das u triplet pythagoricie, y + z divise x. b. E déduire qu il existe pas de triplet pythagoricie avec x =. Remarque : il est pas demadé de le faire, mais avec la même démarche, o pourrait aussi motrer qu il existe pas o plus de triplet pythagoricie avec x =. a. Motrer que si z = y +, alors x est écessairemet u ombre impair. b. Motrer réciproquemet que pour tout x impair plus grad que, il existe u triplet pythagoricie x ; y ; z) avec z = y +. Partie,5 poits O cosidère deux suites u ) et v ) défiies pour tout N par : u = v = 3 u O ote X la matrice coloe v ) u + = u + v v + = 3 u + 3 v. Motrer que pour tout N, X + = A X avec A ue matrice que l o détermiera.. Retrouver les premiers termes u 0 et v 0 par ue démarche matricielle à détailler puis à réaliser à l aide de votre calculatrice. ) 0 3. Pour la suite, o admet que pour tout, N, X = A 3 a. O doe P = ) 0 et D = 0 Vérifier à la calculatrice que P est iversible, et que A = P D P. b. Démotrer e détail que pour tout N, A = P D P. 6 ) 4. Déduire de ce qui précède l expressio de u et v e foctio de, et motrer que les deux suites u ) et v ) coverget vers 3 5.

10

11

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9.

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9. Liba 13 v 0 = 1 O cosidère la suite umérique ( v ) défiie pour tout etier aturel par 9 v +1 = 6 v Partie A 1 O souhaite écrire u algorithme affichat, pour u etier aturel doé, tous les termes de la suite,

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c.

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c. NOUVELLE CALEDONIE NOVEMBRE 2007 Exercice 4 poits Commu à tous les cadidats Pour chaque questio, ue seule des trois propositios est exacte. Le cadidat idiquera sur la copie le uméro de la questio et la

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation.

Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Externat Notre Dame Bac Blanc n Tle S) janvier 206 durée : 4 h calculatrice autorisée Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Les exercices pourront

Plus en détail

Présentation du programme et des épreuves 6

Présentation du programme et des épreuves 6 SOMMAIRE Présetatio du programme et des épreuves 6 Algos à foiso 8 2 Le raisoemet par récurrece 3 Les suites géométriques 2 4 Ce qui est importat pour ue suite 4 5 Ce qu est la limite d ue suite 6 6 Détermier

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève.

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève. Lycée Féelo Saite-Marie Aée 2011-2012 Durée : 3 heures BAC BLANC avril Toutes calculatrices autorisées. Classe de Termiale ES Mathématiques Le sujet comporte u total de 4 exercices par élève. EXERCICE

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9 BACCALAUREAT BLANC 2014 LYCEE DES ILES SOUS LE VENT SERIE S EPREUVE DE MATHEMATIQUES Durée : 4h Coefficiet : 7 ou 9 La calculatrice est autorisée, mais est pas échageable de cadidat e cadidat. La qualité

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Concours PT2004 Maths I-B. partie A

Concours PT2004 Maths I-B. partie A ocours PT2 Maths I-B Même si le suet e l a pas posé o utilisera : 8 2 M r (R) = I r partie a b x y ax + bz. Si = 2 S c d 2 et B = 2 S z t 2 o a B = cx + dz ay + bt cy + dt Les coe ciets de B sot sommes

Plus en détail

Correction concours général maths 2015

Correction concours général maths 2015 Correctio cocours gééral maths 2015 Problème I Petits poids 1) a) 3 = 3, 3 + 5 = 8, 3 + 5 6 = 2, 3 + 5 6 8 = 6, 3 + 5 6 8 + 2 = 4 doc poids(3,5, 6, 8,2) = 8 b) poids(1,2,3,,2015, 2015, 2014,.., 1) = 1

Plus en détail

Partie commune (3 heures)

Partie commune (3 heures) TS Cotrôle du ludi 5 février 06 (4 heures) Partie commue ( heures) Le barème est doé sur 40 I (7 poits : ) poits ; ) poits ; ) poits + poit) Ue chaîe de magasis souhaite fidéliser ses cliets e offrat des

Plus en détail

FRLT Page 1 15/08/2014

FRLT Page 1 15/08/2014 Algorithmes à aalyser O cosidère l algorithme : - u est du type ombre - q est du type ombre - p est du type ombre - S est du type ombre - Lire u - Lire q - Lire p - S pred la valeur de u - Tat que (u >

Plus en détail

Corrigé du baccalauréat S Pondichéry du 26 avril points

Corrigé du baccalauréat S Pondichéry du 26 avril points EXERCICE 1 5 poits Comm a tous les cadidats Les parties A, B et C peuvet être traitées de faço idépedate Das tout l exercice, les résultats serot arrodis, si écessaire, au millième La chocolaterie «Choc

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

Correction Bac ES Liban juin 2010

Correction Bac ES Liban juin 2010 Correctio Bac ES Liba jui 2010 EXERCICE 1 (4 poits) Commu à tous les cadidats 1) A et B sot deux évéemets idépedats et o sait que p(a) = 0,5 et p(b) = 0,2. La probabilité de l évéemet A B est égale à :

Plus en détail

c. Démontrer par récurrence la conjecture du a)...

c. Démontrer par récurrence la conjecture du a)... Eercice O cosidère l algorithme suivat : Etrée : u etier aturel. Iitialisatio : Doer à u la valeur iitiale. Traitemet : Tat que u > 0 Affecter à u la valeur u 0. Sortie : Afficher u. Quelle est la valeur

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

Corrigé du baccalauréat S Liban 3 juin 2010

Corrigé du baccalauréat S Liban 3 juin 2010 Corrigé du baccalauréat S Liba 3 jui 1 Exercice 1. Partie A : Restitutio orgaisée de coaissaces 1) x R, o a d après le pré-requis e preat y x : e x e x e x+x e 1. Ceci état vrai pour tout x, e divisat

Plus en détail

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points)

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points) ère S Cotrôle du vedredi 4-4-04 (30 miutes) Préom et om : Note : / 0 I ( poits) O cosidère la figure ci-cotre où ABC est u triagle isocèle e A O ote H le projeté orthogoal du poit C sur la droite (AB)

Plus en détail

Liban 2012 BAC S Correction

Liban 2012 BAC S Correction Liba 0 BAC S Correctio / 8 Exercice Partie A. Les foctios polyomiale et l sot dérivables sur ]0 ;+ [. Par coséquet la foctio g l est aussi. g (x) 6x² + x. Pour tout x >0, 6x² >0 et > 0. Doc g (x) > 0 sur

Plus en détail

EXERCICES SIMULATION LOIS DISCRETES

EXERCICES SIMULATION LOIS DISCRETES EXERCICES SIMULATION LOIS DISCRETES EXERCICE 1 : 1) Ecrire u programme qui revoie le lacer d u lacer de dé équilibré 2) Trasformer le programme précédet pour qu il simule ue série de 100 lacers d u dé

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Sessio 2016 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficiet : 4 Calculatrice autorisée coformémet

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

ESSCA(Management - Finances)

ESSCA(Management - Finances) parteaire de PREPAVOGT Yaoudé, 3 mai 04 BP : 765 Yaoudé Tél : 0 63 7 / 96 6 46 86 E-mail : prepavogt@yahoofr wwwprepavogtorg ESSCA(Maagemet - Fiaces) CONCOURS D ADMISSION RAISONNEMENT LOGIQUE ET MATHEMATIQUE

Plus en détail

x 0 + f ' (x) f (x) ln 3 3 f (x) dx.

x 0 + f ' (x) f (x) ln 3 3 f (x) dx. T S Devoir surveillé 8 Vedredi avril 7 Exercice (5 poits) l (x + ) O cosidère la foctio f défiie sur [, + [ par f (x) = x +. O admet que le tableau de variatios de f est le suivat. O défiit la suite (U

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Fiche Diagonalisation des Matrices 2x2

Fiche Diagonalisation des Matrices 2x2 Fiche Diagoalisatio des Matrices x MOSE 1003 4 Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

Fiche N 8 : Matrices.

Fiche N 8 : Matrices. Lycée Paul Gaugui CPGE-EC1 Aée 014/015 Fiche N 8 : atrices Gééralités sur les matrices atrices : Défiitios O appelle matrice à liges et p coloes tout tableau rectagulaire de ombres réels à liges et p coloes

Plus en détail

Leçon 9 Les suites réelles

Leçon 9 Les suites réelles Leço 9 Les suites réelles C est ue leço importate qui se prologera e termiale et souvet, il y a u exercice à faire au BAC sur les suites. Il est très importat de bie compredre au début les otatios., 5,8

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série.

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série. 1 ère S1 Cotrôle du vedredi 13 février 015 (30 mi) O ote M, Q 1, Q 3 respectivemet la médiae, le premier quartile et le troisième quartile de la série. M... Q1... Q3... Préom : Nom : Note :. / 0 I. (4

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 006 EPREUVE SPECIIQUE ILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot autorisées * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

Rappels. A-Oukhai Suites géométriques 2 e Science

Rappels. A-Oukhai Suites géométriques 2 e Science A-Oukhai Suites géométriques e Sciece Rappels Pour motrer que u est ue suite géométrique : Soit o exprime u +1 e foctio de u et o doit trouver ue relatio de la forme u +1 qu où q est u réel qui e déped

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Suite des polynômes de Tchebychev. (Exercice N 127 page 87) Corrigé

Suite des polynômes de Tchebychev. (Exercice N 127 page 87) Corrigé Suite des polyômes de Tchebychev (Exercice 7 page 87) a E utilisat la relatio de récurrece avec =, o obtiet : Puis, pour = : Efi, pour = 4 : O a bie : f x x f x f x x x x = = = f x = x f x f x = x x x=

Plus en détail

Bac Blanc de Mathématiques T STMG

Bac Blanc de Mathématiques T STMG Nom : Préom : Classe : Bac Blac de Mathématiques T STMG Mars 2014 Les 4 exercices ci-dessous sot idépedats. L utilisatio d ue calculatrice persoelle est autorisée. Vous utiliserez cet éocé de 4 pages e

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

BACCALAURÉAT GÉNÉRAL Session 2014 MATHÉMATIQUES. Série ES ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures.

BACCALAURÉAT GÉNÉRAL Session 2014 MATHÉMATIQUES. Série ES ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures. BACCALAURÉAT GÉNÉRAL Sessio 04 MATHÉMATIQUES Série ES ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : heures Coeiciet : 7 Les calculatrices électroiques de poche sot autorisées, coormémet à la réglemetatio

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail