Test de validité et d'hypothèse

Dimension: px
Commencer à balayer dès la page:

Download "Test de validité et d'hypothèse"

Transcription

1 Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des hypothèses cocerat la populatio qui peuvet s'avérer vraies ou fausses. Ces hypothèses sot faites pour être soit cofirmées soit rejetées. O défiit alors deux types d'hypothèses: H 0 : hypothèse ulle, appelée hypothèse à rejeter H 1 : hypothèse alterative (e gééral à H 0 ), toute hypothèse qui diffère d'ue autre. Quel que soit le test mis e place, il va y avoir types d'erreurs: Erreur de 1 ère espèce: O rejette ue hypothèse qui est vraie Erreur de ème espèce: O accepte ue hypothèse fausse. Le but du chapitre va être de préciser les probabilités de faire ces erreurs et d'e dimiuer les risques. Le problème est que dès que l'o dimiue le risque sur l'ue des erreurs, o augmete celui sur l'autre. Tests relatifs la distributio ormale.1 Tests relatif à ue moyee La populatio totale est défiie par ses caractéristiques: Effectif : N ; Moyee m; Ecart-type. U échatillo est défii par so effectif ; sa moyee x ; so écart-type '. Le théorème de la limite cetrale permet de dire que la distributio d'échatilloage suit la loi ormale N (M, ). Test bilatéral O veut tester si la moyee m est égale à ue valeur doée (orme). O va doc cosidérer l'hypothése H 0 : " m = " Si la moyee de la populatio est égale à alors le théorème de la limite cetrale permet de dire que la distributio d'échatilloage des moyees X suit la loi ormale N (, ). oc si ous fixos u seuil ous commeços par chercher t tel que Prob( t T t ) = 1- Ex : u seuil de 5% la valeur de t est de 1,96 car Prob(-1,96 T 1,96) = 0,95. u seuil de 1% la valeur de t est de,58 car Prob(-,58 T,58) = 0,99. Nous avos vu au chapitre précédet que, avat de prélever u échatillo de taille : Il y a 95% de chaces que sa moyee soit das l'itervalle [-1,96 ; + 1,96 ]. Il y a 99% de chaces que sa moyee soit das l'itervalle [-,58 ; +,58 ]. Nous prélevos alors u échatillo. Si le résultat de sa statistique est à l'extérieur de l'itervalle, ous cocluros que cet évéemet e peut se réaliser qu'avec ue probabilité de si l'hypothèse est exacte. Nous sommes eclis à affirmer que l'hypothèse est fausse au seuil (ou iveau de sigificatio, avec u risque d'erreur de première espèce. L'esemble des résultats situés à l'extérieur du domaie costitue la régio critique. Par cotre, si le résultat de la statistique de l'échatillo est à l'itérieur de l'itervalle, ous cocluros que l'évéemet peut se réaliser avec ue probabilité de 1-, si l'hypothèse est exacte. Nous pouvos alors affirmer que l'hypothèse est vraie au seuil, avec u risque d'erreur de deuxième espèce.

2 'où l'éocé d'ue règle de décisio au seuil. Si le résultat de la statistique de l'échatillo est das l'itervalle, o accepte l'hypothèse. Si le résultat de la statistique de l'échatillo est hors de l'itervalle, o refuse l'hypothèse. Tableau des seuils courats: 10% 5% 1% 0,5% 0,% 1 90% 95% 99% 99,5% 99,8% t 1,645 1,96,58,81 3, t t Test uilatéral O veut tester si la moyee m est différete d'ue valeur doée (orme). O va ecore cosidérer l'hypothése H 0 : " m = " mais o va avoir deux types de tests : Type 1 : O pese que la moyee est iférieure à. L'hypothèse alterative est H 1 : " m ". oc si ous fixos u seuil ous commeços par chercher t tel que Prob( t T ) = 1- Ex : u seuil de 5% la valeur de t est de 1,645 car Prob(-1,645 T ) = 0,95. u seuil de 1% la valeur de t est de,33 car Prob(-,33 T ) = 0,99. U calcul idetique à celui effectué pour le test bilatéral ous permet d'affirmer que, avat de prélever u échatillo de taille : Il y a 95% de chaces que sa moyee soit das l'itervalle [-1,645 ; + [ Il y a 99% de chaces que sa moyee soit das l'itervalle [-,33 ; + [. -t 'où l'éocé d'ue règle de décisio au seuil. Si le résultat de la statistique de l'échatillo est das l'itervalle, o accepte l'hypothèse H 0 et ous affirmos que la moyee 'est pas iférieure à au seuil. Si le résultat de la statistique de l'échatillo est hors de l'itervalle, o refuse l'hypothèse H 0 et l'o accepte l'hypothèse H 1. Nous affirmos alors que la moyee est iférieure à au seuil. Type : O pese que la moyee est supérieure à. L'hypothèse alterative est H 1 : " m ".

3 oc si ous fixos u seuil ous commeços par chercher t tel que Prob( T t ) = 1- Ex : u seuil de 5% la valeur de t est de 1,645 car Prob( T 1,645 ) = 0,95. u seuil de 1% la valeur de t est de,33 car Prob( T,33 ) = 0,99. U calcul idetique à celui effectué pour le test bilatéral ous permet d'affirmer que, avat de prélever u échatillo de taille : Il y a 95% de chaces que sa moyee soit das l'itervalle ] - ; +1,645 ]. Il y a 99% de chaces que sa moyee soit das l'itervalle ] - ; +,33 ]. t 'où l'éocé d'ue règle de décisio au seuil. Si le résultat de la statistique de l'échatillo est das l'itervalle, o accepte l'hypothèse H 0 et ous affirmos que la moyee 'est pas supérieure à au seuil. Si le résultat de la statistique de l'échatillo est hors de l'itervalle, o refuse l'hypothèse H 0 et l'o accepte l'hypothèse H 1. Nous affirmos alors que la moyee est supérieure à au seuil. Tableau des seuils courats: 10% 5% 1% 0,5% 0,% 1 90% 95% 99% 99,5% 99,8% t 1,8 1,645,33,58,88.3 Tests relatifs à ue fréquece Test bilatéral O veut tester l'hypothèse H 0 " p = " (la fréquece de la populatio est égale à ). O accepte H 0 au iveau si pour l'échatillo doé sa fréquece f appartiet à l'itervalle [ - t ; + t ] Test uilatéraux Type 1 : O pese que la fréquece est iférieure à. L'hypothèse alterative est H 1 : " p ". O accepte H 0 au iveau si pour l'échatillo doé sa fréquece f appartiet à l'itervalle [ - t ; + [. as le cas cotraire ous affirmos que la fréquece est iférieure à au seuil. Type : O pese que la fréquece est spuérieure à. L'hypothèse alterative est H 1 : " p ". O accepte H 0 au iveau si pour l'échatillo doé sa fréquece f appartiet à l'itervalle

4 ] - ; + t ]. as le cas cotraire ous affirmos que la fréquece est iférieure à au seuil..4 Carte de cotrôle as le cotrôle das le temps de l'évolutio d'ue populatio, o peut être ameé à suivre l'évolutio des échatillos. Il peut alors être utile d'établir u graphique. Puisque la loi d'échatilloage des moyees suit la loi ormale N (M, Prob M x M + 0,95 ) o sait que Gs Prob M 3 x M + 3 > 0,99 Si o prélève régulièremet des échatillos: Tat que x est compris etre M et M + o cosidère que l'évolutio est satisfaisate. as la zoe itermédiaire, o procède immédiatemet à ue ouvelle prise d'échatillos pour vérifier. as la zoe extere, il faut procéder à ue correctio ou à u réglage s'il s'agit d'ue machie. L'esemble des résultats est cosigé sur ue fiche appelée carte de cotrôle. zoe critique M +3 M + zoe de surveillace M Zoe d'acceptatio ou de o décisio M M 3 zoe de surveillace zoe critique

5 3 Comparaiso de deux Echatillos O dispose de deux échatillos et, caractérisés par : Leurs effectifs respectifs et ; leurs moyees respectives x et x ; leurs écart-types respectif ' et '. O igore s'ils sot tirés de la même populatio. O va estimer l'écart-type de la populatio P associée à par = 1 ' et l'écart-type de la populatio P associée à par = 1 '. O va se placer das le cas où la v.a.r. X associée à la distributio d'échatilloage de la populatio P suit ue loi ormale N (M, ) et la loi d'échatilloage de la populatio P suit la loi ormale N (M, ). O cosidère alors la variable aléatoire = X X qui associe à tout échatillo prélevé das la populatio P et à tout échatillo prélevé das la populatio P, la différece des moyees des deux échatillos. O suppose que X et X sot idépedates, alors = X X suit ue loi ormale et : E( ) = E( X X ) = E( X ) E( X ) = x x V ( ) = V ( X X) = V ( X) + V ( X) = + doc M M = + M M Costructio du test: H 0 : m = m H 1 : m m O va alors tester l'hypothèse : La moyee est la même pour les deux fourisseurs. Sous l'hypothèse H 0, suit la loi ormale N (0; ) doc suit la loi ormale N (0; 1) u seuil de 5% par exemple, Prob t t = 0, 95 pour t = 1,96 ou Prob ( t. t. ) = 0,95 pour t = 1,96. 0,05 0,95 0,05 t. t. Il e reste plus qu'à éocer otre règle de décisio.

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

APPLICATION DE LA STATISTIQUE AU TRAITEMENT DES DONNÉES AU LABORATOIRE D'ANALYSES ET EN FABRICATION

APPLICATION DE LA STATISTIQUE AU TRAITEMENT DES DONNÉES AU LABORATOIRE D'ANALYSES ET EN FABRICATION Philippe TRIBOULET (Lycée Niepce Chalo sur Saôe) 03/03/007 PPLICTION DE L STTISTIQUE U TRITEMENT DES DONNÉES U LBORTOIRE D'NLYSES ET EN FBRICTION I/ INTRODUCTION L'utilisatio de la statistique pour le

Plus en détail

Chapitre 7. Tests d hypothèse. Sommaire. 1. Introduction Principe des tests...3

Chapitre 7. Tests d hypothèse. Sommaire. 1. Introduction Principe des tests...3 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (8/0/003) Chapitre 7 Tests d hypothèse Sommaire. Itroductio.. 3. Pricipe des tests......3.. Choix de l hypothèse à tester.4... Hypothèse

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

CORRIGE DES EXERCICES : Exercices de révision

CORRIGE DES EXERCICES : Exercices de révision U.F.R. S.P.S.E. Licece de psychologie L5 PLPSTA03 Tests d'hypothèses statistiques UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Exercices de révisio Exercice 8. P{filles de 0 as}, X ombre de boes

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3 Tests Chapitre Table des matières 1 Pricipe d u test 1 11 Défiitios 1 Méthode géérale 3 Test de coformité à u paramètre 3 1 Test de coformité à ue moyee 3 Test de coformité à ue proportio 4 3 Test d homogééité

Plus en détail

ÉCHANTILLONNAGE ESTIMATION

ÉCHANTILLONNAGE ESTIMATION Chapitre 16 ÉCHANTILLONNAGE ESTIMATION Vous vous ferez estimer e supportat les ijustices. Cicéro 1 ÉCHANTILLONNAGE 1.1 Itroductio O cosidère ue populatio (par exemple la populatio fraçaise) et u certai

Plus en détail

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression Pla du cours Méthodes de statistique iféretielle. A. Philippe Laboratoire de mathématiques Jea Leray Uiversité de Nates Ae.Philippe@uiv-ates.fr 1 Itroductio 2 Probabilités : Variables Aléatoires Cotiues

Plus en détail

Estimation par intervalle de confiance

Estimation par intervalle de confiance 62 CHAPITRE 12 Estimatio par itervalle de cofiace 1. Estimatio de la moyee par itervalle de cofiace 1.1. Calcul de la marge d erreur. O veut maiteat faire ue estimatio par itervalle de cofiace de la moyee

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

LA MAITRISE STATISTIQUE DES PROCEDES

LA MAITRISE STATISTIQUE DES PROCEDES LA MAITRISE STATISTIQUE DES PROCEDES Sommaire Détaillé 1. GENERALITES SUR LA MAITRISE STATISTIQUE DES PROCEDES 2 1.1. Défiitio d'u processus 2 1.2. Causes des défauts du produit 3 1.3. La Maitrise Statistique

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Intervalles de confiance

Intervalles de confiance Itervalles de cofiace H4 H4 Itervalles de cofiace Vocabulaire : u correspod à ue fiabilité (ou cofiace) de 95 %, u correspod à ue fiabilité (ou cofiace) de 99 % 0 ) Echatillo o exhaustif La théorie des

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 0-03 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5. Pricipe des tests 6.a. Méthodologie

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Formulaire de statistiques

Formulaire de statistiques Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 Formulaire de statistiques I. Statistiques descriptives : Moyee arithmétique : (populatio: m x = µ) (échatillo = x = M x ) 1 i

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Master Eseec Statistique pour l expertise - partie2

Master Eseec Statistique pour l expertise - partie2 Master Eseec Statistique pour l expertise - partie2 Christia Laverge Uiversité Paul Valéry - Motpellier 3 http://moodle-miap.uiv-motp3.fr http://www.uiv-motp3.fr/miap/es (UPV) Eseec 1 / 57 Lois limites

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION Des PROBABILITES à la STATISTIQUE - APPLICATIONS - Jea-Marie MARION 1 STATISTIQUE DESCRIPTIVE (décrire ue populatio à l aide de caractéristiques et graphiques) STATISTIQUE INFERENTIELLE (étedre des résultats

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

XV. Probabilités. Pour le second exemple, le dénombrement de toutes les issues possibles (un schéma en arbre peut nous y aider),

XV. Probabilités. Pour le second exemple, le dénombrement de toutes les issues possibles (un schéma en arbre peut nous y aider), . Itroductio XV. robabilités. L'étude des probabilités couvre toutes les situatios de phéomèes ayat plusieurs issues possibles, la réalisatio de chaque résultat état due au hasard. Des exemples de calcul

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P.

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. 351-355) Page 1 1. Notio de «série statistique» Il s agit d ue série de doées recueillies auprès des différetes uités statistiques d u

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1 Momet d'ue force Théorème du momet ciétique Théorème du momet ciétique référetiel iertiel repère fixe /réf. o poit o fixe / repère m M V dt = d P OM dt = OM d P d OM P = d OM P OM d P = V dt m V OM d P

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

Méthodes basiques en statistiques sous R

Méthodes basiques en statistiques sous R Méthodes basiques e statistiques sous R Master II Modélisatio Aléatoire - Paris VII Eseigat : Mme Picard Sébastie Le Berre 12 mai 2011 R est u logiciel de calcul largemet utilisé par la commuauté scietifique

Plus en détail

II - Estimation d'un paramètre par intervalle de confiance

II - Estimation d'un paramètre par intervalle de confiance II - Estimatio d'u paramètre par itervalle de cofiace 1 ) - Gééralités sur la costructio O veut estimer u paramètre (moyee, proportio ) d'u caractère das ue populatio P. Ue estimatio poctuelle à partir

Plus en détail

TP R : méthodes statistiques élémentaires

TP R : méthodes statistiques élémentaires M2 IFMA et MPE TP R : méthodes statistiques élémetaires À la fi de la séace vous déposerez vos scripts R das la boîte de dépôt de votre espace Sakai : http://australe.upmc.fr/portal. 1 Importatio des doées

Plus en détail

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation U.F.R. S.P.S.E. Licece de psychologie L3 PLPSTA0 Bases de la statistique iféretielle UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Distributios d'échatilloage - Itervalles de variatio Exercice 1

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1.

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1. Cours 5 Idépedace 1 Das le cours précédet, ous avos vu que la variable Y était idépedate de la variable X si ses distributios coditioelles e fréquece sot égales ; das ce cas e effet, la mesure de X sur

Plus en détail

10ème cours Une variable numérique : indices de localisation

10ème cours Une variable numérique : indices de localisation 10ème cours Ue variable umérique : idices de localisatio Das ce cours, o fait u rappel sur les idices de localisatio, médiae, quatiles et moyee, et o étudie la faço de les utiliser pour comparer les distributios

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Cours 8 : Applications pratiques de la programmation linéaire

Cours 8 : Applications pratiques de la programmation linéaire Cours 8 : Applicatios pratiques de la prograatio liéaire Christophe Gozales LIP6 Uiversité Paris 6, Frace Pla du cours Cours 8 : Applicatios pratiques de la prograatio liéaire 2/23 1 Jeux à deux joueurs

Plus en détail

Ce type de compresseur est aussi appelée compresseur volumetrique.

Ce type de compresseur est aussi appelée compresseur volumetrique. Chapitre 4 Compresseurs Buts 1. Savoir que das ce cas if faut se redre compte qu il y a des effets thermique 2. Savoir qu il y a ue limite á l augmetatio de la pressio de gaz 3. Savoir quelles istabilités

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

Questions Chapitre 2 L approche statistique de la réalité 1

Questions Chapitre 2 L approche statistique de la réalité 1 Questios Chapitre 2 L approche statistique de la réalité 1 Expliquer la otio de variable et défiir les différets types de variables Décrire les échelles de classificatio et trasformer les doées pour passer

Plus en détail

9 0 6 Variables aléatoires discrètes

9 0 6 Variables aléatoires discrètes BCPST2 9 5 0 6 Variables aléatoires discrètes Exercice 1: Loi de Poisso 1 ) Soit X ue variable aléatoire discrète. O ote XΩ) = {x ; N}. O pose, pour tout de N : p = PX = x ) et s = p k. O découpe l'itervalle

Plus en détail

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson.

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson. Travaux dirigés G33 Dimesioemet 2 séaces Eseigat : Athoy Busso. Exercice 1 : O cosidère u web switch et 3 serveurs web. Le web switch reçoit les requêtes http proveat des cliets et les répartit de maière

Plus en détail

Résumé de statistique inductive

Résumé de statistique inductive Uiversité de Bourgoge Faculté de Médecie et de Pharmacie Résumé de statistique iductive NB : les iformatios coteues das ce polycopié e fot e aucu cas office de référece pour le cocours, il s agit uiquemet

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2. Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

ANOVA avec un facteur aléatoire

ANOVA avec un facteur aléatoire Chapitre 7 ANOVA avec u facteur aléatoire Jusqu à maiteat, o a supposé que les modalités du facteur étudié ot été choisies parce qu elles étaiet itrisèquemet itéressates. Le modèle à effets fixes porte

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

Exercice 2 (Séries de fonctions - 7 points)

Exercice 2 (Séries de fonctions - 7 points) INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple

Plus en détail

CHAPITRE 4 Paramètres d'une série statistique

CHAPITRE 4 Paramètres d'une série statistique Cours de Mathématiques Classe de secode Statistiques CHAPITRE 4 Paramètres d'ue série statistique A) Diverses sortes de séries statistiques 1) Défiitio Ue série statistiques est u esemble de ombres, représetat

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

6.1 Modèle multiplicatif de mortalité excédentaire (proportional

6.1 Modèle multiplicatif de mortalité excédentaire (proportional 6 Tests d hypothèse (Klei 6.3, Lawless 10.2 et 10.3, Klugma 13.4) 6.1 Modèle multiplicatif de mortalité excédetaire (proportioal hazard) O veut comparer la mortalité d u groupe sous étude avec celle d

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS Idice de Révisio Date de mise e applicatio B 01/09/2014 Cahier Techique 1 ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS 4, aveue du Recteur-Poicarré, 75782 Paris Cedex 16 Tel. 33.(0)1.64.68.84.97

Plus en détail

Probabilités et Statistique

Probabilités et Statistique Probabilités et Statistique Jea-Michel JOLION Départemet Géie Idustriel 3ème Aée Versio électroique : http://rfv.isa-lyo.fr/ jolio/stat/poly.html May 26, 2006 INSA Lyo - Bât. J. Vere - 69621 Villeurbae

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail