Fiche Diagonalisation des Matrices 2x2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Fiche Diagonalisation des Matrices 2x2"

Transcription

1 Fiche Diagoalisatio des Matrices x MOSE Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice Soit A, B, P M trois matrices carrées carrées d ordre vérifiat la relatio AP = P B O a alors par récurrece, pour tout 1, la relatio A P = P B E effet, e supposat la relatio vraie à l ordre, o aura A +1 P = A (A P ) = A (P B ) = (AP ) B = (P B) B = P B +1 c est à dire la même relatio à l ordre + 1. Ce résultat motre que das certais cas, il peut y avoir ue relatio simple etre les puissaces -ièmes de deux matrices différetes A et B. L ue des idées de la théorie de la diagoalisatio est d e profiter pour calculer la puissace -ième de la matrice A, e passat par ue matrice B dot la puissace -ième est facile à calculer. Or il existe u type de matrice dot les puissaces successives sot faciles à calculer, ce sot les matrices diagoales. Si D est ue matrice diagoale [ λ1 0, 0 λ sa puissace -ième est simplemet la matrice diagoale D = [ λ1 0 0 λ Exercice le démotrer par récurrece.

2 Défiitio Ue matrice A M est dite diagoalisable si o peut trouver ue matrice diagoale D M et ue matrice iversible P M telles que AP = P D, ou ecore A = P DP 1 O a ajouté la coditio d iversibilité de P pour pouvoir exprimer A e foctio de D, et doc aussi A (la matrice qui ous itéresse) A = P D P 1 O peut remarquer qu o a aussi les relatios suivates P 1 AP D = P 1 A P Reste la questio de fod : P et D existet-elles? Commet les détermier? Diagoalisatio Pour réaliser l égalité AP = P D, où D est ue matrice diagoale telle que ci-dessus, o s itéresse aux coloes de la matrice P, c est à dire qu o écrit P = [ C 1 C e distiguat les deux coloes et o costate les deux faits suivats qui résultet de la défiitio du produit des matrices Les coloes de AP sot AC 1 et AC Les coloes de P D sot λ 1 C 1 et λ C Autremet dit, o aura AP = P D si et seulemet si AC 1 = λ 1 C 1 et AC = λ C Nos icoues sot ici λ 1, λ et les matrices coloes C 1 et C, qui doivet e plus être o proportioelles pour que la matrice P soit iversible (il faut que so détermiat soit o ul). Défiitio O dit qu ue matrice coloe o ulle X M,1 est vecteur propre de la matrice A si AX est proportioelle à X, c est à dire s il existe u réel λ, appelé valeur propre associée à X telle que AX = λx Cette derière équatio s appelle équatio aux valeurs propres. Pour bie préseter l équatio aux valeurs propres, o l écrit gééralemet sous la forme (A λi) X = 0 techiquemet, c est u système de deux équatios liéaires à deux icoues et avec u paramètre λ. Exemple Soit la matrice [ [ 3 3 λ A = o a A λi = λ [ x E posat X = le vecteur propre icou, l équatio aux valeurs propres s écrit comme le système à y paramètre { (3 λ) x +y = 0 3x + (8 λ)y = 0 O remarque que ce système à u secod membre ul, doc il admet au mois la solutio x = y = 0. Il se peut que ce soit la seule solutio, mais elle e ous itéresse pas parce qu il ous faut des vecteurs propres o uls. Reste ue seule possibilité : que le système admette ue ifiité de solutios. Pour cela, il faut que le détermiat soit ul. Sur otre exemple, le détermiat vaut 3 λ 3 8 λ = (3 λ) (8 λ) + 6 = λ 11λ + 30 O remarque que c est u polyôme de degré. C est toujours le cas :

3 Défiitio O appelle polyôme caractéristique de la matrice A M le polyôme du secod degré P (λ) = det (A λi). Théorème U réel λ est valeur propre de la matrice A si et seulemet si il est racie du polyôme caractéristique de A (c est à dire si P (λ) = 0). Pour ce réel λ, l équatio aux valeurs propres admet comme solutios ue ifiité de vecteurs propres o uls. Cherchos les valeurs propres sur l exemple. Il faut résoudre l équatio λ 11λ + 30 = 0 Le discrimiat vaut = = 1, il y a doc deux racies réelles distictes λ 1 = 11 1 = 5 et λ = = 6 Pour la valeur propre λ = λ 1 = 5, le système doat les vecteurs propres deviet { x +y = 0 3x +3x = 0 { x +y = 0 [ 1 Ue solutio o ulle est par exemple. Ce sera la première coloe de otre matrice P. 1 Pour la valeur propre λ = λ = 6, le système doat les vecteurs propres deviet { 3x +y = 0 3x +x = 0 { 3x +y = 0 [ Ue solutio o ulle est par exemple. Ce sera la deuxième coloe de otre matrice P. O voit qu o 3 a u peu de liberté das le choix de la matrice P. O a doc diagoalisé la matrice A, c est à dire qu o a trouvé ue matrice diagoale D et ue matrice iversible P, à savoir telles que O a ici d après la règle doée das le cours. [ et P = [ AP = P D et A = P DP 1 et P 1 AP P 1 = [ Remarque. Lorsque le polyôme caractéristique a qu ue seule racie réelle (le discrimiat est ul). Il y a deux cas de figure : Il se peut que la matrice A soit ue matrice diagoale, das ce cas o pred A et P = I Sio, la matrice A est pas diagoalisable parce qu o e pourra pas trouver deux vecteurs propres o proportioels format les coloes d ue matrice P Lorsque le polyôme caractéristique a pas de racie réelles (so discrimiat est strictemet égatif), o peut coclure que la matrice est pas diagoalisable, c est à dire qu o e peut pas trouver de matrices D et P vérifiat les coditios demadées. Cepedat, il est quad même possible de diagoaliser A e permettat à D et P d avoir des coefficiets complexes. E effet, le polyôme caractéristique admet deux racies complexes distictes, et le travail qu o a fait ci-dessus peut s effectuer avec des ombres complexes. O dit alors que A est diagoalisable sur C. 3

4 Vérificatio avec Scilab O peut vérifier les relatios etre les matrices obteues das la cosole scilab -->A = [3 ;-3 8; -->P = [1 ; 1 3; --> [5 0; 0 6; -->iv(p) >P * D * iv(p) >A * P - P * D Scilab est égalemet capable de diagoaliser seul la matrice A à l aide de la foctio bdiag() -->A = [3 ;-3 8; -->[D, P = bdiag(a) P = Il trouve la même matrice diagoale (le seul chagemet possible serait l ordre des valeurs propres), par cotre, il trouve ue matrice P différete de la ôtre (o a vu qu il y a ue part d arbitraire das le choix des coloes de P ). Ici chacue des coloes trouvées par scilab est proportioelle à la coloe trouvée das otre matrice P. Attetio. Si A est pas diagoalisable, la foctio bdiag() de scilab produira ue matrice D o diagoale. C est le cas otamet s il y a des valeurs propres complexes. O peut utiliser [V, spec(a) pour obteir la diagoalisatio complexe. Puissace D après ce qui précède, o a [ [ [ A = = [ Naturellemet, l itérêt de cette formule est surtout théorique, puisque scilab peut calculer umériquemet les puissaces de A -->A **

5 >A ** 3 10^5 * O voit ue limitatio de ce calcul umérique : scilab dit que A 3 = 10 5 [ O voit que ce calcul est approximatif : A 3 cotiet e fait des etiers compreat 5 chiffres, et scilab affiche que 8 chiffres sigificatifs (bie qu e fait il e stocke plus, 16 ou 0, mais efi, il y a ue limite). 5

Feuille d exercices: Calcul matriciel.

Feuille d exercices: Calcul matriciel. Feuille d exercices : Calcul matriciel : Exercice 2 3 ) Soit A = 0 0, motrer que A est la matrice das la 2 6 base caoique de R 3 d ue projectio dot o precisera le oyau et l image 2) Doer la matrice das

Plus en détail

Fiche N 8 : Matrices.

Fiche N 8 : Matrices. Lycée Paul Gaugui CPGE-EC1 Aée 014/015 Fiche N 8 : atrices Gééralités sur les matrices atrices : Défiitios O appelle matrice à liges et p coloes tout tableau rectagulaire de ombres réels à liges et p coloes

Plus en détail

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices EXERCICE 1 : Soit E u espace vectoriel et u L(E) tel que u u +u = 0 Motrer que Sp (u) {0, 1, } EXERCICE : 1) Soit A ue matrice carrée telle que A

Plus en détail

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible.

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible. Uiversité de Geève Sectio de Mathématiques Algèbre I Corrigé 2 Série 7, ex 3 Toutes les affirmatios sot vraies sauf la derière E effet, pour que deux espaces soiet e somme directe, il faut que leur itersectio

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

Août 2014 (1 heure et 45 minutes) b) Quel lien y a-t-il entre le rang d'une matrice et son nombre de lignes et de colonnes? Ne pas

Août 2014 (1 heure et 45 minutes) b) Quel lien y a-t-il entre le rang d'une matrice et son nombre de lignes et de colonnes? Ne pas Août 24 ( heure et 45 miutes). a) Défiir: matrice écheloée lige réduite rag d'ue matrice (.5 pts.) b) Quel lie a-t-il etre le rag d'ue matrice et so ombre de liges et de coloes? Ne pas démotrer. (.5 pt.)

Plus en détail

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit M la matrice réelle 3 3 suivante :

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit M la matrice réelle 3 3 suivante : Eocés et correctios : Sadra Delauay Exo7 Sujets de l aée 24-25 1 Devoir à la maiso Exercice 1 Soit M la matrice réelle 3 3 suivate : 1 Détermier les valeurs propres de M 2 Motrer que M est diagoalisable

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi.

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi. Exo7 Fractios ratioelles Correctios de Léa Blac-Ceti. Fractios ratioelles Exercice Existe-t-il ue fractio ratioelle F telle que ( F() ) = ( + ) 3? Idicatio Correctio Vidéo [006964] Exercice Soit F = P

Plus en détail

[A.B] ij =.. (0.5 pt.)

[A.B] ij =.. (0.5 pt.) mx xp Mai 4 ( heures et miutes). a) Soiet A et B avec m,,p IN.Si i {,,...,m} et j {,,...,p}, compléter : [A.B] ij.. (. pt.) b) Démotrer (e justifiat toutes les étapes) que le produit matriciel distribue

Plus en détail

EXERCICE 1 - Calculs de déterminants

EXERCICE 1 - Calculs de déterminants PCSI 201-2014 CORRECTION DS 1 Lycée de L essouriau EXERCICE 1 - Calculs de détermiats 1 Via C 1 C 1 C 2 et C 2 C 2 C puis e factorisat selo la première coloe par a 1 a 2 et selo la secode par a 2 a ot

Plus en détail

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques Cocours commu Mies-Pots Corrigé de la secode épreuve de mathématiques a Nous pouvos appliquer le critère de d Alembert : doc le rayo R est égal à /4 C+ + + + C = + 4, + b O sait que h est de classe C avec

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Concours PT2004 Maths I-B. partie A

Concours PT2004 Maths I-B. partie A ocours PT2 Maths I-B Même si le suet e l a pas posé o utilisera : 8 2 M r (R) = I r partie a b x y ax + bz. Si = 2 S c d 2 et B = 2 S z t 2 o a B = cx + dz ay + bt cy + dt Les coe ciets de B sot sommes

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

DM de Mathématiques, Suites récurrentes linéaires - Correction

DM de Mathématiques, Suites récurrentes linéaires - Correction DM de Mathématiques, Suites récurretes liéaires - Correctio IR aée 008-009 A redre pour le 8 décembre 008 Exercice : Echauemet O s'itéresse à la suite récurrete liéaire déie par : u 0 = u = u + = u + u

Plus en détail

CENTRALE 2008 PC Math 2. Préliminaire

CENTRALE 2008 PC Math 2. Préliminaire CENTRLE 8 PC Math Comme o a des suites de matrices X, j utilise la otatio Maple X [i] pour oter le coe ciet de la lige i de X. Prélimiaire O véri e sas problème que : a b c d d b c a ad bc ad bc La matrice

Plus en détail

Suite des polynômes de Tchebychev. (Exercice N 127 page 87) Corrigé

Suite des polynômes de Tchebychev. (Exercice N 127 page 87) Corrigé Suite des polyômes de Tchebychev (Exercice 7 page 87) a E utilisat la relatio de récurrece avec =, o obtiet : Puis, pour = : Efi, pour = 4 : O a bie : f x x f x f x x x x = = = f x = x f x f x = x x x=

Plus en détail

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /11/2013

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /11/2013 IUT de Sait-Etiee - départemet Techiques de Commercialisatio M. Ferraris Promotio 203-205 22//203 Semestre - MATHEMATIQUES DEVOIR durée : heure 30 mi coefficiet /3 La calculatrice graphique est autorisée.

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

MATHEMATIQUES 2. Fonctions de matrices

MATHEMATIQUES 2. Fonctions de matrices SESSION 2004 EPREUVE SPECIFIQUE FILIERE MP MTHEMTIQUES 2 Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

DJ - FAMILLES DE POLYNOMES

DJ - FAMILLES DE POLYNOMES DJ - FAMILLES DE POLYNOMES I Ue famille remarquable de polyômes Pour tout etier positif, o ote Γ le polyôme Γ (X X(X 1 (X + 1!, et γ! Γ Les polyômes Γ formet ue base de R[X] O a tout d abord les formules

Plus en détail

(10.C02) Une matrice de dimension <n;m> est un tableau formé par la juxtaposition de m vecteurs de dimension n. On la note par une majuscule grasse.

(10.C02) Une matrice de dimension <n;m> est un tableau formé par la juxtaposition de m vecteurs de dimension n. On la note par une majuscule grasse. 0.C ANNEXE: CALCUL MATRICIEL 0.C. Défiitios La maîtrise du calcul matriciel est icotourable pour aborder l'étude des réglages d'état. Nous 'e rappelleros que les opératios fodametales déjà étudiées e mathématiques

Plus en détail

Dimension finie. 1. Famille libre Combinaison linéaire (rappel) 1.2. Définition

Dimension finie. 1. Famille libre Combinaison linéaire (rappel) 1.2. Définition Dimesio fiie Vidéo partie. Famille libre Vidéo partie 2. Famille géératrice Vidéo partie 3. Base Vidéo partie 4. Dimesio d'u espace vectoriel Vidéo partie 5. Dimesio des sous-espaces vectoriels Fiche d'exercices

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1 SOLUTIONS AUX EXERCICES DE LA FEUILLE. Exercice. Ue suite de réels positifs qui coverge vers 0 est décroissate à partir d u certai rag. C est faux. Pour costruire u cotre-exemple, o pourrait cosidérer

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

MODELISATION ANALOGIQUE ET SIMULATION DES SYSTEMES ASSERVIS 1 er 2 ème ET 3 ème ORDRE

MODELISATION ANALOGIQUE ET SIMULATION DES SYSTEMES ASSERVIS 1 er 2 ème ET 3 ème ORDRE MODELISATION ANALOGIQUE ET SIMULATION DES SYSTEMES ASSERVIS er ème ET 3 ème ORDRE I. BUT DU TP : -modélisatio de quelque élémet typiques a savoir : étude» des système du er ; ieme et 3ieme ordre e utilisat

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

ESPACES VECTORIELS APPLICATIONS LINEAIRES

ESPACES VECTORIELS APPLICATIONS LINEAIRES SPACS VCTORILS APPLICATIONS LINAIRS xercices Les exercices précédés de ce symbole e serot pas traités e classe (U corrigé sera mis sur le site) XRCIC : O ote M3 l espace vectoriel des matrices carrées

Plus en détail

EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICE 01 : EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Techique Bamako 1) Démotrer par récurrece que : a) ε N*: 1+ + 3+ + = ( + 1) b) ε N*: 1+ 3+ 5+ + ( 1) = c) ε N*: 1 + 3+ 5 + +

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Les ratioels, les réels Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

CONCOURS BLANC 1 SCI 2

CONCOURS BLANC 1 SCI 2 CONCOURS BLANC SCI Durée : 4 heures Aucu istrumet de calcul est autorisé Aucu documet est autorisé Les étudiats sot ivités à soiger la présetatio de leur copie EXERCICE : CCP 05 CCP : cocours commus polytechiques

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

Second degré Équations et inéquations

Second degré Équations et inéquations Secod degré Équatios et iéquatios I - Triôme ère leço Triôme et sige du triôme Propriété Soit P() = a² + b + c, u triôme du secod degré, où a, b, c sot des ombres réels avec a 0. Le discrimiat de ce triôme

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

APPLICATIONS LINEAIRES Exercices

APPLICATIONS LINEAIRES Exercices EXERCICE : APPLICATIONS LINEAIRES Exercices ) Motrer que l applicatio f : f : est liéaire x, y, z x z, y z ) Soit ue matrice AM et soit f l applicatio qui à toute matrice X M associe la matrice Y défiie

Plus en détail

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations 8-8- JFC p EM LYON S JF COSSUTTA Lycée Marceli BERTHELOT SAINT-MAUR jea-fracoiscossutta@waadoofr PROBLÈME Partie I : Résultats gééraux sur les matrices stochastiques - Illustratios Remarque Das la suite

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

Problème : matrices semi-magiques

Problème : matrices semi-magiques Problème : matrices semi-magiques Fixos N. Ue matrice A M (K) est dite semi-magique lorsque la somme des coefficiets das importe quelle lige ou coloe doe toujours le même résultat. E formule, lorsque :

Plus en détail

Exercices sur les fonctions trigonométriques réciproques

Exercices sur les fonctions trigonométriques réciproques Eercices sur les foctios trigoométriques réciproques O cosidère la foctio f défiie par f Arcta ) Détermier l esemble de défiitio D de f ) Simplifier l epressio de f pour D Idicatio : Poser y Arccos Soit

Plus en détail

L2 - Math4 Exercices corrigés sur les suites numériques

L2 - Math4 Exercices corrigés sur les suites numériques L2 - Math4 Exercices corrigés sur les suites umériques Eocés Exercice Les assertios suivates sot-elles vraies ou fausses? Doer ue démostratio de chaque assertio vraie, et doer u cotre-exemple de chaque

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

Cours de Mathématiques : Polynômes et Suites

Cours de Mathématiques : Polynômes et Suites Uiversité de Cergy-Potoise Départemet de Mathématiques L MIPI - S2 205/206 Cours de Mathématiques : Polyômes et Suites - Polycopié d Exercices Chapitre : Nombres complexes Exercice a) Détermier la partie

Plus en détail

A) Forme algèbrique d un nombre complexe.

A) Forme algèbrique d un nombre complexe. A) Forme algèbrique d u ombre complexe. Théorème Il existe u esemble, oté,de ombres appelés ombres complexes, tel que : cotiet ; est mui d ue additio et d ue multiplicatio pour lesquelles les règles de

Plus en détail

Sommaire. Chapitre 1. Notions de base Chapitre 2. Nombres complexes Polynômes... 33

Sommaire. Chapitre 1. Notions de base Chapitre 2. Nombres complexes Polynômes... 33 Sommaire Chapitre. Notios de base.................... 7 A. Démostratio par récurrece..................... 8 B. Esembles............................. 9 C. Applicatios............................ 2 D. Calcul

Plus en détail

Mardi 10 janvier h-13h

Mardi 10 janvier h-13h Mardi javier 27 8h-3h Il sera teu compte de faco importate de la qualité de la rédactio et de l argumetatio. E particulier, répodre juste à ue questio est valorisé, répodre faux est péalisé et e pas répodre

Plus en détail

TD Algèbre linéaire (Partie II) Polynôme caractéristique. Décompositions LU et de Cholesky. Produit matriciel.

TD Algèbre linéaire (Partie II) Polynôme caractéristique. Décompositions LU et de Cholesky. Produit matriciel. TD lgèbre liéaire (Partie II) Polyôme caractéristique. Décompositios LU et de Cholesy. Produit matriciel. Itroductio et objectifs Das cette secode partie du TD cosacré à l algèbre liéaire, ous abordos

Plus en détail

Corrigés des exercices.

Corrigés des exercices. DE MIE, Aalyse 1 Octobre 015 Corrigés des exercices. Exercice 1. Exercice. Exercice 3. Exercice 4. Exercice 5. Exercice 6. Exercice 7. 1. Si b est u élémet de B, tout élémet de A est iférieur ou égal à

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p.

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p. MATHÉMATIQUES I Objectifs O se roose, das ce qui suit, de détermier l esemble des solutios d ue équatio différetielle liéaire à coefficiets costats lorsqu elle est homogèe, uis lorsque celle-ci admet u

Plus en détail

Théorème de Rolle dans le cas complexe.

Théorème de Rolle dans le cas complexe. Théorème de Rolle das le cas complexe. Das ce problème o se propose de prouver l aalogue complexe suivat du théorème de Rolle : Théorème. Soiet a et b deux ombres complexes disticts et u etier. Soit P

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

Synthèse de cours PanaMaths Introduction au calcul matriciel

Synthèse de cours PanaMaths Introduction au calcul matriciel Sythèse de cours PaaMaths Itroductio au calcul matriciel Défiitios Notio de matrice O appelle «matrice de dimesio p» ou «de type (, p )» u tableau de ombres réels comportat liges et p coloes ( et p sot

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

Corrigé mines 2 PSI 2015 Partie I

Corrigé mines 2 PSI 2015 Partie I Corrigé mies 2 PSI 2015 Partie I Les questios de cette partie sot très faciles, il est doc idispesable d'être irréprochable sur le pla de la rédactio. Questio 1 ous les blocs qui itervieet das ce qui suit

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice 1 - Loi d u dé truqué - Deuxième aée - 1. X pred ses valeurs das {1,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque

Plus en détail

Fiche 6 : Nombres complexes

Fiche 6 : Nombres complexes Nº : 3006 Fiche 6 : Nombres complexes Pla de la fiche I - Esemble des ombres complexes II - Nombre complexe cojugué III - Module et argumet IV - Les différetes écritures d u ombre complexe o ul V - Equatio

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

Vérification graphique d une loi

Vérification graphique d une loi Aexe L1 Vérificatio raphique d ue loi Après l étude de cette aexe, le lecteur pourra détermier si des doées empiriques sot adéquatemet décrites par ue loi théorique déjà coue e trasformat l équatio de

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

E.P.I.T.A Corrigé de l'épreuve optionnelle de mathématiques (2h) ª ; BA =

E.P.I.T.A Corrigé de l'épreuve optionnelle de mathématiques (2h) ª ; BA = 5 EPITA 017 Corrigé de l'épreuve optioelle de mathématiques (h) PARTIE I : Exemples de matrices ilpotetes a) O vérifie facilemet que A = B = 0, de sorte que A et B sot ilpotetes d'idice b) O obtiet facilemet

Plus en détail

1 ) si la suite (u n ) diverge, alors la suite ((u n) )... n... n+2

1 ) si la suite (u n ) diverge, alors la suite ((u n) )... n... n+2 Javier 06 ( heures et 30 miutes). a) Défiir: - sous-esemble fermé de IR et sous-esemble ouvert de IR - poit itérieur de A, sous-esemble o vide de IR ( pt.) b) Démotrer que si A est u esemble ouvert, alors

Plus en détail

Corrigé de l'épreuve de maths 2 - e3a - MP

Corrigé de l'épreuve de maths 2 - e3a - MP Corrigé de l'épreuve de maths 2 - e3a - MP - 207 Partie I L'applicatio ϕ est liéaire et P R [X], ϕ(p R [X] doc ϕ iduit sur R [X] u edomorphisme 2 ϕ( = et i, ϕ(x i = X i ix i O e déduit la matrice de ϕ

Plus en détail

x k, 2 : x k 1 n x x 1

x k, 2 : x k 1 n x x 1 SMIA/S3 ANALYSE 3 AALAMI IDRISSI et EZEROUALI Chapitre 5 FONCTIONS DE IR DANS IR p I) NOTIONS DE TOPOLOGIE SUR IR 1) Normes sur IR : a) Défiitio: O appelle orme sur toute applicatio x x de das telle que

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite.

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite. ECG JP A 00-00 F. FRANZOSI & A. WENGER http://math.aki.ch 5. Défiitio et gééralités Défiitio : Ue suite réelle est ue applicatio de * N das R, doc si U est ue telle suite, o aura : U : N * R U ( ) U U

Plus en détail

Chapitre 3: La démonstration par récurrence

Chapitre 3: La démonstration par récurrence CHAPITRE 3 DEMONSTRATION PAR RECURRENCE 33 Chapitre 3: La démostratio par récurrece 3. U exemple pour compredre le pricipe Itroductio : Pour découvrir ue formule doat la somme des premiers ombres impairs,

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Covariance et ajustement affine par la méthode des moindres carrés

Covariance et ajustement affine par la méthode des moindres carrés Uiversité de Poitiers - 205-206 A. Moreau Algèbre - Géométrie M MEEF Covariace et ajustemet affie par la méthode des moidres carrés Das tout le documet, la lettre désige u etier aturel o ul. Les deux parties

Plus en détail

Equations différentielles.

Equations différentielles. Equatios différetielles. Chap. 3 : cours complet.. Equatios différetielles liéaires scalaires d ordre. Défiitio. : équatio différetielle liéaire scalaire d ordre, équatio homogèe associée, solutio d ue

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

TP - Introduction de la fonction exponentielle par la méthode d'euler -

TP - Introduction de la fonction exponentielle par la méthode d'euler - TP - Itroductio de la foctio expoetielle par la méthode d'euler - De ombreux phéomèes phsiques, biologiques, écoomiques ou autres sot modélisés par ue foctio ƒ qui est proportioelle à sa dérivée ƒ'. (Par

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Voici les productions (exprimées en milliers) de deux usines de cycles appartenant à une même enseigne pour le premier semestre de l année 2010 :

Voici les productions (exprimées en milliers) de deux usines de cycles appartenant à une même enseigne pour le premier semestre de l année 2010 : Douie Termiale S Activités Chapitre 4 spé Matrices Deux tableaux de ombres Voici les productios (exprimées e milliers) de deux usies de cycles apparteat à ue même eseige pour le premier semestre de l aée

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h.

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h. Coceptio : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES mai 07, de 8 h à h La présetatio, la lisibilité, l orthographe, la qualité de la rédactio, la clarté et la précisio des raisoemets etrerot pour ue part

Plus en détail

1 Équations diérentielles linéaires du premier ordre

1 Équations diérentielles linéaires du premier ordre TD : EQUA DIFF Le 8 mai 00 Uiversité Paris - MASS -L Équatios diéretielles liéaires du premier ordre Résumé C'est ue équatio de la forme E : y + axy bx L'équatio homogèe associée est E : y + axy 0 O a

Plus en détail

I - Caractérisation des matrices symétriques définies positives

I - Caractérisation des matrices symétriques définies positives SESSION Cocours commu Cetrale MATHÉMATIQUES FILIERE MP IA - I - Caractérisatio des matrices symétriques défiies positives IA Soiet N et A S (R O sait que toutes les valeurs propres de A sot réelles Supposos

Plus en détail

CHAPITRE IV. Rappels et compléments sur les suites

CHAPITRE IV. Rappels et compléments sur les suites CHPITRE IV Rappels et complémets sur les suites SUITES NUMÉRIQUES 1 Sommaire I Notio de suite...................................... 30 Exemples.......................................... 30 B Défiitio..........................................

Plus en détail

Août 2017 (1 heure et 45 minutes)

Août 2017 (1 heure et 45 minutes) Août 017 (1 heure et 45 miutes) 1. a) Soit A, sous-esemble majoré o vide de IR. Défiir: - poit d accumulatio de A - supremum et maximum de A (1 pt.) b) Compléter chaque lige du tableau suivat par u sous-esemble

Plus en détail

Chapitre 5 : Matrices et suites. matrices colonnes dont les coefficients sont les suites numériques ( ) n définies pour tout entier naturel n par u n

Chapitre 5 : Matrices et suites. matrices colonnes dont les coefficients sont les suites numériques ( ) n définies pour tout entier naturel n par u n Chapitre 5 : Matrices et suites I Suites de matrices coloes Exemples La suite ( U ) défiie pour tout etier aturel par U = est ue suite de 3 + v matrices coloes dot les coefficiets sot les suites umériues

Plus en détail

Exercices sur les suites de fonctions

Exercices sur les suites de fonctions ercices sur les suites de foctios océs ercice Étudier la covergece simple et uiforme des suites de foctios de R das R suivates : f ) = ), g ) = si, ϕ ) = e si, ψ ) = e cos. ercice 2 Étudier la covergece

Plus en détail