CHAPITRE IV. Rappels et compléments sur les suites

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE IV. Rappels et compléments sur les suites"

Transcription

1 CHPITRE IV Rappels et complémets sur les suites SUITES NUMÉRIQUES 1 Sommaire I Notio de suite Exemples B Défiitio C Deux modes de défiitio de suites D Comportemet global II Suites classiques Suites arithmétiques B Suites géométriques III Notio de limite Limite fiie B Limite ifiie C Comparaiso de suites Feuille d exercices 4 Rappels et complémets sur les suites

2 I Notio de suite Exemples Complétez les débuts de séqueces suivats : 1, 1, 1, 1, 1,... 1, 3, 5, 7, 9,... 1, 2, 4, 8, 16, , 1 2 2, , 4 2, 1 52, , 50, 25, 12,5, 6,25,... 1, 1, 2, 3, 5, 8,... l(1), l(2), l(3), l(4), l(5),... 1, 11, 21, 1211, ,... B Défiitio Ue suite est u procédé associat à chaque etier aturel u réel u. isi, ue suite est ue foctio de N das R. O otera (u ) (ou plus simplemet (u ), ou (u )) la suite (i.e. la foctio), et u le terme de la suite associé à l idice (i.e. la valeur de la foctio e ). O recotre souvet les suites das la descriptio des algorithmes : o peut cosidérer la suite des états de la mémoire lors de l exécutio d u programme, la suite des temps de calcul associée à la taille de l etrée, qui ous permet de mesurer la complexité d u algorithme, etc. C Deux modes de défiitio de suites O peut défiir la suite (u ) explicitemet, e se doat ue foctio associat à chaque etier le réel u. Par exemple, o peut défiir les suites (u ), (v ) et (w ) par : { 2 u = , v = , w = lors, o peut calculer directemet : u 7 = = 75, v 5 = si est pair 2 3 si est impair = 11 8, w 13 = = 29 O peut défiir la suite (u ) par récurrece, e se doat ue foctio permettat de passer d u terme au suivat. Il faut alors se doer u terme iitial u 0. Par exemple, o peut défiir les suites (u ) et (v ) par : { { u0 = 0 v0 = 0, v et 1 = 1 ( N) u +1 = 2u +3 ( N) v +2 = v +1 +v lors, pour calculer u 4 et v 5, il faut calculer les termes itermédiaires : u 1 = 2 u 0 +3 = 3, u 2 = 2 u 1 +3 = 9u 3 = 2 u 2 +3 = 21, u 4 = 2 u 3 +3 = 45 et v 2 = v 1 +v 0 = 1, v 3 = v 2 +v 1 = 2, v 4 = v 3 +v 2 = 3, v 5 = v 4 +v 3 = 5 Remarquos que cette deuxième méthode, si elle est plus aturelle, demade plus de calcul. Imagiez le ombre de calculs écessaires pour obteir la valeur de v 1000! D Comportemet global Ue propriété est particulièremet recherchée lors de l étude d ue suite : so ses de variatio. Défiitio 1 : O dit que la suite (u ) est croissate si, pour tout etier, u +1 u. Elle est dite strictemet croissate si l iégalité est toujours stricte. 30

3 Par exemple, la suite (u ) défiie par u 0 = 1 et u +1 = u +2 (qui éumère les ombres impairs) est strictemet croissate, puisque pour tout etier, u +1 u = 2 > 0, d où u +1 > u. O défiit de la même faço la otio de suite décroissate. Bie faire attetio au fait que décroissat est pas le cotraire de croissat : la plupart des suites e sot i croissates, i décroissates, et certaies suites sot à la fois croissates et décroissates. Par exemple, la suite (u ) défiie par u = ( 1) pred alterativemet les valeurs 1 et +1, elle est i croissate, i décroissate. Pouvez-vous trouver les suites qui sot à la fois croissates et décroissates? II Suites classiques Suites arithmétiques Défiitio 2 : La suite (u ) est dite arithmétique s il existe u réel r tel que pour tout N, u +1 = u +r. Le réel r est alors appelé raiso de la suite (u ). Par exemple, si vous déposez tous les mois 100e sur votre compte bacaire, la suite des sommes sur votre compte est ue suite géométrique de raiso 100. Ue suite arithmétique est aisi défiie par ue relatio de récurrece. O peut obteir ue relatio explicite, qui caractérise d ailleurs les suites de ce type : Théorème 1 Si (u ) est ue suite arithmétique de premier terme u 0 = a et de raiso r, alors pour tout N, u = a+r. Réciproquemet, ue suite (u ) défiie par ue relatio de la forme u = α + β est arithmétique, de raiso α et de premier terme u 0 = β. Exercice : La suite (u ) est arithmétique, o sait que u 3 = 5, et u 7 = 17. Calculer so premier terme et sa raiso. Ue autre formule ous itéresse parfois : la somme de termes cosécutifs d ue suite arithmétique. Théorème 2 Si (u ) est ue suite arithmétique, et si p et q sot deux idices (p < q), alors u p +u q u p +u p+1 + +u q 1 +u q = q p+1 }{{}}{{ 2 } bre de termes moyee des termes extrêmes Par exemple, la somme des premiers etiers est : = (+1). 2 B Suites géométriques Défiitio 3 : La suite (v ) est dite géométrique s il existe u réel r tel que pour tout N, v +1 = v r. Le réel r est alors appelé raiso de la suite (v ). Par exemple, si votre baque rémuère votre compte à 2% d itérêts composés, la suite des sommes sur votre compte (après placemet iitial) est ue suite géométrique de raiso 1,02. Ue suite géométrique est aisi défiie par ue relatio de récurrece. O peut obteir ue relatio explicite, qui caractérise d ailleurs les suites de ce type : 31

4 Théorème 3 Si(v ) est ue suite géométrique de premier termev 0 = a et de raisor, alors pour tout N, v = a r. Réciproquemet, ue suite (v ) défiie par ue relatio de la forme v = β α est géométrique, de raiso α et de premier terme u 0 = β. Exercice : La suite (v ) est géométrique, de premier terme v 0 = 100, et de raiso 1,05. Calculer v 10, aisi que la première valeur de telle que v 2v 0. Ue autre formule ous itéresse parfois : la somme de termes cosécutifs d ue suite géométrique. Théorème 4 Si (v ) est ue suite géométrique de raiso r 1, et si p et q sot deux idices (p < q), alors v p +v p+1 + +v q 1 +v q = v p 1 rq p+1 1 r Par exemple, la somme des premières puissaces de 2 est : = III Notio de limite Limite fiie Quad les valeurs d ue suite (u ) sot de plus e plus proches d u réel l doé, o dit que cette suite a pour limite l. Plus précisémet : Défiitio 4 : O dit que la suite (u ) a pour limite 0 si u peut être redu arbitrairemet petit, pourvu que soit suffisammet grad. O dit que la suite (u ) a pour limite l R si la suite (v ) défiie par v = u l a pour limite 0. Voici quelques exemples de référece : Propriété 1 Les suites suivates ot pour limite 0 : ( ) ( ) 1 1 2,, et plus gééralemet ( ) 1 k pour k N, (a ) pour 0 < a < 1 Preuve Démotros-le pour la suite (u ) défiie par u = 1 : si ε > 0 est u petit ombre réel, alors 1 < ε équivaut à > 1 ε. Doc dès que est plus grad que N, premier etier plus grad que 1 ε, 0 < u < ε. Ces exemples de référeces permettet, à l aide de raisoemet simple, d obteir d autres limites. Exemple : Soit la suite (u ) défiie par u = Ue expérimetatio à la calculatrice motre que +2+4 pour de grade valeur de, u est très proche de 3. Essayos de compredre pourquoi : u = 2( ) ( ) 4 = Le umérateur de cette fractio a pour limite 3, le déomiateur a pour limite 1, o compred pourquoi le quotiet u a pour limite 3. Cet exemple illustre ue méthode géérale pour obteir des limites : lorsqu o pese qu ue quatité est détermiate das le calcul d ue limite (par exemple la plus grade puissace de l etier ), o la factorise, et regarde ce qui reste à coté. 32

5 B Limite ifiie Le plus souvet, le temps de calcul d u algorithme maipulat des tableaux de taille deviet de plus e plus grad au fur et à mesure que augmete. Par exemple, l algorithme de tri à bulles trie u tableau de taille e faisat de l ordre de 2 2 comparaisos etre élémets du tableau. Pour = 1000, o fait comparaisos, pour u tableau de taille 10000, o fera comparaisos, etc. O peut très facilemet imagier la taille écessaire d u tableau pour que le temps de tri dépasse, disos, l âge de l uivers! Quad ue suite a u tel comportemet, o dit qu elle a pour limite +. Plus précisémet : Défiitio 5 : O dit que la suite (u ) a pour limite + si u peut être redu arbitrairemet grad, pourvu que soit suffisammet grad. Voici quelques exemples à coaître : Propriété 2 Les suites suivates ot pour limite 0 : ( k ) pour k N, (log a ) et (a ) pour a > 1 Preuve Démotros-le pour la suite (u ) défiie par u = 2 : si > 0 est u grad ombre réel, alors 2 > équivaut à >. Doc dès que est plus grad que N, premier etier plus grad que, u >. C Comparaiso de suites Très souvet, c est mois la limite d ue suite (u ) qui ous itéresse (e algorithmique, malheureusemet, l immese majorité des complexités, spatiales ou temporelles, a pour limite + ) que la comparaiso de (u ) à d autres suites. Défiitio 6 : O dit que deux suites (u ) est (v ) sot équivaletes si la suite (w ) défiie par w = u v a pour limite 1. O dit que (u ) est prépodérate devat (v ) (ou que (v ) est égligeable devat (u )) si la suite (w ) défiie par w = u v a pour limite +. isi, si deux suites (u ) et (v ) ot pour limite +, dire que (u ) est prépodérate devat (v ) sigifie que (u ) ted beaucoup plus vite vers + que (v ). Propriété 3 Si p et q sot deux etiers, p < q, et si a et b sot deux réels tels que 1 < a < b, alors : (log a ) << ( p ) << ( q ) << (a ) << (b ) (u ) << (v ) sigifiat que la suite (u ) est égligeable devat la suite (v ). isi, par exemple, l algorithme de tri à bulles, dot la complexité temporelle est de l ordre de 2 /2, est asymptotiquemet mois performat que l algorithme de tri fusio, dot la complexité temporelle est de l ordre de log 2, car : 2 /2 log 2 = 2log

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Suites numériques : définition générale.

Suites numériques : définition générale. 1 Suites arithmétiques Suites umériques : défiitio géérale.... Le pricipe de récurrece... 3 Suites arithmétiques... 4 Formule 1 des suites arithmétiques... 5 Appreos à compter... 6 Formule des suites arithmétiques...

Plus en détail

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener INF58 : Cryptologie Attaque de clés RSA par la méthode de Wieer Nicolas DOUZIECH - Thomas JANNAUD - X005 9 mars 008 Table des matières Quelques rappels sur le cryptosystème RSA Pricipe de l attaque de

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0 Chapitre 1 : Les suites umériques I. Le raisoemet par récurrece 1. Présetatio Soit P( ) la propriété : «7 + 2 est divisible par 3». O veut vérifier que cette propriété est vraie pour tout etier aturel.

Plus en détail

CORRIGÉ DE LA FEUILLE 2

CORRIGÉ DE LA FEUILLE 2 CORRIGÉ DE LA FEUILLE. Exercice Soiet u et v deux séries à termes positifs.. Si ue des séries est divergete, alors la série de terme gééral u + v est divergete C est vrai. E effet, supposos que la série

Plus en détail

arxiv:1402.5510v1 [math.co] 22 Feb 2014

arxiv:1402.5510v1 [math.co] 22 Feb 2014 SUR UNE PROPRIÉTÉ DES POLYNÔMES DE STIRLING par arxiv:1402.5510v1 [math.co] 22 Feb 2014 Farid BENCHERIF & Tarek GARICI Résumé. Das cet article, ous répodos positivemet à ue questio posée e 1960 par D.S.

Plus en détail

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (5/0/00) Chapitre 4 Lois de Probabilité Sommaire. Itroductio. 4. Lois discrètes..4.. Loi uiforme..4... Défiitio...4... Espérace et variace..5..

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 6 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

Quelques inégalités classiques

Quelques inégalités classiques Quelques iégalités classiques O se propose de motrer, sous forme d exercices, quelques iégalités classiques. Les preuves de ces iégalités e écessitet que quelques coaissaces élémetaires.. Exercices classiques

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Séquence 1. Suites numériques

Séquence 1. Suites numériques Séquece Suites umériques Objectifs de la séquece Recoaître des situatios faisat iterveir des suites géométriques ou des suites arithmético-géométriques. Modéliser ces situatios par des suites géométriques

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

TD n 3 : quelques exercices sur la récurrence

TD n 3 : quelques exercices sur la récurrence Éocé TD 3 : quelques exercices sur la récurrece Exercice 1 Soit (a ) 0 ue suite de ombres réels ou complexes. O pose b 0 = 1 et b = (1 a k ) pour 1. Motrer que b +1 = 1 Exercice O défiit ue suite (u )

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également.

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également. SUITES (Partie ) I. Raisoemet par récurrece ) Le pricipe C'est au mathématicie italie Giuseppe Peao (858 ; 93), ci-cotre, que l'o attribue le pricipe du raisoemet par récurrece. Le om a probablemet été

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 5 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Reconnaissance des formes: Fenêtre de Parzen

Reconnaissance des formes: Fenêtre de Parzen Préom Nom Recoaissace des formes: Feêtre de Parze Pricipes de l'appretissage o paramétrique Estimatio o paramétrique de la desité Feêtres de Parze vs. k plus proches voisis Feêtres de Parze Réseau de euroes

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Signaux électriques périodiques

Signaux électriques périodiques igaux électriques périodiques «U sigal, c est de l éergie. Pour peu, o pourrait dire que cela pèse.» M. Devos, u cours d électroique e 986 Résumé Ue fois que l o dispose de la descriptio d u réseau électrique

Plus en détail

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES GRAPHES - EXERCICES CORRIGES Compilatio réalisée à partir d exercices de BAC TES Exercice. U groupe d amis orgaise ue radoée das les Alpes. O a représeté par le graphe ci-dessous les sommets B, C, D, F,

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP Cocours Commus Polytechiques - Sessio 11 Corrigé de l épreuve d aalyse- Filière MP Séries etières, équatios différetielles et trasformée de Laplace Corrigé par M.TRQI http://alkedy.1.m Eercice 1 1. La

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Le raisonnement par récurrence, un outil puissant de démonstration

Le raisonnement par récurrence, un outil puissant de démonstration TS Le raisoemet par récurrece, u outil puissat de démostratio I. Itérêt ) Exemple 0 0 u est la suite défiie par u u 2u (suite récurrete ; suite «arithmético-géométrique» ; o e coaît pas l expressio du

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1.

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1. Chapitre VI : Foctio expoetielle I. La foctio expoetielle a) Défiitio La foctio expoetielle, otée exp, est la foctio défiie sur! par exp(x) = e x, e x état l uique ombre réel strictemet positif dot le

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

Date Travail effectué SYSTEMES DE NUMERATION

Date Travail effectué SYSTEMES DE NUMERATION Date Travail effectué 0/09 Prise de cotact. Présetatio du programme et des exigeces. A faire pour le SYSTEMES DE NUMERATION Itroductio : Approche historique de la otio de ombre. 1) U exemple de système

Plus en détail

SUITES ET SÉRIES. On peut aussi représenter une suite par un dessin : 0.8 0.6 0.4 0.2. Une suite est strictement décroissante si u n > u n+1, n N *.

SUITES ET SÉRIES. On peut aussi représenter une suite par un dessin : 0.8 0.6 0.4 0.2. Une suite est strictement décroissante si u n > u n+1, n N *. SUITES ET SÉRIES 7 2. Suites et séries 2.. Suites Défiitio Exemples Liste u = 5, u 2 = 8, u 3 = 4, u 4 =, Formule u = 2 ; 4 ; 9 ; 6 ; Récurrece { u = 2 u = 2u Ue suite réelle est ue liste ordoée (ou liste

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Synthèse de cours (Terminale S) Lois de probabilité

Synthèse de cours (Terminale S) Lois de probabilité Sythèse de cours (Termiale S) Lois de robabilité Elémets de déombremet Factorielle d u etier aturel Soit u etier aturel. Si est o ul, o aelle «factorielle» ou «factorielle de», l etier, oté!, égal au roduit

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Chapitre 2 : Etudes de fonctions.

Chapitre 2 : Etudes de fonctions. PCSI Préparatio des Khôlles 0-04 Chapitre : Etudes de foctios. Eercice type Motrer que pour [0,], o a( ) 4. Edéduire que ( ) 4. Solutio : Si R, 4 ( ) 4 0. Preos alors ]0,[, alors {0,,}, (( )) ( ) 4, e

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes 1 Ue défiitio de la foctio expoetielle das l esprit des ouveaux programmes 0. Itroductio. Les ouveaux programmes de mathématiques de termiale S qui sot etrés e vigueur à la retrée 2002 icitet fortemet

Plus en détail

CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES

CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES Dérivatio des octios composées Cours CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES. DERIVATION d ue FONCTION COMPOSEE.. Dérivée d ue octio composée Théorème Soit ue octio dérivable

Plus en détail

Le plus grand de ces diviseurs communs est 26 : 26 est le plus grand commun diviseur de 78 et de. Le P.G.C.D. de 78 et de 208 est égal à 26

Le plus grand de ces diviseurs communs est 26 : 26 est le plus grand commun diviseur de 78 et de. Le P.G.C.D. de 78 et de 208 est égal à 26 ) Vocabulaire : a) Divisible / Multiple : Plus Grad Diviseur Commu. Soit a et b deux ombres etiers aturels différets de zéro : dire que a est divisible par b sigifie que a k b =, avec k ombre etier aturel.

Plus en détail

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE Nombre de pages de l épreuve Durée de l épreuve 0 pages 3h00 Compte teu du fait qu il s agissait d u cocours d etraiemet, cette épreuve à été prise sur le

Plus en détail

< p 2. b a a = bq et r = 0 r 0 bq < a < b(q+1)

< p 2. b a a = bq et r = 0 r 0 bq < a < b(q+1) DIVISIBILITE DANS Z - DIVISION DES ENTIERS - b divise a lorsqu il existe u etier k tel que a = kb O dit que a est multiple de b ; b est diviseur de a. Pour tout etier relatif (Z) a, b, c o a : -, a, -

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

T.D. 9 SUITES ET CALCULATRICES -

T.D. 9 SUITES ET CALCULATRICES - T.D. 9 SUITES ET CALCULATRICES - A/ Calculatrices TI 8 - TI 83 Pour calculer les termes, la calculatrice doit être e mode «Suites». Pour cela appuyer sur la touche MODE, choisir Seq puis valider par ENTER.

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION Optios : - Développeur d applicatios - Admiistrateur de réseaux locaux d etreprise SESSION 2011 SUJET ÉPREUVE E2 MATHÉMATIQUES I Durée : 3 heures

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

LENTILLES SYSTEME CENTRE

LENTILLES SYSTEME CENTRE LENTILLES SYSTEME CENTRE. Letilles mices Parmi toutes les letilles, il e existe u certai ombre qui peuvet être décrites par u modèle simple : il s agit des letilles mices. Ue letille mice est ue letille

Plus en détail

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments TS Les sites () Vocablaire sel des sites Rappels de ère et complémets 4 3 Revoir le cors de ère formle explicite I Gééralités ) Défiitio Ue site mérie est e foctio : terme d idice relatio de récrrece sites

Plus en détail

Les infections des voies urinaires

Les infections des voies urinaires Les ifectios des voies uriaires L A F O N D A T I O N C A N A D I E N N E D U R E I N 1 Les ifectios des voies uriaires Commet le système uriaire foctioe-t-il? Le système uriaire compred les reis, les

Plus en détail

COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion

COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion COURS DE STATISTIQUES INFERENTIELLES Licece d écoomie et de gestio Laurece GRAMMONT Laurece.Grammot@uiv-st-etiee.fr http://www.uiv-st-etiee.fr/maths/cvlaurece.html September 19, 003 Cotets 1 Rappels 5

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

Juin 2014 MATHEMATIQUES

Juin 2014 MATHEMATIQUES Jui 014 1 ères S MATHEMATIQUES Voici ue série d exercices sur différets thèmes abordés e classe de première S. Ils vous permettrot de repredre cotact avec les mathématiques avat d aborder la classe de

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

Décomposition en Série de Fourier Principe et Propriétés. par Vincent Choqueuse, IUT GEII

Décomposition en Série de Fourier Principe et Propriétés. par Vincent Choqueuse, IUT GEII Décompositio e Série de Fourier Pricipe et Propriétés par Vicet Choqueuse, IUT GEII . Problématique Problématique Cotexte : Les sigaux liés aux systèmes physiques, électriques, acoustiques,... peuvet préseter

Plus en détail

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments TS Revoir le cors de ère I Gééralités ) Défiitio Les sites () Vocablaire sel des sites Rappels de ère et complémets 3 e faço : par compréhesio Exemple : 3,4596 4 3 ième décimale de Ue site mérie est e

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

Vitesses de recouvrement et lois de Chung-Mogulskii dans pour le processus empirique

Vitesses de recouvrement et lois de Chung-Mogulskii dans pour le processus empirique Vitesses de recouvremet et lois de Chug-Mogulskii das pour le processus empirique Davit VARRON Laboratoire de Statistiques et Modélisatio, 6 rue Blaise Pascal, 3517 Bruz Résumé: E cotiuatio des travaux

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

6.1 Modèle multiplicatif de mortalité excédentaire (proportional

6.1 Modèle multiplicatif de mortalité excédentaire (proportional 6 Tests d hypothèse (Klei 6.3, Lawless 10.2 et 10.3, Klugma 13.4) 6.1 Modèle multiplicatif de mortalité excédetaire (proportioal hazard) O veut comparer la mortalité d u groupe sous étude avec celle d

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA SESSION 993 SAINT-CYR MATHEMATIQUES - Epreuve commue Optios M, P, T, TA PREMIÉRE PARTIE ) Les polyômes L 0,, L sot + polyômes de R [X] qui est de dimesio + Pour vérifier que la famille (L i ) 0 i est ue

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau.

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau. AVANT PROPOS Cet ouvrage propose aux élèves de classes termiales (fraçais) S (spécialité math) des rappels et des complémets de cours assez complet, aisi que des problèmes et des exercices corrigés. Les

Plus en détail

Petit manuel de bonne rédaction

Petit manuel de bonne rédaction Petit mauel de boe rédactio «Bie rédiger» peut sigifier deux choses : 1) exposer sa pesée clairemet, c est-à-dire avec ordre et rigueur et si possible avec style ; U raisoemet faux peut être bie rédigé,

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P.

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. Uiversité Mohammed V - Agdal Faculté des Scieces Départemet de Mathématiques et Iformatique Aveue Ib Batouta, B.P. 04 Rabat, Maroc Filière DEUG : Scieces Mathématiques et Iformatique (SMI) et Scieces Mathématiques

Plus en détail

Concours de l Iscae. Épreuve Commune de Mathématiques (2015)

Concours de l Iscae. Épreuve Commune de Mathématiques (2015) Mohiieddie Beayad Cocours de l Iscae Épreuve Commue de Mathématiques (5) Voici l éocé de l épreuve commue de Mathématiques du cocours d etrée à l ISCAE de l aée 5, aisi que l itégralité du corrigé. Les

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail