EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type

Dimension: px
Commencer à balayer dès la page:

Download "EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type"

Transcription

1 EAME FIAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSIO 1 - Correcton - Exercce 1 : 1) Questons à Chox Multples (QCM). Cochez la bonne réponse Classer ces statstques selon leur nature (ndcateur de poston ou de dsperson) Mnmum Moyenne Ecart-type Mode Ecart nterquartle Médane Premer quartle Coecent de varaton Poston Dsperson Consdérons un groupe de TD pour lequel la moyenne des notes est égale à 10 et la varance est égale à 9. Tros nouveaux étudants ayant respectvement 7, 14 et 17 s'nscrvent dans ce groupe. Quelle sera, selon vous, l'évoluton des statstques suvantes (sans calcul) : Moyenne Ecart-type Médane Mode Etendue Ecart nterquartle Augmentaton Dmnuton dentque Les données de l'exercce ne permettent pas de conclure 2) Après avor rappelé le prncpe de la méthode des mondres carrés permettant de trouver la drote d'équaton y=ax+b, poser le programme d'optmsaton assocé et trouver la valeur de b. La méthode des mondres carrés vse à explquer un nuage de ponts par une drote qu le y à x, telle que la dstance entre le nuage de ponts et drote est mnmale. Cette dstance matéralse l'erreur c'est à dre la dérence entre le pont réellement observé et le pont prédt par la drote. S la drote passe au mleu des ponts, cette erreur sera alternatvement postve et négatve, la somme des erreurs étant par dénton nulle. Ans, la méthode des mondres carrés consste à chercher la valeur des paramètres a et b qu mnmse la somme des erreurs élevées au carré. Mn n (y ŷ ) 2 = =1 n (y âx b) 2 = f(a, b) Pour trouver les valeurs â et b au mnmum de la foncton, on résoud le système : = 0 =1 δâ = 0 1

2 = 0 (dérver par rapport à b : u 2 2uu ) = ( 1) 2 (y ax b) = 0 (y ax b) = 0 y a x nb = 0 y = a x + nb ( on dvse par n) y = ax + b De la même manère, l est possble de montrer que a = cov(x,y). Exercce 2 : Le poste " produts pétrolers " comprend dérents bens ssus de l'hydrocarbure de base appelée pétrole brut. ous recensons tros prncpaux produts : essence, gazole et oul lourd. Le tableau suvant désgne les prx moyens annuels (en dollars par barl) de ces produts ans que les quanttés consommées (en mllers de barls par jour : b/j) en 2000 et 2005 en France quanttés prx quanttés prx Essence Gazole Foul ) Calculer l'ndce élémentare des prx du gazole en 2005 base 100 l'année L'ndce élémentare des prx du gazole en 2005 base 100 l'année 2000 est : I 05/00 (p g ) = 100 V 05 1, 02 = 100 V 00 0, 50 = 13, 4 Ans, entre 2000 et 2005, les prx ont augmenté de 3,4%. 2) Calculer, pour le gazole, le taux de crossance annuel moyen des prx entre 2000 et Le taux de crossance annuel moyen (TCAM, noté g) est le taux qu, applqué chaque année durant cette pérode (5 années), condut à une aumgmentaton de 100% à l'ssue des 8 années. Le TCAM est donc égal à 9%. p 05 = (1 + g) 5 p 00 = 1, 34p 00 g = 1, 34 1/5 1 = 0, 103 3) Qu'est ce qu'un ndce synthétque de Paasche et de Laspeyres. Comment sont-ls construts pour les prx et pour les quanttés? Juster. Vor le cours pour la dénton et la constructon. 4) Calculer et nterpréter l'ndce de Laspeyres des prx des produts pétrolers en consdérant l'année 2000 comme référence. p 05 q 00 1, , , L 05/00 (p) = 100 = 100 = 158, 13 p 00 q 00 1, , ,

3 Ans, s les quanttés étaent restées dentques entre 2000 et 2005, la valeur globale (p*q) aurat augmenté de 58,13% : en d'autres termes, l'mpact des prx sur la valeur globale condut à une augmentaton de cette dernère de 58,13%. 5) Calculer l'ndce élémentare des valeurs globales en 2005 base 100 année A partr de ce résultat, que pouvez vous en dédure (sans calcul) à propos de la valeur de l'ndce de Laspeyres des quanttés (Année 2000 comme référence)? Juster votre réponse. p 05 q 05 1, , , V G 05/00 (p) = 100 = 100 p 00 q 00 1, , , = 154, Ans, compte tenu des évolutons des prx et des quanttés entre 2000 et 2005, la valeur globale a augmenté de 54,%. L'évoluton assocée à la seule varaton des prx est supéreure à celle observée lorsque l'on consdère l'évoluton des prx et des quanttés, cela suppose donc qu'en consdérant seulement l'évoluton des quanttés nous aurons observé une dmnuton de la valeur globale. L'ndce de Laspeyres des quanttés est donc nféreur à 100. ) Les nstances Européennes décderaent le cas échéant de remplacer ce type de gazole par un bocarburant fablement consommé en France (2000 b/j en 2000 et 2500 b/j) commercalsé à des prx de 2.5en2000et2.55 en Quel sera l'mpact sur l'ndce? Pourquo? (cet organsme calcule son ndce de prx à l'ade de l'ndce de Laspeyres) L'ndce de Laspeyres prx va basser s on tent compte du remplacement du gazole par le bocarburant. En eet, l'ndce de Laspeyeres mesure l'mpact de la varaton de prx, au regard des prx du bocarburant l apparaît que ceux c ont très peu évolué entre 2000 et S on calcule l'ndce de Laspeyres en tenant compte du remplacement du gazole par le bocarburant : p 05 q 00 1, , , L 05/00 (p) = 100 = 100 = 105, 43 p 00 q 00 1, , , Exercce 3 : Un potentel acheteur d'un véhcule automoble se questonne quant au chox du carburant qu'l va prvléger pour sa voture. Il sat que le cours du pétrole brut nue drectement sur les prx à la pompe dans les statons servces. Il décde alors de comparer l'mpact du cours du prx du pétrole sur le prx de l'essence ans que sur celu du desel. Pour cela l eectue un relevé des prx de chaque produt sur les sx premers mos de l'année Prx du Brut Prx de l'essence HT Prx du desel HT (en dollar par barl) (en centmes d'euros par ltre) (en centmes d'euros par ltre) Janver Févrer Mars Avrl Ma Jun ) En consdérant d'une part la relaton entre le prx du pétrole brut et le prx de l'essence et d'autre part la relaton entre le prx du pétrole brut et le prx du desel, 3

4 et en supposant que le prx du pétrole brut a un mpact sur les prx à la pompe des statons servces : Tracer sur deux graphques dérents les nuages de ponts correspondants. Pour représenter correctement les nuages de ponts : le prx du pétrôle brut devat être placé en abcsses pour chacun des graphques et le prx de l'essence (ou du gazole) en ordonnées. 2) Après avor calculé pour chacune des varables (prx du pétrole brut, prx de l'essence et prx du desel) la moyenne et la varance, détermner les deux drotes de régresson. otons x le prx du pétrole brut, y le prx de l'essence et z le prx du desel. x = 1 ȳ = 1 z = 1 = 1 V (y) = 1 V (z) = 1 n x = 1 ( ) = 110 n y = 1 ( ) = 140, 83 n z = 1 ( ) = 134, 17 n x 2 x 2 = n y 2 ȳ 2 = n z 2 z 2 = = 291, 7 140, 83 2 = 87, , 17 2 = 19, 24 Les drotes de régresson ont pour équatons : y = ax + b avec a = cov(x,y) et b = ȳ a x et z = a x + b avec a = cov(x,z) et b = z a x. Il faut donc au préalable calculer les covarances : cov(x, y) = 1 x y j xȳ = cov(x, z) = 1 x z j x z = j j , 83 = 137, , 17 = 220, 4 Après calcul, les drotes de régresson ont pour équatons : y = 0, 47x + 89, 13 et z = 0, 7x + 50, 57 a. Comparer les deux coecents drecteurs des drotes de régresson. Que pouvezvous en conclure quant à l'évoluton des prx respectfs de l'essence et du desel selon l'évoluton future du prx du pétrole? a = 0, 47 < a = 0, 7 : le coecent drecteur assocé au gazole est plus élevé que celu assocé à l'essence. Ans, s le prx du pétrole brut (x) augmente de 1, le prx de l'essence augmente de 0,47 et celu du gazole de 0,7. Le prx du gazole est donc davantage sensble aux uctuatons du prx du pétrole. b. Calculer et nterpréter pour chacune des deux drotes le coecent de détermnaton. Le coecent de détermnaton fournt une ndcaton de la qualté de l'ajustement. Il est, par dénton, toujours comprs entre 0 et 1. R 2 (x, y) = cov(x, y)2 V (y) = 137, 8 2 = 0, , 7 87, 74 4

5 Le modèle explque 74% de la réalté : le fat que le prx de l'essence dére selon les mos peut être explqué à 74% par le fat que le prx du pétrole brut dère. R 2 (x, z) = cov(x, z)2 V (z) = 220, 4 2 = 0, , 7 19, 24 Le modèle explque 98% de la réalté : le fat que le prx du gazole dére selon les mos peut être explqué à 98% par le fat que le prx du pétrole brut dère. 3) La crossance des cours du pétrole amène l'acheteur à se demander quels seront les prx des deux carburants à la pompe des statons servces s le barl du brut attegnat un jour 200 dollars. Calculer ces prx. S le prx du pétrole brut (x) est égal à 200, calculons y et z : y = 0, , 13 = 183, 13 et z = 0, , 57 = 202, 57. 4) En plene réexon, l'acheteur se dt qu'l sera plus avantageux pour lu de prendre les transports en commun lorsque le prx au ltre dépassera les deux euros. Pour quels cours du pétrole brut, devra-t-l s'apprêter à vendre sa voture selon qu'l at opté pour une voture essence ou desel? Pour quels prx du pétrole brut, le prx de l'essence (y) et le prx du gazole (z) dépssent-ls les 2 euros, c'est à dre 200 centmes : 200 = 0, 47x + 89, 13 x = 235, 9 et 200 = 0, 7x + 50, 57 x = 19,. 5

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

CHAPITRE 2. La prévision des ventes

CHAPITRE 2. La prévision des ventes CHAPITRE La prévson des ventes C est en foncton des prévsons de ventes que l entreprse détermne la producton, les achats et les nvestssements nécessares. La prévson des ventes condtonne l ensemble de la

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3 UNIVERSITE MONTESQUIEU BORDEAUX IV Lcence 3 ère année Econome - Geston Année unverstare 2006-2007 Semestre 2 Prévsons Fnancères Travaux Drgés - Séances n 3 «Les Crtères Fondamentaux des Chox d Investssement»

Plus en détail

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005)

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005) EXERCICES SUR LES STATISTIQUES Exercce 1 Un commerçant effectue des lvrasons de fuel pour les chaudères. La répartton des volumes dstrbués à chaque lvrason s effectue selon le tableau suvant : Volumes

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

TES - Accompagnement: Probabilités conditionnelles,, variable aléatoire et loi binomiale

TES - Accompagnement: Probabilités conditionnelles,, variable aléatoire et loi binomiale TS - ccompagnement: Probabltés condtonnelles,, varable aléatore et lo bnomale xercce 1 'asthme est une malade nflammatore chronque des voes respratores en constante augmentaton. n France, les statstques

Plus en détail

Ajustement affine par les moindres carrés

Ajustement affine par les moindres carrés 1. Nveau Termnales STG et ES Ajustement affne par les mondres carrés 2. Stuaton-problème proposée Introducton à la méthode des mondres carrés. 3. Support utlsé Tableur et calculatrce. 4. Contenu mathématque

Plus en détail

3) Calculer le pourcentage de personnes ayant entre 30 et 50 ans.

3) Calculer le pourcentage de personnes ayant entre 30 et 50 ans. http://maths-scences.fr EXERCICES SUR LES STATISTIQUES Exercce 1 Un concessonnare automoble étude l âge des acheteurs de votures de son garage. Deux documents ncomplets (un tableau et un hstogramme) rendent

Plus en détail

Indicateurs de compétitivité- prix et de performances à l exportation

Indicateurs de compétitivité- prix et de performances à l exportation Décembre 2009 Indcateurs de compéttvté- prx et de performances à Méthodologe Les ndcateurs présentés dans ce document vsent à mesurer en temps réel l évoluton des parts de marché des prncpaux exportateurs

Plus en détail

Banque d exercices pour le cours de "mise à niveau" de statistique de M1 AgroParisTech

Banque d exercices pour le cours de mise à niveau de statistique de M1 AgroParisTech Banque d exercces pour le cours de "mse à nveau" de statstque de M1 AgroParsTech Instructons pour les exercces 1. Lorsque ren n est précsé, on suppose que la dstrbuton étudée est gaussenne. Pour les exercces

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Exercice 1. Enoncé 1. Nombre de jours d absences. Nombre d étudiants. 1 ) Représenter graphiquement cette distribution.

Exercice 1. Enoncé 1. Nombre de jours d absences. Nombre d étudiants. 1 ) Représenter graphiquement cette distribution. Républque Tunsenne Présdence du Gouvernement Ecole Natonale d Admnstraton 4, Avenue du Dr Calmette Mutuelle-vlle 08 Tuns Tél. (+6) 848 00 Fa (+6) 794 88 www.ena.nat.tn STATISTIQUE ET CALCUL DE PROBABILITE

Plus en détail

L'INDUCTION ON5WF (MNS)

L'INDUCTION ON5WF (MNS) 'IDUCTIO ème parte / O5WF (MS) Dans la ère parte de cet artcle, nous avons vu qu'un courant électrque donnat leu à un champ magnétque (expérence d'oersted). ous avons ensute vu comment Faraday, après avor

Plus en détail

Statistiques. A) Vocabulaire. B) Caractéristiques de position et de dispersion.

Statistiques. A) Vocabulaire. B) Caractéristiques de position et de dispersion. Statstques A) Vocabulare. Poulaton et ndvdu : La oulaton est l ensemble des ndvdus sur lequel vont orter les observatons. Caractère : Le caractère est la rorété étudée. Le caractère est qualtatf s l n

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

N - ANNEAUX EUCLIDIENS

N - ANNEAUX EUCLIDIENS N - ANNEAUX EUCLIDIENS Dans ce qu sut A est un anneau untare, mun de deux opératons notées addtvement et multplcatvement. Le neutre de l addton est noté 0, celu de la multplcaton est noté e. On pose A

Plus en détail

Traitement probabiliste de l information

Traitement probabiliste de l information Maths 4: Probablté et Statstques (00/0) Zendagu Maths 4 : Probabltés et Statstques Inttulé du domane Scences et Technologe Année ème année Annuel ou semestrel Semestrel Unté d ensegnement UEM3 Méthodologe

Plus en détail

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010.

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010. Master 1ère année de Mathématques Analyse Numérque - Projet A rendre au plus tard le jour de l examen fnal, en Janver 2010. CMI, Unversté de Provence Année 2009-2010 Ce qu vous est demandé : Rédger les

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM.

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM. Exercce n 1 Cet exercce propose de détermner l équlbre IS/LM sur la base d une économe dépourvue de présence étatque. Pour ce fare l convent, dans un premer temps de détermner la relaton (IS) marquant

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Chap.3 : Statistique descriptive. Analyse de données.

Chap.3 : Statistique descriptive. Analyse de données. Chap3 : Statstque descrptve Analyse de données I Vocabulare La statstque a pour but la collecte, l analyse et l nterprétaton des observatons relatves à des phénomènes collectfs Une étude statstque comprend

Plus en détail

MODELISATION DES PROCESSUS LINEAIRES

MODELISATION DES PROCESSUS LINEAIRES MDELISATIN DES PRCESSUS LINEAIRES Dans un premer temps, nous ne consdérons que des processus partculers, supposés notamment statonnare. Cec permet de présenter un certan nombre d'outls dans un cadre relatvement

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Soutien : Modèle de Potts mars 2015

Soutien : Modèle de Potts mars 2015 Année 04 05 Physque Statstque hors équlbre et transtons de phase Souten : Modèle de Potts mars 05 On onsdère une varante du modèle d Isng, dte de Potts, dans laquelle les N degrés de lberté (qu on appellera

Plus en détail

C.P.G.E-TSI-SAFI Redressement non commandé 2006/2007

C.P.G.E-TSI-SAFI Redressement non commandé 2006/2007 C.P.G.E-TSI-SAFI edressement non commandé 2006/2007 edressement non commandé Introducton : es réseaux et les récepteurs électrques absorbent de l énerge sous deux formes, en contnus ou en alternatfs. Pour

Plus en détail

Exercices sur la géométrie plane

Exercices sur la géométrie plane Eercces sur la géoétre plane Sot un trangle équlatéral et M un pont ntéreur au trangle n note H, K, L les projetés orthogonau respectfs de M sur les tros côtés éontrer que la soe MH + MK + ML est constante

Plus en détail

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique Analyse fonctonnelle Chaptre S. Antone Tahan, ng. Ph.D. Département de géne mécanque Ma 009 Manuel : Métrologe MEC66 Auteur : Antone Tahan, ng., Ph.D. atahan@mec.etsmtl.ca ère édton : novembre 004 ème

Plus en détail

THERMODYNAMIQUE. Résumé de cours. Jacques Delaire ENS de Cachan

THERMODYNAMIQUE. Résumé de cours. Jacques Delaire ENS de Cachan Lcence ϕτεμ 26 27 THERMODYNAMIQUE Résumé de cours Jacques Delare ENS de Cachan 1 I INTRODUCTION I.1. Défntons Généraltés Système : ensemble de corps ou de substances qu appartennent à un domane de l espace.

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA)

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Unversté d Orléans Econométre des Varables Qualtatves Chaptre 3 Modèles à Varable Dépendante Lmtée Modèles Tobt Smples et Tobt Généralsés Chrstophe Hurln

Plus en détail

LES POMPES. Devant la grande diversité de situations possibles, on trouve un grand nombre de machines que l on peut classer en deux grands groupes :

LES POMPES. Devant la grande diversité de situations possibles, on trouve un grand nombre de machines que l on peut classer en deux grands groupes : Ste: http://gene.ndustrel.aa.free.fr LES POMPES Les pompes sont des apparels permettant un transfert d énerge entre le flude et un dspostf mécanque convenable. Suvant les condtons d utlsaton, ces machnes

Plus en détail

Partie I: Différences finies avec centrage partiel

Partie I: Différences finies avec centrage partiel U. PARIS VI et ÉCOLE POLYTECHNIQUE 7 anver 04 Spécalté Probablté et Fnance du Master de Scences et Technologe EXAMEN DU COURS ANALYSE NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES EN FINANCE verson 03/0/04

Plus en détail

est minimale pour 1 a = et b = 0.

est minimale pour 1 a = et b = 0. EXERCICE. On consdère la sére chronologque suvante : x 3 4 5 0 5 33 4 5 0 Pour chacune des deux affrmatons suvantes, dre s elle est vrae ou s elle est fausse en justfant la réponse fourne. a. Le pont moen

Plus en détail

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX *

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * "W.J.M. LEVELT et R. PLOMP (Insttute for Percepton R.V.O.-T.N.O., SOESTERBERG, PAYS-BAS) Introducton Il est ntéressant de savor de quelle manère

Plus en détail

(Licence L1 /Durée 3H) Stand d étude de l'effort tranchant dans une poutre Règle Des accroches poids

(Licence L1 /Durée 3H) Stand d étude de l'effort tranchant dans une poutre Règle Des accroches poids (Lcence L1 /Durée 3H) Objectfs : Se famlarser avec l apparel d étude de l'effort tranchant dans une poutre (les pèces consttutves, mode d emplo...) Ben matrser les étapes qu mènent à l élaboraton des dfférents

Plus en détail

Chapitre 2 : Energie potentielle électrique. Potentiel électrique

Chapitre 2 : Energie potentielle électrique. Potentiel électrique 2 e BC 2 Energe potentelle électrque. Potentel électrque 12 Chaptre 2 : Energe potentelle électrque. Potentel électrque 1. Traval de la orce électrque a) Expresson mathématque dans le cas du déplacement

Plus en détail

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite.

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite. www.mathsenlgne.com 2G3 - EQUATINS DE DRITES CURS (1/5) CNTENUS CAPACITES ATTENDUES CMMENTAIRES Drote comme courbe représentatve d une foncton affne. - Tracer une drote dans le plan repéré. - Interpréter

Plus en détail

Exercices de révision pour examen #1

Exercices de révision pour examen #1 Exercces de révson pour examen #1 Queston 1. Questons théorques. a) Nommez les courants qu exstent quand une dode est en équlbre. Courants de dffuson et de drft. b) Dessnez la structure physque réelle

Plus en détail

Chapitre 5: La programmation dynamique

Chapitre 5: La programmation dynamique Chaptre 5: La programmaton dynamque. Introducton La programmaton dynamque est un paradgme de concepton qu l est possble de vor comme une améloraton ou une adaptaton de la méthode dvser et régner. Ce concept

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle Mrors spérques Doptres spérques Nous allons mantenant aborder des systèmes optques un peu plus complexes, couramment utlsés pour produre des mages. Nous allons commencer par étuder un mror spérque de façon

Plus en détail

SUIVI CINETIQUE PAR ANALYSE CHIMIQUE (CORRECTION)

SUIVI CINETIQUE PAR ANALYSE CHIMIQUE (CORRECTION) Chme Termnale S Chaptre Travaux Pratques n a Correcton SUIVI CINETIQUE PAR ANALYSE CHIMIQUE (CORRECTION) 1 PRINCIPE On dose une espèce chmque (réact ou produt du système chmque) à ntervalle de temps réguler

Plus en détail

La mobilité résidentielle depuis 20 ans : des facteurs structurels aux effets de la conjoncture

La mobilité résidentielle depuis 20 ans : des facteurs structurels aux effets de la conjoncture La moblté résdentelle depus 20 ans : des facteurs structurels aux effets de la conjoncture T. Debrand C. Taffn Verson Prélmnare - Ne pas cter 10 mars 2004 Résumé : Les analyses économques sur la moblté

Plus en détail

DEFINITIONS ET PRINCIPES FONDAMENTAUX DE LA RDM

DEFINITIONS ET PRINCIPES FONDAMENTAUX DE LA RDM DEFINITIONS ET PRINCIPES FONDMENTUX DE L RDM 1 OJET DE L RDM PRINCIPES DE L STTIQUE.1 Défnton de l équlbre statque.1.1 Epresson du torseur des actons, moment d une force.1. Sstèmes de forces dvers 3. Les

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes Snthèse de cours PanaMaths (Termnale S) L ensemble des nombres complees Défntons n pose tel que = 1 { } L ensemble des nombres complees, noté, est l ensemble : z /(, ) = + Le réel est appelé «parte réelle

Plus en détail

CHAPITRE 3 DISTANCE ET VITESSE POUR LES SÉJOURS TOURISTIQUES

CHAPITRE 3 DISTANCE ET VITESSE POUR LES SÉJOURS TOURISTIQUES CHAPITRE 3 DISTANCE ET VITESSE POUR LES SÉJOURS TOURISTIQUES 87 Quels sont les facteurs qu nfluencent la combnason et qu nctent le tourste à modfer pett à pett, le mx de dstance et de temps dans la combnason?

Plus en détail

Mesures en tension continue & alternative

Mesures en tension continue & alternative Manp. Elec.1' Mesures en tenson contnue & alternatve E1.1 BUT DE LA MANIPULATION Cette manpulaton vse prncpalement à vous famlarser avec les apparels & nstruments de mesure utlsés en électrcté. Vous apprendrez

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 215 216 L1 Économe Cours de B. Desgraupes Statstques Descrptves Séance 7: Indces synthétques Table des matères 1 Introducton 1 1.1

Plus en détail

Evaluation des actions

Evaluation des actions Akrem ISCAE archés nancers : Evaluaton des actons Evaluaton des actons Secton I : Dénton hypothèses et notatons I-- La noton d un act nancer -a- Dénton Un act nancer est tout ben qu un nvestsseur désre

Plus en détail

Approche économique des 15 zones d emploi d Aquitaine

Approche économique des 15 zones d emploi d Aquitaine n 4 - octobre 2012 Fche n 15/15 Approche économque des 15 zones d emplo d Aqutane Ce dosser fat sute à l Aqutane e-dossers n 3 paru en jun 2012 : 15 zones d emplo aqutanes plus ou mons armées face aux

Plus en détail

Des salaires médians de 46 500 à 92 100 euros

Des salaires médians de 46 500 à 92 100 euros Page 1/9 14/02/13 19:47 LES SALARES DU WEBMARKET EN 2012 Des salares médans de 46 500 à 92 100 euros En 2012, les salares dans le dgtal ont grmpé de 5,5%. Selon une enquête réalsée par le réseau d'agences

Plus en détail

Etude comparative des effets environnementaux et sanitaires des diverses sources d'énergie

Etude comparative des effets environnementaux et sanitaires des diverses sources d'énergie Etude comparatve des effets envronnementaux et santares des dverses sources d'énerge Aperçu des conclusons d'un document de synthèse présenté à Helsnk par S. Haddad et R. Dones La comparason des effets

Plus en détail

Editions ENI. Excel 2013. Collection Référence Bureautique. Extrait

Editions ENI. Excel 2013. Collection Référence Bureautique. Extrait Edtons ENI Collecton Référence Bureautque Extrat Tableaux de données Tableaux de données Créer un tableau de données Un tableau de données, auss appelé lste de données (dans les ancennes versons d Excel),

Plus en détail

10.1 Inférence dans la régression linéaire

10.1 Inférence dans la régression linéaire 0. Inférence dans la régresson lnéare La régresson lnéare tente de modeler le rapport entre deux varables en adaptant une équaton lnéare avec des données observées. Chaque valeur de la varable ndépendante

Plus en détail

publicitaires Section 4. Oligopole et stratégie publicitaire 1) Dépenses publicitaires et stratégie concurrentielle 3) Oligopole et dépenses d

publicitaires Section 4. Oligopole et stratégie publicitaire 1) Dépenses publicitaires et stratégie concurrentielle 3) Oligopole et dépenses d Secton 4. Olgopole et stratége publctare 1) Dépenses publctares et stratége concurrentelle 2) Monopole et dépenses d publctares 3) Olgopole et dépenses d publctares 1) Dépenses publctares et stratége concurrentelle

Plus en détail

ETUDE DU VIRAGE : LA BILLE!

ETUDE DU VIRAGE : LA BILLE! ETUDE DU VIAGE : LA BILLE! La blle donne la même ndcaton que celle d'un pendule accroché c par commodté à l'extrémté du vecteur "". Cet nstrument a pour but de rensegner le plote sur la symétre du vol

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

À partir de la demi-période comprise entre les points C et D de la figure 2, mesurer u L, de la bobine. calculer et en déduire la valeur de L.

À partir de la demi-période comprise entre les points C et D de la figure 2, mesurer u L, de la bobine. calculer et en déduire la valeur de L. se 2004 ÉTUD XPÉIMNTL D'UN BOBIN (6 ponts) 1.5. On néglge dans la sute le terme fasant ntervenr r dans l'expresson de u L ans que les arronds des crêtes de l'ntensté. 1 - Détermnaton expérmentale de l'nductance

Plus en détail

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7 Premère parte Proportonnalté 1 Reconnaître des stuatons de proportonnalté....... 7 2 Trater des stuatons de proportonnalté en utlsant un rapport de lnéarté........................ 8 3 Trater des stuatons

Plus en détail

Régression linéaire et incertitudes expérimentales

Régression linéaire et incertitudes expérimentales 91 e Année - N 796 Publcaton Mensuelle Jullet/Août/Septembre 1997 Régresson lnéare et ncerttudes expérmentales par Danel BEAUFILS Insttut Natonal de Recherche Pédagogque Département Technologes Nouvelles

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

Prévision des ventes des articles textiles confectionnés. B. Zitouni*, S. Msahli* * Unité de Recherches Textiles, Ksar-Hellal, Tunisie.

Prévision des ventes des articles textiles confectionnés. B. Zitouni*, S. Msahli* * Unité de Recherches Textiles, Ksar-Hellal, Tunisie. Prévson des ventes des artcles textles confectonnés B Ztoun*, S Msahl* * Unté de Recherches Textles, Ksar-Hellal, Tunse Résumé Dans cette étude, on se propose de détermner s le recours à des réseaux de

Plus en détail

L'affichage des pages

L'affichage des pages L'affchage des pages des pages L'affchage des pages dans les navgateurs 51 Tester la page dans un navgateur Avec Dreamweaver vous travallez dans un envronnement graphque : vous voyez à l'écran ce que vous

Plus en détail

4.2.1. Le fondement analytique : le tarif douanier

4.2.1. Le fondement analytique : le tarif douanier 4.2.1. Le fondement analytque : le tarf douaner Le lbre-échange procure des bénéfces à tous les pays. Pourtant, durant des décennes, la plupart des natons ont cherché à contrôler leurs échanges en nstaurant

Plus en détail

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS Le cabnet Enetek nous démontre les mpacts négatfs de la multplcaton des stocks qu au leu d amélorer le taux de servce en se rapprochant du clent, le dégradent

Plus en détail

La Contribution du Capital Public à la Productivité des Facteurs Privés : une Estimation sur Panel Sectoriel pour Dix Pays de l OCDE.

La Contribution du Capital Public à la Productivité des Facteurs Privés : une Estimation sur Panel Sectoriel pour Dix Pays de l OCDE. La Contrbuton du Captal Publc à la Productvté des Facteurs Prvés : une Estmaton sur Panel Sectorel pour Dx Pays de l OCDE. Chrstophe Hurln * Ma 1999 Introducton Les économstes ont proposé dverses explcatons

Plus en détail

PROGRES TECHNIQUE, COMMERCE INTERNATIONAL ET TRAVAIL PEU QUALIFIE

PROGRES TECHNIQUE, COMMERCE INTERNATIONAL ET TRAVAIL PEU QUALIFIE DIRECTION DE LA PRÉVISION PROGRES TECHNIQUE, COMMERCE INTERNATIONAL ET TRAVAIL PEU QUALIFIE Jean-Phlppe COTIS, Jean-Marc GERMAIN, Alan QUINET Document de traval N 96-2 PROGRES TECHNIQUE, COMMERCE INTERNATIONAL

Plus en détail

BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES SERVICE GÉOLOGIQUE NATIONAL \

BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES SERVICE GÉOLOGIQUE NATIONAL \ BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES SERVICE GÉOLOGIQUE NATIONAL \ B.P. 6009-4508 Orléans Cedex - Tél.: (38) 63.BO.O TAXE PARAFISCALE SUR LES GRANULATS DIRECTION DEPARTEMENTALE DE L'AGRICULTURE

Plus en détail

Modélisations du risque en assurance automobile. Michel Grun-Rehomme Université Paris 2 et Ensae Email: grun@ensae.fr

Modélisations du risque en assurance automobile. Michel Grun-Rehomme Université Paris 2 et Ensae Email: grun@ensae.fr Modélsatons du rsque en assurance automoble Mchel Grun-Rehomme Unversté Pars 2 et Ensae Emal: grun@ensae.fr 1 Modélsatons du rsque en assurance automoble La snstralté est mesurée en terme de fréquence

Plus en détail

Impact de la chirurgie sur une cohorte d adultes d souffrant d éd. épilepsie partielle pharmacorésistante

Impact de la chirurgie sur une cohorte d adultes d souffrant d éd. épilepsie partielle pharmacorésistante Impact de la chrurge sur une cohorte d adultes d souffrant d éd éplepse partelle pharmacorésstante sstante: Analyse par score de propenson 4 ème Conférence Francophone d Epdémologe Clnque - Congrès thématque

Plus en détail

Module de statistiques

Module de statistiques Module de statstques On utlsera les exemples suvants dans tout le chaptre : Exemple 1 : Dans une maternté, on a référencé les pérmètres crânens à la nassance de 290 nouveaux nés. Pérmètre ( en cm ) 32

Plus en détail

Les corrigés des examens DPECF - DECF

Les corrigés des examens DPECF - DECF 1 er centre de formaton comptable va Internet. Les corrgés des examens DPECF - DECF 2004 48h après l examen sur www.comptala.com L école en lgne qu en fat + pour votre réusste Préparaton aux DPECF et DECF

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

Exercices Électrocinétique

Exercices Électrocinétique ercces Électrocnétque alculs de tensons et de courants -21 éseau à deu malles Détermner, pour le crcut c-contre, l ntensté qu 1 2 traverse la résstance 2 et la tenson u au bornes de la résstance 3 : 3

Plus en détail

Chapitre III : Premier principe de la Thermodynamique. Système

Chapitre III : Premier principe de la Thermodynamique. Système Chaptre III : Premer prncpe de la Thermodynamque III.1. Langage thermodynamque Système : C est un corps ou un ensemble de corps de masse détermnée et délmtée dans l espace. Mleu extéreur : On consdère

Plus en détail

Electronique TD1 Corrigé

Electronique TD1 Corrigé nersté du Mane - Faculté des Scences! etour D électronque lectronque D1 Corrgé Pour un sgnal (t) quelconque : 1 $ (t) # MOY! (t) dt 1 FF! (t) dt (t) MX MOY mpltude crête à - crête mpltude Mn Pérode t emarque

Plus en détail

Cours réalisé par Laurent DOYEN. La statistique descriptive

Cours réalisé par Laurent DOYEN. La statistique descriptive Cours réalsé par Laurent DOYEN La statstque descrptve . Introducton et défntons Statstque descrptve: Analyse et synthèse, NUMERIQUE et GRAPHIQUE, d un ensemble de données . Introducton et défntons Statstque

Plus en détail

5- Analyse discriminante

5- Analyse discriminante 5. ANALYSE DISCRIMINANTE... 5. NOTATION ET FORMULATION DU PROBLÈME... 5. ASPECT DESCRIPTIF...3 5.. RECHERCHE DU VECTEUR SÉPARANT LE MIEUX POSSIBLE LES GROUPES...4 5.. Cas partculer de deu groupes...7 5.3

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

Les nombres premiers ( Spécialité Maths) Terminale S

Les nombres premiers ( Spécialité Maths) Terminale S Les nombres premers ( Spécalté Maths) Termnale S Dernère mse à jour : Mercred 23 Avrl 2008 Vncent OBATON, Ensegnant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document de

Plus en détail

Les domaines d'existence des deux solides sont représentés sur le graphe ci-dessous.

Les domaines d'existence des deux solides sont représentés sur le graphe ci-dessous. Concours Centralesupélec TSI 2011 corrge sous reserves I L'élément soufre et les sources naturelles de soufre I.A.1. Les règles pour obtenr la confguraton électronque d un atome dans son état fondamental

Plus en détail

Economie Ouverte. Economie ouverte. Taux de change et balance courante. Le modèle Mundell-Fleming. Définition du taux de change

Economie Ouverte. Economie ouverte. Taux de change et balance courante. Le modèle Mundell-Fleming. Définition du taux de change Econome Ouverte Econome ouverte Taux de change et balance courante Taux de change et balance courante Modèle Mundell-Flemng Campus Moyen Orent Médterranée Défnton du taux de change Le taux de change est

Plus en détail

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon Maquette ournesol olel, erre et rotatons La géométre et mathématques du sstème Maquette pour comprendre hm Observatore de Lon Les repères classques éclptque (longtudes et lattudes éclptques) et équatoral

Plus en détail

CHAPITRE 1 L ÉLECTROSTATIQUE

CHAPITRE 1 L ÉLECTROSTATIQUE L électostatque Chapte 1 CHAPITRE 1 L ÉLECTROSTATIUE 1.1 Intoducton La chage est une popété de la matèe qu lu fat podue et sub des effets électques et magnétques. On dstngue : - l'électostatque qu est

Plus en détail

Sujet de révision n 1

Sujet de révision n 1 4 ème année Secton : Scences Sujet de révson n 1 Ma 010 A. LAATAOUI Thèmes abordés : Complexes ; Probabltés ; Géométre dans l espace ; oncton exponentelle et lecture graphque. Exercce n 1 Sot θ un réel

Plus en détail

Enseignement secondaire. PHYSI Physique Programme

Enseignement secondaire. PHYSI Physique Programme Ensegnement secondare Dvson supéreure PHYSI Physque Programme 3CB_3CC_3CF_3MB_3MC_3MF Langue véhculare : franças Nombre mnmal de devors par trmestre : 1 PHYSI_3CB_3CC_3CF_3MB_3MC_3MF_PROG_10-11 Page 1

Plus en détail

Devoir de Mathématiques. Séries Statistiques à deux variables.

Devoir de Mathématiques. Séries Statistiques à deux variables. Eercce n 1 : Sujet Bac Pro 2 007. Sére Statstques à deu varables. La socété KOJI a ms au pont un nouveau modèle d apparel photo numérque qu elle souhate commercalser. Elle procède à une enquête pour connaître

Plus en détail

Mobilité à Téhéran. Sous trois angles : Comme un objet de recherche Comme un support d apprentissage Comme une opportunité commerciale

Mobilité à Téhéran. Sous trois angles : Comme un objet de recherche Comme un support d apprentissage Comme une opportunité commerciale Moblté à Téhéran Sous tros angles : Comme un objet de recherche Comme un support d apprentssage Comme une opportunté commercale INRETS/GRETIA MDP 1 GRETIA (Géne des Réseaux de Transport et Informatque

Plus en détail

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe Méthodologe CDC Clmat Recherche puble chaque mos, en collaboraton avec Clmpact Metnext, Tendances Carbone, le bulletn mensuel d nformaton sur le marché européen du carbone (EU ETS). L obectf de cette publcaton

Plus en détail

L ensemble des modalités ou des classes des modalités de X

L ensemble des modalités ou des classes des modalités de X Module statstque et probabltés_ parte 2 Zahra ROYER B _ Etude des dstrbutons d un caractère quanttatf : Sans perte de généralté : à la place de varable statstque, on va utlser le terme courant chez les

Plus en détail

Royaume du Maroc المملكة المغربية. Ministère du Commerce Extérieur وزارة التجارة الخارجية. Direction des Etudes

Royaume du Maroc المملكة المغربية. Ministère du Commerce Extérieur وزارة التجارة الخارجية. Direction des Etudes Royaume du aroc nstère du Commerce xtéreur المملكة المغربية وزارة التجارة الخارجية IPACT DS ACCORDS D LIBR- CHANG (ODL CALCULABL D QUILIBR GNRAL : IPAL) Drecton des tudes Févrer 2009 SOAIR INTRODUCTION...

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

Bien débuter avec Illustrator

Bien débuter avec Illustrator CHAPITRE 1 Ben débuter avec Illustrator Illustrator est un logcel de dessn vectorel. Cela sgnfe qu'l permet de créer des llustratons composées avec des objets décrts par des vecteurs. Une telle défnton

Plus en détail