Cours de Mathématiques. Intégrale de Lebesgue et Probabilités H. DOSS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Cours de Mathématiques. Intégrale de Lebesgue et Probabilités H. DOSS"

Transcription

1 Uiversité Paris Dauphie Départemet MIDO Cours de Mathématiques Itégrale de Lebesgue et Probabilités H. DOSS

2 Table des matières 1 Espaces de probabilité et Itégratio Présetatio Défiitio Exemples associés à la défiitio Defiitio Exemples associés à la défiitio Propositio Probabilités coditioelles, idépedace Exemple Défiitio Propositio 2 (Formule de Bayes) Défiitio Propositio Défiitio 4 bis Propositio 4 (Lemme de Borel-Catelli) Variables aléatoires Défiitio Propositio Propositio Propositio Défiitio Propositio Espérace des variables aléatoires réelles et itégratio Défiitio Propositio Défiitio Itégratio des variables aléatoires étagées positives Défiitio Propositio Itégratio des variables aléatoires réelles positives Défiitio Lemme Propositio Propositio Défiitio Itégratio des variables aléatoires réelles Défiitio Propositio I

3 1.7.3 Défiitio Propositio Défiitio 15 (espérace des variables aléatoires réelles) Propositio 16 (loi d ue variable aléatoire) Théorèmes de covergece Théorème 1 (Beppo-Levi) Théorème 2 (Lemme de Fatou) Théorème 3 (Théorème de Lesbesgue ou de «covergece domiée») Propositio 17 (lie avec l itégrale de Riema) Propositio Espaces produits, idépedace Espaces produits Théorème Théorème 2 (de Fubii) Défiitio Théorème Démostratio du théorème Démostratio du théorème Propositio Théorème Idépedace Défiitio Propositio Propositio Propositio Propositio Défiitio Propositio Défiitio Propositio Défiitio Propositio Calculs de lois, foctios caractéristiques et variables aléatoires gaussiees Gééralités Propositio Propositio Propositio Variables aléatoires vectorielles Propriétés de la matrice de dispersio Calculs de lois Rappel de quelques lois usuelles Calculs de loi Foctios caractéristiques Défiitio Propositio Théorème 1 fodametal II

4 3.3.4 Propositio Propositio Propositio Trasformée de Laplace Défiitio Propositio Propositio Foctios géératrices Défiitio Propositio Vecteurs aléatoires gaussies Défiitio Propositio Lemme Propositio Propositio Propositio Propositio Appedice Lois des grads ombres et théorème cetral limite Différets modes de covergece des variables aléatoires Propositio Propositio Lois des grads ombres Théorème Théorème 2 (Loi forte des grads ombres) Théorème 3 (Loi du logarithme itéré) Covergece e loi Théorème de Paul Lévy Théorème Propositio Théorème 5 (Théorème Cetral Limite) Espérace coditioelle Théorème 1 (fodametal) Propositio Propositio Propriétés de l espérace coditioelle Théorème Propositio Théorème Défiitio Défiitio Espaces L P Théorème Espérace coditioelle das L Cas des vecteurs gaussies Théorème III

5 IV

6 Chapitre 1 Espaces de probabilité et Itégratio 1.1 Présetatio La théorie des probabilités propose u modèle mathématique qui red compte de la otio ituitive d expériece aléatoire (i.e. dot le résultat est soumis au «hasard»). La première démarche cosiste à itroduire l esemble Ω dot les élemets costituet tous les résultats possibles de l expériece puis à distiguer ue classe a de sous-esembles de Ω qu o appelle «évéemets», vérifiat certaies propriétés aturelles et efi à affecter u poids P(A) [0, 1] à tout évéemet A a qui sera la probabilité de A. Plus précisémet, la classe a doit être ue tribu sur Ω et la correspodace A P(A) ue mesure positive de masse totale égale à Défiitio 1 1. Soit Ω u esemble. O appelle tribu sur Ω u sous esemble a de l esemble P(Ω) des parties de Ω tel que : φ et Ω appartieet à a. si A a alors A c a. si (A ) est ue suite d élémets de a alors A a et A a Le couple (Ω,a) s appelle u espace mesurable 2. U espace mesurable (Ω,a) état doé, ue mesure positive de masse totale égale à 1 ou probabilité sur a est ue applicatio P de a das [0, 1] vérifiat : si (A ) est ue suite d élémets de a deux à deux disjoits, alors ( ) P A = P(A ) 1

7 P(Ω) = 1 Le triplet (Ω,a, P) s appelle u espace de probabilité. L espace etier Ω représete l évéemet certai, φ l évéemet impossible (P(φ) = 0 car φ φ = φ et φ φ = φ doc P(φ) = P(φ φ) = P(φ) + P(φ) ), le complémetaire A c représete l évéemet cotraire de A, l itersectio A B des évéemets A et B représete l évéemet «A et B ot lieu», la réuio A B représete l évéemet «A ou B a lieu» (attetio : ou est pas exclusif!), les itersectios ou réuios déombrables d évéemets sot itroduits pour l étude des phéomèes asymptotiques, efi l iclusio correspod à l implicatio Exemples associés à la défiitio 1 1. U joueur effectue quatre parties de pile ou face : Ω = { (x 1, x 2, x 3, x 4 ), x i {0, 1} } 2. U joueur lace u dé trois fois de suite : Ω = { (x 1, x 2, x 3 ), x i {1, 2, 3, 4, 5, 6} } 3. Observatio de la durée de vie d u idividu : Ω = R + 4. Observatio du ombre d appels passat par u cetral téléphoique tous les jours d ue semaie : Ω = N 7 5. Observatio, pedat u itervalle de temps [t 1, t 2 ], du mouvemet de diffusio d ue particule das l espace : Ω = C ( [t 1, t 2 ], R 3) 6. U jeu de pile ou face de durée fiie ou ifiie : Ω = {0, 1} avec ( N) ou Ω = {0, 1} N Das les cas où l esemble Ω est fii ou déombrable, la tribu que l o cosidère est, e gééral, la tribu P(Ω) des parties de Ω et la doée d ue probabilité sur l espace discret (Ω, P(Ω)) équivaut à la doée d ue famille (p(ω)) ω Ω de ombres positifs vérifiat : p(ω) = 1 ω Ω La probabilité d u évéemet A P(Ω) est alors défiie par la formule : P(A) = ω A p(ω) Lorsque Ω est fii, des cosidératios de symétrie coduiset souvet à supposer que p(ω) e déped pas de ω Ω. O a alors : p(ω) = 1 Card(Ω) 2

8 et P(A) = Card(A) ombres de cas favorables à A = Card(Ω) ombre de cas possibles (loi uiforme) Lorsque l espace Ω est pas déombrable, par exemple Ω = R ou Ω = R d ou même u espace métrique, o utilise souvet la otio suivate : Defiitio 2 Soit C P(Ω), ue famille quelcoque de parties de Ω ; o appelle tribu egedrée par C, la plus petite tribu sur Ω (au ses de l iclusio) coteat C ; o la ote σ(c). L itersectio d ue famille quelcoque de tribus état ue tribu, et P(Ω) état ue tribu sur Ω coteat C, o voit que : σ(c) = T tribu C T Exemples associés à la défiitio 2 1. Si C = {A} où A Ω, A φ alors σ(c) = {A, A c, Ω, φ} Si C = {A 1, A 2,, A }, A i Ω, A i φ, détermier σ(c) (cosidérer d abord le cas = 2). 2. Si Ω est mui d ue structure d espace métrique, o peut cosidérer la famille C de tous les ouverts de Ω ; la tribu egedrée par C est alors appelée tribu boréliee de Ω et otée souvet B Ω. Remarquer que, si C est la famille de tous les fermés de Ω, o a aussi B Ω = σ(c ) = σ(c). 3. Si Ω = R d (d N ) la tribu B R d est egedrée par la famille C de tous les pavés de la forme d ]a i, b i [ où a i < b i, a i Q, b i Q i=1 Soit (Ω, a) u espace mesurable quelcoque ; le problème de la costructio d ue mesure de probabilité P sur a peut être o trivial. O a cepedat les exemples suivats. 4. Soiet (a k ) ue suite fixée de poits de Ω et (α k ) ue suite fixée de ombres positifs tels que k α k = 1. Pour tout A a, posos : P(A) = k 0 α k.1 A (a k ) (*) T où 1 A (a k ) = { 0 si ak A 1 si a k A O vérifie facilemet qu o défiit aisi ue mesure de probabilité P sur a. Lorsque a Ω est fixé, la mesure de probabilité défiie par : A a P(A) = 1 A (a) 3

9 est appelée masse de Dirac au poit a et otée δ {a}. La probabilité P défiie par la formule (*) est doc doée par P = k 0 α k.δ {ak } 5. O appelle foctio de répartitio sur R, toute applicatio F de R das [0, 1], croissate, cotiue à droite, telle que lim F(t) = 1 t + lim F(t) = 0 t Il existe alors (Théorème admis) ue uique probabilité P sur l espace mesurable (Ω = R, B R ) telle que O a alors, pour tout t R : s t : P( ]s, t]) = F(t) F(s) P({t}) = lim P( ]s, t]) = F(t) lim F(s) = F(t) F(t 0 ) = F(t) s t s<t s t s<t Si la foctio F est cotiue e t, le «saut» de F e t : F(t) est ul et P({t}) = 0. O dira que P est «diffuse» lorsque P({t}) = 0, t. Si pour tout N, F() = α où α 0, vérifie α = 1, o voit que P est ue probabilité discrète portée par N telle que : N P({}) = α Si, par cotre, il existe ue applicatio f : R R + cotiue par morceaux (positive) telle que et vérifiat + t R F(t) = f(x)dx = 1 t f(x)dx o voit que F est ue foctio de répartitio cotiue et que la probabilité P associée à F vérifie : s t P( ]s, t]) = t s f(x)dx O dira que P est la probabilité de desité f et o otera P(dx) = f(x)dx. O peut, de la même faço, défiir des probabilités de desité f sur (R d, B R d) Propositio 1 Soiet (Ω,a, P) u espace de probabilité et A, B, A ( N) des évéemets. Alors : 1) A B P(A) P(B) 4

10 2) ( ) P A P(A ) N N 3) Si pour tout, A A +1, o a : ( ) P A = lim P(A ) = sup P(A ) N Si pour tout, A +1 A, o a : ( ) P A = lim P(A ) = if P(A ) N Démostratio : 1) O suppose A B, alors : A = B (A\B) avec B (A\B) = doc P(A) = P(B) + P(A\B) P(B) 3) Si pour tout, A A +1, o voit que les évéemets A 0, A 1 \A 0, A 2 \A 1,..., A +1 \A,... sot disjoits de réuio A = A et doc P(A) = P A 0 + 0(A +1 \A ) = P (A 0 ) + 0 P(A +1 \A ) { 1 } = P(A 0 ) + lim (P(A m+1 ) P(A m )) m=0 = lim P(A ) (pour ue uio d évéemets deux à deux disjoits, o remplacera, par commodité, le symbole par le symbole +). Si pour tout, A +1 A, o a alors (( A ) C) P( A ) = 1 P = 1 P ( ) A C = 1 lim P(AC ) = lim P(A ) 2) Posos, pour tout, A = m=0 A m ; alors A A +1 et A = A doc : P( A ) = lim P(A ) lim car A et B état deux évéemets quelcoques, m=0 P(A m ) = 0 P(A ) P(A B) = P (A + (B\A)) = P(A) + P(B\A) P(A) + P(B) 5

11 et doc, par récurrece sur P(A ) = P( m=0 A m ) P(A m ) m=0 1.2 Probabilités coditioelles, idépedace Supposos, qu e étudiat ue expériece aléatoire représetée par u espace (Ω,a, P), o sache déjà qu u évéemet A a (de probabilité P(A) > 0) s est produit. Il est alors ituitif que les probabilités des évéemets B a doivet être modifiées Exemple Soit Ω = {ω 0, ω 1,...,ω } u espace fii. O suppose que P représete le tirage d u poit de Ω selo la loi uiforme. O a doc P ({ω k }) = 1 Card(Ω) et si B Ω, P(B) = Card(B) Card(Ω) Soit A Ω. Quelle est la probabilité qu u poit tiré soit das B, sachat qu il est das A? C est : Défiitio 3 Card(A B) Card(A) = P(A B) P(A) Soiet (Ω,a, P) u espace de probabilité et A a tel que P(A) > 0. O appelle probabilité coditioelle de B a sachat A, le ombre P(B/A) = P(A B) P(A) Propositio 2 (Formule de Bayes) Soit (A ) ue suite fiie ou ifiie d évéemets deux à deux disjoits tels que Ω = A (partitio de Ω) et P(A ) > 0, pour tout, alors : B a, o a P(B) = P(B/A ).P(A ) Démostratio O a : B = B Ω = B ( A ) = (B A ) doc ( ) P(B) = P (B A ) = P(B A ) = P(B/A ).P(A ) O dira que deux évéemets A et B sot idépedats si P(B/A) = P(B) et doc si P(A B) = P(A).P(B) 6

12 1.2.4 Défiitio 4 Ue suite fiie A 1, A 2,, A d évéemets est dite idépedate si P(A i1 A i2... A ik ) = P(A i1 ).P(A i2 )..P(A ik ) pour toute suite i 1 < i 2 <... < i k d etiers {1, 2,..., } deux à deux disticts. (N.B. o otera, par commodité, A.B pour désiger l itersectio A B de deux évèemets.) Si A a, soit σ(a) = {, Ω, A, A C } la tribu egedrée par A Propositio 3 Pour que la suite A 1, A 2,, A d évéemets das l espace de probabilité (Ω,a, P) soit idépedate il faut et il suffit que P(B 1 B 2... B ) = P(B 1 ).P(B 2 )..P(B ) quels que soiet les B m apparteat à σ(a m ), m = 1, 2,..., Démostratio Pour tout i {1, 2,..., }, soit A i = A i ou A C i. O a, e fait, l équivalece : (A 1, A 2,, A ) idépedate (A 1, A 2,, A ) idépedate. Il suffit, par récurrece de vérifier que : (A 1, A 2,, A ) idépedate (A 1, A 2,, A ) idépedate ce qui est facile et laissé e exercice Défiitio 4 bis Soit (A i ) i I ue famille d évéemets das l espace (Ω,a, P) où I est u esemble quelcoque d idices. O dit que la famille (A i ) i I est idépedate (ou que les A i, (i I) sot idépedats) si pour tout sous-esemble J fii, J I, o a P( A i ) = P(A i ) i J i J Soit (A ) N ue suite d évéemets das l espace (Ω,a, P). O défiit : lim A = {ω Ω tels que, pour ue ifiité d etiers : ω A } O vérifie aisémet que : lim A = {ω Ω : 0 1 A (ω) = + } = ( m A m ) a Propositio 4 (Lemme de Borel-Catelli) Soit (A ) N ue suite d évéemets. O a 1. 0P(A ) < P(lim A ) = 0 7

13 2. Si la suite (A ) N est idépedate et si 0 P(A ) = + alors P(lim A ) = 1 Démostratio : 1. O a, lorsque P(A ) < : P(lim A ) = P( ( m A )) = lim P( A m) m { lim P(A ) } = 0 m 2. O suppose que P(A ) = + et que la suite (A ) est idépedate, alors : car P { (lim A ) C} = P { ( A C m )} m = lim P{ A C } m = 0 m P { A C } m = lim P{ k A C } m k m= m = lim k m= lim k e k (1 P(A m )) k m= P(Am) = 0 ( o a utilisé le fait que : x 0 (1 x) e x ) 1.3 Variables aléatoires Défiitio 5 Soiet (Ω,a, P) u espace de probabilité et (F, B) u espace mesurable quelcoque. O dit qu ue applicatio X de (Ω,a) das (F, B) est ue variable aléatoire (e abrégé : v.a.) si pour tout B B alors X 1 (B) a. E Aalyse, o dit aussi que X, vérifiat la propriété précédete, est ue applicatio a B mesurable (ou, tout simplemet, mesurable s il y a pas d ambiguité). Lorsque l espace F est fii ou déombrable, la tribu B est, e gééral, égale à P(F) et o voit qu ue applicatio X de (Ω,a) das F est ue variable aléatoire si, pour tout x F o a X 1 ({x}) = (X = x) a. O dit, das ce cas, que X est ue variable aléatoire discrète. Lorsque F = R = R {+ } { }, mui de sa tribu boréliee B R (egedrée par les ouverts de R aisi que par les poits {+ }, { }), o dit que X est ue variable aléatoire réelle (v.a.r.) Propositio 5 1. Pour qu ue applicatio X de (Ω,a) das (F, B) soit ue variable aléatoire, il suffit que, C état ue famille de parties de F qui egedre B (σ(c) = B), o ait : pour tout C C : X 1 (C) a (**). 8

14 2. Lorsque Ω et F sot des espaces métriques, muis respectivemet de leurs tribus boréliees, toute applicatio cotiue X, de Ω das F, est mesurable. Démostratio : 1. O suppose que σ(c) = B et que la propriété (**) est satisfaite. Soit B = {B F tel que X 1 (B) a} a état ue tribu sur Ω, o vérifie facilemet que B est ue tribu sur F. De plus, la propriété (**) sigifie que C B. Doc σ(c) = B B et X est bie ue variable aléatoire. 2. O sait qu ue applicatio X de Ω das F est cotiue, si pour tout ouvert C de F, X 1 (C) est u ouvert de Ω. L assertio 2) est doc ue coséquece immédiate de 1) et de la défiitio d ue tribu boréliee Propositio 6 Soiet (Ω,a), (F, B) et (T, S) trois espaces mesurables, X ue applicatio mesurable de (Ω,a) das (F, B), f ue applicatio mesurable de (F, B) das (T, S), alors Y = f X est ue applicatio mesurable de (Ω,a) das (T, S) Démostratio : elle est immédiate. Remarques : 1. Soit X ue applicatio de (Ω,a) das R. Pour que X soit ue variable aléatoire réelle il suffit que, pour tout t Q, l esemble (X t) [resp. (X t)] appartiee à a. E effet si C = { [, t], t Q } et C = { [t, + ], t Q }, o vérifie facilemet que σ(c) = σ(c ) = B R (tribu boréliee de R). O peut doc appliquer le 1) de la propositio Ue coséquece des propositios 5 et 6 est que, si X et Y sot deux variables aléatoires réelles fiies, alors, pour tous α et β apparteat à R, αx + βy, X.Y et 1 X (si X e s aule pas) sot aussi des variables aléatoires réelles. a Soit (a ) N ue suite d élémets de R. O défiit les ombres lim a et lim par : lim a { } { } = lim sup a m = if sup a m m m { lim a = lim if a m m } = sup { if a } m m Ces quatités sot doc bie défiies (das R), de plus : lim ( a ) = lim (a ) et lim a lim a O vérifie, d autre part, que l = lim a existe (das R) si et seulemet si lim a = lim a = l. Ces propriétés sot laissées e exercice. 9

15 1.3.4 Propositio 7 Soit (X ) N ue suite de variables aléatoires réelles, alors sup X, if X, lim X et lim X sot aussi des variables aléatoires réelles. E particulier, soit X l applicatio de Ω das R défiie par : { lim X (ω) = X (ω) si lim X (ω) existe 0 sio alors X est ue variable aléatoire réelle. Démostratio : Pour tout t R, o a (sup X t) = (X t) a (if X t) = (X t) a doc sup X et if X sot des variables aléatoires réelles. O e déduit que lim X et lim X sot aussi des variables aléatoires réelles puisque Doc : lim X = if {sup X m } et lim X = sup{ if X m} m m {ω Ω tel que lim X (ω) existe} = {ω Ω : lim X (ω) = lim X (ω) est u évéemet A. O voit alors que : X = ( lim X ).1 A (avec la covetio 0 = 0) est bie ue variable aléatoire réelle. La propositio précédete motre que toute limite simple (si elle existe) d ue suite de variables aléatoires réelles est ue variable aléatoire réelle Défiitio 6 Soit (Ω,a) u espace mesurable. O appelle variable aléatoire étagée toute variable aléatoire X : (Ω,a) R qui e pred qu u ombre fii de valeurs. O vérifie alors que X est étagée si et seulemet si elle est de la forme X = fiieα i.1 Ai où α i R et A i a Remarquer que la décompositio précédete de X est pas uique et que l esemble E des variables aléatoires étagées est u espace vectoriel sur R Propositio 8 Soit X ue applicatio de (Ω,a) das R + = [0, + ]. Alors X est ue variable aléatoire si et seulemet si il existe ue suite croissate (X ) N de 10

16 variables aléatoires étagées positives qui coverge simplemet vers X. Démostratio : S il existe ue suite (X ) d élémets de E qui coverge simplemet vers X o sait, d après la propositio 7, que X est ue variable aléatoire réelle. Réciproquemet supposos que X : (Ω,a) R + = [0, + ] est ue variable aléatoire réelle. Posos X = 2 1 k=0 k.1 (X [ k, k+1 [) +.1 (X=+ ) O vérifie alors facilemet que, pour tout, X E, X X +1 et que pour tout ω Ω : lim X (ω) = X(ω) 1.4 Espérace des variables aléatoires réelles et itégratio Soit X ue variable aléatoire réelle discrète telle que x.p(x = x) < où I m (X) = X(Ω) R x I m(x) O sait alors (cf. le cours de DEUG) que l espérace de X est défiie par : E(X) = x.p(x = x) x I m(x) O se propose ici d étedre la otio d espérace à ue classe beaucoup plus large de variables aléatoires réelles. L espérace de X (si elle existe) apparaîtra alors comme «l itégrale de X par rapport à la mesure de probabilité P» : E(X) = X dp Il s agit doc de doer u ses mathématique précis à cette écriture Défiitio 7 Soit (Ω, a) u espace mesurable. Ue mesure positive σ-fiie sur a est ue applicatio µ de a das R +, vérifiat : 1. si (A ) est ue suite d élémets de a deux à deux disjoits, alors ( ) µ A = µ(a ) Ω 2. il existe ue suite Ω ( N) d élémets de a telle que Ω = Ω et, pour tout, µ(ω ) <. La mesure µ est dite borée si sa masse totale µ(ω) est fiie ; µ est ue probabilité si µ(ω) = 1 (cf. la défiitio 1). Le triplet (Ω,a, µ) s appelle u espace mesuré. Remarquer que la défiitio précédete etraie que µ( ) = 0, puisque, si Ω a vérifie µ(ω ) <, o a µ(ω ) = µ(ω ) = µ(ω ) + µ( ). 11

17 1.4.2 Propositio 9 Soiet µ ue mesure positive σ-fiie sur a et A, B, A ( N) des évéemets. Alors : 1. A B µ(a) µ(b) 2. µ( A ) µ(a ) 3. si, pour tout, A A +1, o a : µ( A ) = lim µ(a ) = sup µ(a ) 4. si, pour tout, A +1 A et s il existe 0 tel que µ(a 0 ) <, alors µ( A ) = lim µ(a ) = if µ(a ) Démostratio : Cf. la preuve de la propositio 1. Exemple importat (mesure de Lebesgue) E dehors des exemples de probabilités doés précédemmet o a le résultat suivat : Cosidéros R d (d N ) mui de sa tribu boréliee B ; o sait que B est egedrée par la famille C de tous les pavés C de la forme C = d ]a i, b i ] où a i < b i, a i, b i R i=1 Il existe alors (ous admettros ce théorème) ue uique mesure positive σ-fiie λ sur B telle que ( d ) d λ ]a i, b i ] = (b i a i ) pour tous a i < b i, a i, b i R i=1 i=1 λ est appelée mesure de Lebesgue sur R d. Autre exemple (mesure de comptage) Soit Ω u esemble fii ou déombrable, mui de la tribu a = P(Ω). Pour tout B Ω, posos µ(b) = Card(B). Il est facile de voir qu o défiit aisi ue mesure σ-fiie sur (Ω, P(Ω)) appelée «mesure de comptage» Défiitio 8 Soit (Ω,a, µ) u espace mesuré. U esemble N Ω est dit égligeable s il existe A a tel que N A et µ(a) = 0. Ue propriété P(.) cocerat les élémets ω Ω est dite vraie presque partout (e abrégé p.p.) [presque sûremet (p.s.) lorsque µ est ue probabilité] si {ω Ω tels que «o P(ω)»} est égligeable. O voit, grâce au 2) de la propositio 9 qu ue réuio déombrable d esembles égligeables est égligeable. Si o cosidère la mesure de Lebesgue sur R d, u poit est égligeable doc tout esemble déombrable est égligable ; par cotre, pour la mesure de comptage sur u esemble déombrable Ω, aucu poit est égligeable. Soiet X, Y, X ( N) des applicatios de Ω das R. O dira que : X est fiie presque partout si {ω : X(ω) = + } est égligeable. X Y presque partout si {ω : X(ω) > Y (ω)} est égligeable. X X presque partout si {ω : X (ω) X(ω)} est égligeable. La otio d esemble égligeable est liée à la mesure de référece µ. S il y a ambiguïté, o écrira doc «µ-égligeable» ou «µ-presque-partout» [µ presquesûremet lorsque µ est ue probabilité]. 12

18 1.5 Itégratio des variables aléatoires étagées positives Soiet (Ω,a, µ) u espace mesuré et X : (Ω,a) R + ue variable aléatoire étagée positive. Il existe alors ue décompositio de X sous la forme X = i I α i.1 Ai où (A i, i I) est ue partitio fiie de Ω, A i a et α i R +. Le ombre i I α iµ(a i ) e déped pas de la décompositio choisie pour X : e effet, si X = j J β j.1 Bj = i I α i.1 Ai où (B j, j J) est ue autre partitio fiie de Ω, B j a et β j R +. O voit que α i = β j si A i B j et doc α i µ(a i ) = { } α i µ(a i B j ) i i j = i,j α i µ(a i B j ) = i,j = j β j µ(a i B j ) β j µ(b j ) (avec la covetio 0 = 0) Défiitio 9 Avec les otatios précédetes, le ombre i I α iµ(a i ) s appelle l itégrale de X par rapport à µ et se ote X dµ. O a doc, pour tout A a Ω µ(a) = 1 A dµ Propositio 10 Soiet X et Y deux variables aléatoires étagées positives, alors : 1. Pour tout c R +, cx dµ = c X dµ 2. (X + Y )dµ = X dµ + Y dµ 3. Si X Y, o a : X dµ Y dµ Démostratio : L assertio 1) est évidete. Soiet (A 1,..., A ), (B 1,..., B m ) deux partitios de Ω formées d élémets de a et α i,..., α, β 1,...,β m R + tels que X = i α i.1 Ai, Y = j β j.1 Bj. Alors Ω X + Y = i,j (α i + β j ).1 Ai B j 13

19 et (X + Y )dµ = i,j (α i + β j )µ(a i B j ) = i,j α i µ(a i B j ) + i,j β j µ(a i B j ) = i = α i µ(a i ) + j X dµ + O suppose que X Y. Remarquer que : Y dµ β j µ(b j ) A i B j α i β j e effet ω A i B j X(ω) = α i Y (ω) = β j doc X dµ = α i µ(a i B j ) β j µ(a i B j ) = i,j i,j Y dµ 1.6 Itégratio des variables aléatoires réelles positives Défiitio 10 Soit X ue variable aléatoire réelle positive (défiie sur l espace (Ω, a, µ)). L itégrale de X par rapport à µ, otée X dµ, est doée par la formule : Ω { } X dµ = sup Y dµ, Y variable aléatoire étagée telle que 0 Y X Ω Ω Remarquer que Ω X dµ peut être égale à Lemme 1 Soiet Z ue variable aléatoire étagée positive et (Y ) N ue suite croissate de variables aléatoires étagées positives telle que : lim ր Y Z Alors lim ր Y dµ Z dµ Démostratio : Soit α ]0, 1[. Posos B = {Y αz}, alors B B +1, B a et B = Ω e effet, pour tout ω Ω, o a : Z(ω) = 0 ω B 0 14

20 et (Z(ω) > 0) (Z(ω) > αz(ω)) pour tout assez grad (Y (ω) > αz(ω)) De plus, si Z = fiieα i.1 Ai o a Y αz.1 B = fiieαα i.1 Ai B Doc Y dµ α Z.1 B dµ = α fiieα i µ(a i B ) et lim ր Y dµ α fiieα i µ(a i ) = α Z dµ puisque µ(a i B ) ր µ(a i ) quad Propositio 11 Soiet X ue variable aléatoire réelle positive et (Y ) N ue suite croissate de variables aléatoires réelles étagées positives telle que : lim ր Y = X Alors X dµ = lim ր Y dµ Démostratio : Pour tout N, o a : 0 Y Y +1 X doc Y dµ X dµ par défiitio et lim ր Y dµ X dµ Réciproquemet, soit Z ue variable aléatoire réelle étagée telle que 0 Z X = lim ր Y alors, d après le lemme 1 : Z dµ lim ր Y dµ d où l iégalité X dµ lim ր Y dµ 15

21 1.6.4 Propositio 12 Soiet X et Y deux variables aléatoires réelles positives, alors : 1. pour tout c R + : cx dµ = c X dµ 2. (X + Y )dµ = X dµ + Y dµ 3. si X Y, o a : X dµ Y dµ Démostratio : Le 3) résulte de la défiitio 10. O sait, d autre part, d après la propositio 8, qu il existe X, Y variables aléatoires réelles étagées positives telles que lim ր X = X lim ր Y = Y doc : (X + Y )dµ = lim ր (X + Y )dµ = lim ր X dµ + lim ր = X dµ + Y dµ Y dµ O motre de même que cx dµ = c X dµ (c R + ) Défiitio 12 Ue variable aléatoire réelle positive X est dite itégrable si Ω X dµ <. Doc si Y est ue variable aléatoire réelle telle que 0 Y X, o voit, d après la propositio 12, que Y est itégrable dès que X l est. 1.7 Itégratio des variables aléatoires réelles Défiitio 13 Ue variable aléatoire réelle X (défiie sur l espace (Ω, a, µ)) est dite itégrable si X est itégrable. So itégrale est défiie par X dµ = X + dµ X dµ Ω Remarquer que X + et X sot itégrables puisque 0 X + = max{x, 0} X 0 X = max{ X, 0} X Propositio 13 Ω Soiet X et Y deux variables aléatoires réelles itégrables, alors 1. pour tout c R : cx dµ = c X dµ Ω 16

22 2. Si X + Y a u ses : (X + Y )dµ = X dµ + Y dµ 3. si X Y, X dµ Y dµ 4. X dµ X dµ Démostratio : O a : ( X) + = X doc : ( X)dµ = ( X) + dµ = X dµ = X dµ ( X) dµ X + dµ L égalité 1) est évidete si c 0 ; si c < 0, o écrit cx dµ = ( c)( X)dµ = ( c) ( X)dµ = c X dµ O a de plus : X + Y X + Y, doc X + Y est itégrable et : (X + Y ) = (X + Y ) + (X + Y ) = (X + X ) + (Y + Y ) doc (X + Y ) + + X + Y = (X + Y ) + X + + Y + (X +Y ) + dµ+ X dµ+ Y dµ = (X +Y ) dµ+ X + dµ+ Y + dµ et, ces quatités état fiies, par hypothèse : ( (X+Y ) + dµ (X+Y ) dµ = X + dµ ) ( X dµ + Y + dµ ) Y dµ d où l égalité 2). Pour le 3) o a : si X Y, Y X 0 et 0 (Y X)dµ = Y dµ X dµ Pour le 4) o a, puisque X = X + + X : X dµ = X + dµ + X dµ X + dµ X dµ = X dµ Défiitio 14 O otera L 1 (Ω,a, µ) l esemble des variables aléatoires réelles X fiies et itégrables. La propositio 13 motre que cet esemble est mui, aturellemet, d ue structure d espace vectoriel sur R, l applicatio X L 1 X dµ R 17

23 état ue forme liéaire positive sur cet espace (i.e. que X 0 X dµ 0). Ue variable aléatoire X à valeurs das C est dite itégrable si X L 1 (Ω,a, µ). O posera alors : X dµ = Re(X)dµ + ı Im(X) dµ O désigera par L 1 C (Ω,a, µ) l esemble des variables aléatoires complexes et itégrables. Cet esemble forme u espace vectoriel sur C ; de plus, o vérifie facilemet que l applicatio : X L 1 C X dµ C est ue forme liéaire sur cet espace. Soit X L 1 C. Alors X dµ est u ombre complexe de la forme ρe ıθ où ρ 0 ; doc X dµ = ρ = e ıθ X dµ = e ıθ X dµ = Re(e ıθ X)dµ X dµ O voit aisi que pour tout X L 1 C : X dµ X dµ Propositio Soit X ue variable aléatoire à valeurs das R ou C. S il existe ue variable aléatoire réelle Y itégrable et positive telle que X Y, alors X est itégrable. 2. Si X et Y sot deux variables aléatoires à valeurs das R ou C égales presque partout (p.p.) et si X est itégrable, alors Y est itégrable ; de plus : X dµ = Y dµ. 3. Si X est ue variable aléatoire itégrable, alors, pour tout λ R + µ( X λ) 1 X dµ et ( X < ) presque partout λ Démostratio : Le 1) est évidet Pour 2) si S = {X Y } ; alors S a, de plus X (+ ).1 S + Y Y (+ ).1 S + X et doc (+ ).1 S dµ = lim +.1 S dµ = 0 puisque µ(s) = 0 X dµ = Y dµ < 18

24 Pour 3) si X L 1, o a, pour tout λ > 0 : λ.1 ( X λ) X doc λ.1 ( X λ) dµ = λµ( X λ) X dµ < De plus µ( X = + ) = lim λ λ N doc ( X < ) presque partout. Remarques : 1 µ( X λ) lim λ λ λ N X dµ = 0 1. La propostio 14 motre que, si X est ue variable aléatoire itégrable, alors X et X.1 ( X < ) sot égales presque partout et ot même itégrale. 2. Si X est ue variable aléatoire réelle positive, les défiitios précédetes motret que X dµ a toujours u ses (et peut valoir + ). Si X est ue variable aléatoire réelle quelcoque et si X + dµ < ou bie X dµ < (par exemple : X majorée ou miorée par ue variable aléatoire itégrable), o peut, par extesio, défiir l itégrale de X e posat : X dµ = X + dµ X dµ qui appartiet à [, + ] = R Défiitio 15 (espérace des variables aléatoires réelles) O suppose que la mesure µ est ue probabilité P sur l espace mesurable (Ω,a). Soit X L 1 (Ω,a, P). L espérace de la variable aléatoire réelle X est alors défiie par : E(X) = X dp Remarquer que, si X est ue variable aléatoire réelle discrète (Im(X) = X(Ω) est fii ou déombrable). X = X = x Im(X) x Im(X) Ω x.1 (X=x) x.1 (X=x) O vérifie facilemet, das ce cas, que X est itégrable si et seulemet si E( X ) = X dp = x.p(x = x) < Ω x Im(X) et que E(X) = X dp = x.p(x = x) Ω x Im(X) 19

25 Remarquer que ( ) x.1 (X=x) x dp = lim x.1 (X=x) dp = lim + x + x Propositio 16 (loi d ue variable aléatoire) Soit X ue variable aléatoire défiie sur l espace de probabilité (Ω,a, P) et à valeurs das u espace mesurable quelcoque (F, B). La formule suivate : (*) pour tout B B : ν(b) = P ( X 1 (B) ) défiit alors ue probabilité ν sur l espace (F, B). O dira que ν est la loi (image) de la variable aléatoire X et o posera ν = P X. De plus, pour toute applicatio mesurable ϕ de (F, B) das R, o a ϕ L 1 (F, B, P X ) si et seulemet si ϕ X L 1 (Ω,a, P) et das ce cas (**) ϕdp X = ϕ X dp (formule des lois images) Démostratio : La formule (*) motre que, si B a deux disjoits, o a : F Ω ( N) est ue suite d élémets de B deux X 1 ( B ) = X 1 (B ) et les X 1 (B ) ( N) état deux à deux disjoits : ) ν ( B = P (X ( )) ( ) 1 B = P X 1 (B ) = P ( X 1 (B ) ) x.p(x = x) = ν(b ) De plus ν(f) = P ( X 1 (F) ) = P(Ω) = 1. ν est bie ue probabilité sur l espace (F, B). Pour démotrer la formule des lois images, remarquos d abord, que si ϕ = 1 B, (B B), o a ϕdp X = P X (B) = P ( X 1 (B) ) = 1 X 1 (B) dp (par défiitio) F Ω = 1 B X dp = (ϕ X)dP Ω Ω La formule (**) est doc vérifiée lorsque ϕ = 1 B (B B), et par liéarité, lorsque ϕ est ue variable aléatoire étagée de la forme ϕ = fiie α i.1 Bi où B i B, α i R +. Soit ϕ ue applicatio mesurable positive de (F, B) das R ; il existe (propositio 8) ue suite croissate (ϕ ) N de variables aléatoires étagées positives telles que ϕ = lim ր ϕ ; doc : ϕdp X = lim ր ϕ dp X = lim ր (ϕ X)dP = (ϕ X)dP F F 20 Ω Ω

26 O voit alors que si ϕ est ue applicatio mesurable quelcoque de (F, B) das R, o a ϕ L 1 (F, B, P X ) ϕ X L 1 (Ω,a, P) et que, das ce cas, e décomposat ϕ : Remarques : F ϕdp X = ϕ + dp X ϕ dp X F F = (ϕ + X)dP X (ϕ X)dP X Ω Ω = (ϕ X)dP Ω 1. Avec les otatios de la propositio 16, si F est u esembe fii ou déombrable, o a B = P(F). La loi P X d ue variable aléatoire discrète X à valeurs das F s idetifie alors avec la famille déombrable de ombres positifs de somme égale à 1 : E effet, pour tout B F : P X (x) = P(X = x) (x F) P X (B) = P(X B) = x B P(X = x) = x B P X (x) et P X (F) = x F P X (x) = 1 O dit aussi que (P X (x), x F) est la desité discrète de X. Pour toute applicatio ϕ de F das R, o a : ϕ X est itégrable si et seulemet si ϕ(x) P(X = x) < et das ce cas : x F E{ϕ X} = ϕdp X = ϕ(x)p X (x) = ϕ(x)p(x = x) = F x F x F Ω ϕ X dp 2. Soit X ue variable aléatoire réelle itégrable défiie sur l espace mesuré (Ω,a, µ); o otera idifféremmet, das la suite, suivat les cotextes : Ω X dµ = Si A a, o posera, par défiitio : A Ω X(ω)dµ(ω) = X dµ = Ω Ω X.1 A dµ X(ω)µ (dω) 21

27 1.8 Théorèmes de covergece Théorème 1 (Beppo-Levi) Soit (X ) N ue suite croissate de variables aléatoires réelles positives (défiies sur l espace mesuré (Ω,a, µ)). Posos X = lim ր X. Alors : X dµ = lim ր X dµ Démostratio : Pour tout N soit (X,k ) k N ue suite croissate de variables aléatoires étagées positives telle que : 0 X,k X,k+1 ր X, quad k + Posos Y k = max{x m,k, 0 m k} Alors Y k est étagée et de plus, pour tout m l das N : 0 Y k Y k+1 X k+1 X (1) X m,l Y l lim k ր Y k doc et X m lim l X m,l lim k ր Y k lim m ր X m = X lim k ր Y k X (2) Des iégalités (1) et (2), o déduit que : X dµ = lim ր Y k dµ = lim k k ր X k dµ Corollaire : Soit (Z ) N ue suite quelcoque de variables aléatoires réelles positives alors : ( ) Z dµ = Z dµ Démostratio : Pour tout m N, soit X m = m =0 Z, alors 0 X m X m+1 ր X = Z Il suffit d appliquer le théorème 1. 22

28 1.8.2 Théorème 2 (Lemme de Fatou) Soit (X ) N ue suite de variables aléatoires réelles. S il existe ue variable aléatoire réelle itégrable Y telle que, pour tout : Y X alors : lim X dµ lim X dµ S il existe ue variable aléatoire réelle itégrable Z telle que, pour tout : X Z alors : lim X dµ lim X dµ Démostratio : O suppose d abord que, pour tout, X 0, alors 0 Y m = if{x, m} Y m+1 ր lim X, quad m doc, d après le théorème 1 limx dµ = lim ր m ( Y m dµ lim if m m ) X dµ = lim X dµ puisque, pour tout m, Y m X et doc Y m dµ X dµ. Si, pour tout : X Y où Y L 1, il suffit de poser X = X Y 0 et de remarquer que lim X = lim X Y 0 doc lim X dµ = lim X dµ + Y dµ X dµ + lim Y dµ = lim X dµ Pour démotrer la secode assertio du théorème, il suffit de chager X e X ( N) Théorème 3 (Théorème de Lesbesgue ou de «covergece domiée») Soit (X ) N ue suite de variables aléatoires réelles. S il existe ue variable aléatoire réelle itégrable Y telle que, pour tout : X Y presque partout et si (X ) coverge presque partout vers ue variable aléatoire réelle X, quad alors X est itégrable et X X dµ 0, quad ; e particulier X dµ X dµ quad. Démostratio : Commeços par remarquer que, pour tout : (*) X X X +Y presque partout puisque X Y presque partout Quitte à modifier Y sur u esemble égligeable, o peut supposer que les iégalités précédetes sot valables partout et, e faisat tedre vers l ifii, 23

29 o voit que X Y presque partout, doc X L 1. D après le lemme de Fatou et grâce à (*) : lim X X dµ lim X X dµ = 0 car doc lim X X = 0 presque partout et X + Y L 1 X dµ X dµ = (X X )dµ X X dµ 0 quad Corollaire 1 : Soit (X s ) s S ue famille de variables aléatoires réelles où S est u espace métrique. O suppose que : 1. il existe l S tel que limx s = X l presque partout s l 2. pour tout s variat das ue boule ouverte cetrée e l : X s Y presque partout où Y est ue variable aléatoire réelle itégrable fixe, alors lim s l X (.) s dµ = X (.) l dµ Démostratio : Il suffit de vérifier que, pour toute suite (s ) N d élémets de S telle que lim s = l, o a lim X s dµ = X l dµ Appliquer le théorème de Lebesgue. Corollaire 2 : (Dérivatio sous le sige itégral) Soit (X s ) s S ue famille de variables aléatoires réelles itégrables où S est u itervalle ouvert de R. O suppose que, pour presque tout ω Ω, 1. la foctio s S X s (ω) est dérivable sur S 2. d ds X s(ω) Y (ω) e tout poit s de S où Y (.) est ue variable aléatoire réelle itégrable fixe. Alors X (.) s dµ est dérivable e s S et d X s (.) dµ = ds ( d ds X(.) s ) dµ Démostratio : Soit s 0 S. Pour tout h 0, assez petit, o a : ( ) ( ) 1 Xs0+h X s0 X s0+h dµ X s0 dµ = dµ h h et, d après le théorème des accroissemets fiis : X s0+h X s0 X h = θ h Y presque partout 24

30 où X s = d ds X s et θ h est compris etre s 0 et s 0 + h. O voit alors, d après le corollaire 1, que : ( ) 1 lim X s0+h dµ X s0 dµ = X s h 0 h 0 dµ h Propositio 17 (lie avec l itégrale de Riema) 1. Soiet a et b das R, a < b et f C([a, b], R) (espace des foctios cotiues de [a, b] das R). La foctio f.1 [a,b] est alors itégrable pour la mesure de Lebesgue λ sur (R, B R ) et l itégrale de Riema b a f(x)dx est égale à f.1 [a,b] dλ. 2. Soit f ue applicatio de R das R cotiue par morceaux, alors f L 1 (R, B R, λ) si et seulemet si l itégrale I = + f(x)dx est absolumet covergete et das ce cas I = f dλ Démostratio : Assertio 1) : Soit f C([a, b], R) O sait qu il existe ue costate M 0 telle que, pour tout x [a, b] : f(x) M, doc f.1[a,b] M.1[a,b] et f.1 [a,b] dλ M.(b a) < : f.1 [a,b] L 1 (R, B R, λ) Soiet = {t 0 = a, < t 1 <... < t = b} ue subdivisio de l itervalle [a, b] 1 = max t i+1 t i et f = f(t i ).1 [ti,t i i+1[ O sait, de plus, que f f, quad 0, uiformémet sur [a, b[ (cf. le cours de DEUG) et que les sommes de Riema i=0 R( ) = i f(t i ).(t i+1 t i ) coverget, quad 0, vers b a f(x)dx; or R( ) = f dλ et f M.1 [a,b] doc (théorème de Lebesgue) lim R( ) = lim 0 0 remarquer aussi que f.1 [a,b] dλ = puisque λ({b}) = λ({a}) = 0. L assertio 2) est laissée e exercice. f dλ = f.1 [a,b[ dλ = b f.1 [a,b[ dλ = f.1 ]a,b[ dλ a f(x)dx 25

31 Cosidéros l espace discret (N, P(N), µ) où µ est la mesure de comptage (pour tout B N : µ(b) = Card(B)). Soit U = (U ) N ue suite de ombres réels ou complexes. O vérifie facilemet que U L 1 C (N, P(N), µ) si et seulemet si la série 0 U est absolumet covergete ( 0 U < ) et que das ce cas Propositio 18 N U dµ = 0 Soit V = (V,m ) (,m) N N ue suite à deux idices et m (V,m C). O suppose que : 1. Pour tout, lim m V,m existe 2. 0 {sup m V,m } < alors lim m { } V,m = { 0 0 U lim m V,m L égalité (*) reste valable si, au lieu des coditios 1) et 2), o suppose 3) : pour tous et m : V,m R + et V,m V,m+1. Démostratio : Cosidéros ( ) f m = (V,m ) N et g = sup V,m m Pour tout N, o a f m () = V,m g() La coditio 1) sigifie que f m coverge simplemet, quad m et 2) sigifie que g L 1 C (N, P(N), µ). Pour obteir (*) il suffit d appliquer le théorème de Lebesgue sous les coditios 1) et 2), ou bie le théorème de Beppo-Levi sous l hypothèse 3). } (*) N 26

32 Chapitre 2 Espaces produits, idépedace 2.1 Espaces produits Soiet (F i, B i ), i = 1, 2,..., des espaces mesurables. Posos : F = F 1 F 2... F = O muit l esemble F de la tribu B egedrée par les pavés de la forme i=1 F i A 1 A 2... A où A i B i, i = 1,..., B s appelle la tribu produit et se ote : B = B 1 B 2... B = Remarquer que B est la plus petite tribu sur F redat mesurables les applicatios coordoées θ i, (i = 1,...,), de F das (F i, B i ) défiies par : i=1 θ i ((x 1, x 2,..., x )) = x i où (x 1,..., x ) F Si pour tout i, F i = R et B i = B R (tribu boréliee de R) o vérifie facilemet que, pout tout N : B i B R = B R... B R fois et que B R +m s idetifie à B R B R m (m N ) Théorème 1 Soiet µ 1, µ 2,...,µ des mesures 0 σ-fiies défiies sur (F 1, B 1 ), (F 2, B 2 ),...,(F, B ) 27

33 respectivemet. Il existe ue uique mesure 0 σ-fiie µ sur l espace produit ( ) F = F i, B = B i i=1 i=1 telle que pour tous A 1 B 1, A 2 B 2,..., A B : µ(a 1 A 2... A ) = µ 1 (A 1 )µ 2 (A 2 )...µ (A ) La mesure µ s appelle la mesure produit de µ 1, µ 2,..., µ et se ote : µ = µ 1 µ 2... µ = Par exemple, si λ désige la mesure de Lebesgue sur R ( N ), o a λ = λ 1 λ 1... λ 1 i=1 µ i ( fois) Remarquer, das le théorème 1, que si les µ i, (i = 1,...,) sot des probabilités, alors µ = i=1 µ i est ue probabilité Théorème 2 (de Fubii) Cas = 2. Soit f ue applicatio mesurable de (F 1 F 2, B 1 B 2, µ 1 µ 2 ) das R alors : 1. Pour tout x = (x 1, x 2 ) F 1 F 2, les applicatios f x1 de (F 2, B 2 ) das R et f x2 de (F 1, B 1 ) das R défiies par f x1 (y 2 ) = f(x 1, y 2 ) (y 2 F 2 ) f x2 (y 1 ) = f(y 1, x 2 ) (y 1 F 1 ) sot mesurables. 2. Si f est positive, les applicatios : x 1 F 1 f(x 1, x 2 )µ 2 (dx 2 ) F 2 x 2 F 2 f(x 1, x 2 )µ 1 (dx 1 ) F 1 sot mesurables sur (F 1, B 1 ) et (F 2, B 2 ) respectivemet, de plus : f(x 1, x 2 )µ 1 µ 2 (dx 1, dx 2 ) = µ 1 (dx 1 ) f(x 1, x 2 )µ 2 (dx 2 ) F 1 F 2 F 1 F 2 = µ 2 (dx 2 ) f(x 1, x 2 )µ 1 (dx 1 ) (*) F 2 F 1 3. Si f L 1 (F 1 F 2, B 1 B 2, µ 1 µ 2 ) alors pour µ 1 presque tout x 1 : f x1 L 1 (F 2, B 2, µ 2 ) pour µ 2 presque tout x 2 : f x2 L 1 (F 1, B 1, µ 1 ) et l itégrale de f par rapport à µ 1 µ 2 est ecore doée par l égalité (*). Ce théorème s éted facilemet, par récurrece, au cas d u produit fii d espaces (F i, B i, µ i ), (i = 1, 2,..., ). La démostratio des théorèmes 1 et 2 est basée sur le théorème 3 suivat (appelé «théorème de classe mootoe»). 28

34 2.1.3 Défiitio 1 Soiet Ω u esemble, C et S deux sous-esembles de P(Ω). O dira que C est u π-système si, pour tous A et B apparteat à C, o a A B C. S est u λ-système si, 1. pour toute suite (A ) d élémets de S telle que A A +1,, o a N A S 2. pour tous A et B apparteat à S, o a : A B A \ B S Théorème 3 1. Si S est u λ-système coteat u π-système C et si Ω S, alors S cotiet σ(c) (la tribu egedrée par C). 2. Soit H u espace vectoriel de foctios umériques fiies (resp. borées) sur u espace mesurable (Ω,a) tel que : (a) 1 H et 1 A H, pour tout A C où C est u π-système tel que σ(c) = a (b) H est stable par passage à la limite croissate (i. e. : si (f ) est ue suite d élémets de H telle que f f +1 et f f fiie (resp. Démostratio : ր borée), o a f H) alors H cotiet toutes les foctios umériques a-mesurables fiies (resp. borées). 1. Soit S le λ-système egedré par C et Ω. S est l itersectio de tous les λ-systèmes coteat C et Ω. O a : S S et C S σ(c). Si o motre que S est stable par itersectio fiie, il est facile de voir que S est, e fait, ue tribu et, puisque C S, S = σ(c) S. Soit S 1 = {A S tel que A B S, B C} alors S 1 est u λ-système coteat C et Ω S 1 doc S 1 S S 1 = S. Soit S 2 = {A S tel que A B S, B S } S 2 est u λ-système coteat C et Ω S 2 doc S 2 = S, ce qui sigifie que, pour tous A et B das S, o a A B S 2. Soit S = {A a tel que 1 A H} a Les hypothèses sur H motret que S est u λ-système coteat C et Ω, doc S cotiet σ(c) = a (d après 1)) et S = a. L espace vectoriel H cotiet doc toutes les foctios étagées. Soit f ue foctio a-mesurable fiie (resp. borée), o a f = f + f où f + et f sot des foctios mesurables positives qui sot limites de suites croissates de foctios étagées positives, doc f + H, f H et f = f + f H. Corollaire 1 : Soiet µ 1 et µ 2 deux mesures positives σ-fiies sur (Ω,a) et C a u π-système tel que σ(c) = a. O suppose que : 29

35 1. Pour tout C C : µ 1 (C) = µ 2 (C) 2. Il existe ue suite croissate (C ) d élémets de C telle que Ω = C et µ i (C ) <, pour tout N. Alors µ 1 = µ 2. Démostratio : Soit N fixé. Cosidéros : S = {A a tel que µ 1 (A C ) = µ 2 (A C )} a O voit que S est u λ-système, S C et Ω S, doc S σ(c) = a et S = a. O e déduit que pour tout A a et tout N doc µ 1 (A C ) = µ 2 (A C ) µ 1 (A) = lim µ 1(A C ) = lim µ 2(A C ) = µ 2 (A) Démostratio du théorème 1 Uicité : Soiet µ et µ deux mesures σ-fiies sur (F = i=1 F i, B = i=1 B i) telles que, pour tous A 1 B 1,..., A B µ(a 1... A ) = µ(a 1... A ) = µ i (A i ) (P) O sait qu il existe, pour tout i {1, 2,..., }, ue suite croissate (A k i ) k N d élémets de B i telle que A k i = F i et µ i (A k i ) <, pour tout k N. Posos : k i=1 alors, pour tout k : C k = A k 1 Ak 2... Ak µ(c k ) = µ(c k ) <, C k C k+1 et k C k = F Soit C la famille des pavés C de la forme C = A 1 A 2... A où A i B i C est u π-système tel que σ(c) = B et la propriété (P) motre que µ et µ coïcidet sur C, de plus C k C pour tout k, doc µ = µ (d après le corollaire 1). Existece : Il suffit de se restreidre au cas = 2. Pour tout A B = B 1 B 2 et pour x = (x 1, x 2 ) F 1 F 2, cosidéros : Remarquer que : A x1 = {x 2 F 2 tel que (x 1, x 2 ) A} F 2 A x2 = {x 1 F 1 tel que (x 1, x 2 ) A} F 1 1 Ax1 (x 2 ) = 1 Ax2 (x 1 ) = 1 A (x 1, x 2 ) Cosidéros l esemble S défii par : S = {A B vérifiat les propriétés suivates : 30

36 1. pour tout x = (x 1, x 2 ) F : A x1 B 2 et A x2 B 1 2. les applicatios x 1 F 1 µ 2 (A x1 ) et x 2 F 2 µ 1 (A x2 ) sot mesurables sur (F 1, B 1 ) et (F 2, B 2 ) respectivemet 3. µ 1 (dx 1 )µ 2 (A x1 ) = F 1 µ 2 (dx 2 )µ 1 (A x2 )} F 2 O se propose de motrer que S = B. Supposos d abord que µ 1 et µ 2 sot borées. O vérifie, das ce cas, facilemet que S est u λ-système coteat tous les pavés de la forme C = A 1 A 2 où A 1 B 1 et A 2 B 2, e particulierf = F 1 F 2 S Doc S = B = B 1 B 2 (théorème 3). Das le cas gééral, o sait qu il existe deux suites croissates (A k i ) k N, (i = 1, 2) telles que A k i B i, A k i = F i et µ i (A k i ) < pour tout k k N. Posos alors, pour tous B 1 B 1 et B 2 B 2 : µ k 1(B 1 ) = µ 1 (B 1 A k 1), µ k 2(B 2 ) = µ 2 (B 2 A k 2) O voit que, pour tout k, µ k 1 et µ k 2 sot deux mesures borées et que les propriétés 2) et 3) sot satisfaites pour tout A B lorsque l o remplace µ 1 par µ k 1 et µ 2 par µ k 2 ; e faisat tedre k vers l ifii, o vérifie alors, sas peie, que S = B = B 1 B 2. Posos esuite, pour tout A B : µ(a) = µ 1 (dx 1 )µ 2 (A x1 ) = µ 2 (dx 2 )µ 1 (A x2 ) F 1 F 2 Il est immédiat de vérifier que µ est ue mesure σ-fiie sur B telle que pour tous A 1 B 1, A 2 B 2 µ(a 1 A 2 ) = µ 1 (A 1 )µ 2 (A 2 ) Démostratio du théorème 2 O désige par H l esemble suivat : H = { f : (F 1 F 2, B 1 B 2 ) R + = [0, ], mesurables vérifiat les assertios 1) et 2) du théorème 2. } O voit facilemet que si f et g sot deux élémets de H alors f + g appartiet à H et α.f H (α R + ) et que si 0 f f est ue suite croissate d élémets f de H alors f = lim ր f appartiet à H. La démostratio du théorème 1 motre, de plus, que H cotiet les foctios idicatrices 1 A, pour tout A B 1 B 2 doc H cotiet les variables aléatoires réelles étagées positives et, par passage à la limite croissate, toutes les variables aléatoires réelles positives. Soit f L 1 (F 1 F 2, B 1 B 2, µ 1 µ 2 ) alors, d après 1) et 2), o voit que : µ 1 (dx 1 ) f (x 1, x 2 )µ 2 (dx 2 ) = µ 2 (dx 2 ) f (x 1, x 2 )µ 1 (dx 1 ) < F 1 F 2 F 2 F 1 31

37 doc, pour µ 1 presque tout x 1 : et, pour µ 2 presque tout x 2 : F 2 f (x 1, x 2 )µ 2 (dx 2 ) < F 1 f (x 1, x 2 )µ 1 (dx 1 ) < E décomposat f sous la forme f = f + f où f + = max(f, 0) 0 et f = max( f, 0) 0, o voit alors, par liéarité, que l itégrale de f par rapport à µ 1 µ 2 est ecore doée par l égalité : fdµ 1 µ 2 = µ 1 (dx 1 ) f(x 1, x 2 )µ 2 (dx 2 ) F 1 F 2 F 1 F 2 = µ 2 (dx 2 ) f(x 1, x 2 )µ 1 (dx 1 ) (*) F 2 F 1 L extesio du théorème 2 au cas d u produit fii d espaces se démotre facilemet par récurrece. Soit (F i, B i ) i I ue famille d espaces mesurables où I est u esemble quelcoque d idices (par exemple I = N ou R + ou R...) L espace produit F = i I F i est, par défiitio, l esemble des applicatios x de I das i I F i telles que, pour tout i I, x i F i ; o posera x = (x i ) i I. Les applicatios coordoées θ i de F das F i (i I) sot alors défiies par θ i (x) = x i, pour tout x = (x i ) i I das F. O muit l espace F = i I F i de la tribu produit B = i I B i qui est doée par B = σ{θ 1 i (B i ), i I, B i B i } O vérifie facilemet que B est la plus petite tribu sur F qui red mesurables toutes les applicatios θ i (i I). Soit C l esemble des pavés C de F de la forme C = (B i ) où J est fii, J I et B i B i. Remarquer que C est u θ 1 i i J π-système tel que σ(c) = B Propositio 1 Soit (Ω,a) u espace mesurable. Ue applicatio X de (Ω,a) das (F = i I F i, B = i I B i) est mesurable si et seulemet si : (P) i I, θ i X est mesurable de (Ω,a) das (F i, B i ) Démostratio : Puisque B est egedrée par la famille des θ 1 i (B i ), i I, B i B i, o voit que : X est mesurable pour tous i I et B i B i X 1 ( θ 1 i (B i ) ) a pour tout i I θ i X est mesurable car X 1 (θ 1 i (B i )) = (θ i X) 1 (B i ). Nous admettros le théorème suivat, dû à Kolmogorov, qui assure l existece, sous certaies coditios, d u produit ifii d espaces de probabilités. 32

38 2.1.8 Théorème 4 Pour chaque i I, soit µ x ue probabilité sur l espace mesurable (F i, B i ); o suppose que F i = R di, (d i N ) et que B i = B R d i (tribu boréliee de R di ). Il existe alors ue uique probabilité µ sur l espace produit ( F = F i, B = ) B i i I i I telle que pour tout pavé C = θi 1 i J (B i ) où J est fii, J I et B i B i o a µ(c) = i J µ i (B i ) (*) La probabilité µ est appelée probabilité produit des µ i (i I) et otée µ = i I µ i. Le théorème 4 est ue extesio directe du théorème 1 au cas d u produit quelcoque d espaces. Remarquer que l égalité (*) etraîe immédiatemet l uicité de µ puisque la famille C des pavés est u π-système qui egedre la tribu produit. Noter aussi que le théorème 4 reste valable si o suppose que, pour tout i, F i est u esemble déombrable et B i = P (Fi). 2.2 Idépedace Défiitio 1 Soiet X 1, X 2,...,X variables aléatoires défiies sur u espace de probablité (Ω,a, P) et à valeurs das des espaces mesurables (F 1, B 1 ), (F 2, B 2 ),..., (F, B ) respectivemet. O dira que la famille (X i ) i=1,2,..., est idépedate (ou que les X i, i = 1, 2,...,, sot idépedates) si : pour tous B 1 B 1, B 2 B 2,..., B B, o a P {X 1 B 1, X 2 B 2,..., X B } = P(X i B i ) (*) i=1 Soit X l applicatio de (Ω,a, P) das l espace produit ( ) F = F i, B = B i défiie par : i=1 i=1 X(ω) = (X 1 (ω),..., X (ω)), ω Ω O vérifie facilemet que X est bie ue variable aléatoire. Notos P X la loi de X sur l espace produit (F, B) et P Xi la loi de X i sur (F i, B i ), i = 1, 2,...,. L égalité (*), das la défiitio 1, motre que les variables aléatoires X i, i = 1, 2,..., sot idépedates si et seulemet si la loi de X est égale au produit des lois des X i : ( ) P X = P X1 P X2... P X sur F = F i, B = B i (**) i=1 i=1 33

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E). Chapitre 1 Tribus 1.1 Défiitios Soit E u esemble. O appelle classe de parties de E u sous-esemble o vide de P(E). Défiitio 1.1.1. Ue tribu A sur E est u sous-esemble o vide de P(E) tel que : (i) la partie

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède).

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède). #4 Itégrale de Riema Khôlles - Classes prépa Thierry Sageaux, Lycée Gustave Eiel Exercice Soit f ue foctio cotiue sur [, ] telle que Motrer que f ab f(t)dt = O pose a = mi f et b = max f Exercice x ) Motrer

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Exercices corrigés pour le cours. Intégration 1

Exercices corrigés pour le cours. Intégration 1 Exercices corrigés pour le cours de Licece de Mathématiques Itégratio 2 INTEGATION, Feuille d exercices Exercice.. Soit f : Y ue applicatio. a. Motrer que pour toute famille (B i ) i I de parties de Y,

Plus en détail

Fonctions convexes. Prologue

Fonctions convexes. Prologue Foctios covexes Prologue Ce chapître développe les propriétés des foctios covexes f C E R défiies sur ue partie covexe C d u espace de dimesio fiie E. Si, fodametalemet, la covexité est ue propriété uidimesioelle

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail

Exercices de Khôlles de Mathématiques, second trimestre

Exercices de Khôlles de Mathématiques, second trimestre Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

Probabilités et Statistiques MATH-F-315. Simone GUTT

Probabilités et Statistiques MATH-F-315. Simone GUTT Probabilités et Statistiques MATH-F-315 Simoe GUTT 2012 Das la vie, ous sommes cotiuellemet cofrotés à des collectios de faits ou doées. Les statistiques formet ue brache scietifique qui fourit des méthodes

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

x deux caractères de G. Le produit xx est défini par la formule : PREMIeRE COMPOSITION DE MATHEMATIQUES

x deux caractères de G. Le produit xx est défini par la formule : PREMIeRE COMPOSITION DE MATHEMATIQUES 74 Écoles Normales Supérieures Ulm et Lyo optio M lère compositio 1/6 PREMIeRE COMPOSITION DE MATHEMATIQUES (Sujet commu ENS : ULM et LYON) DURÉE : 6 heures Lc cadidat peut traiter l ue quelcoque des parties

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés Exercice [ 43 ] [Correctio] O pose ) k+ s = et u = l e s ) k k= a) Éocer le théorème des séries spéciales alterées, e faire la preuve. b) Prouver

Plus en détail

Équations différentielles - Cours no 6 Approximation numérique

Équations différentielles - Cours no 6 Approximation numérique Équatios différetielles - Cours o 6 Approximatio umérique 1 Itroductio De très ombreux problèmes scietifiques sot mis e équatio à l aide d u système d équatios différetielles ẋt) = ft, xt)) voir par exemple

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

Université Pierre et Marie Curie Licence de Mathématiques (3ème année) Année 2004/2005. Probabilités Pierre Priouret

Université Pierre et Marie Curie Licence de Mathématiques (3ème année) Année 2004/2005. Probabilités Pierre Priouret Uiversité Pierre et Marie Curie Licece de Mathématiques (3ème aée) Aée 2004/2005 Probabilités Pierre Priouret Mode d emploi Ce polycopié est destié aux étudiats de la Licece (3ème aée) de Mathématiques

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

Automates 1 Présentation

Automates 1 Présentation Automates Présetatio Présetatio d u automate 2 Ue maière de désiger l automate de l exemple 3 Défiitio géérale 4 U exemple d automate 5 Mot costruit sur l alphabet C 6 L esemble de tous les mots das u

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener INF58 : Cryptologie Attaque de clés RSA par la méthode de Wieer Nicolas DOUZIECH - Thomas JANNAUD - X005 9 mars 008 Table des matières Quelques rappels sur le cryptosystème RSA Pricipe de l attaque de

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Une démonstration du théorème. fondamental des nombres premiers. Fin de Licence 3, 2006-2007, Université d'orsay, Professeur : M. Zuily.

Une démonstration du théorème. fondamental des nombres premiers. Fin de Licence 3, 2006-2007, Université d'orsay, Professeur : M. Zuily. Ue démostratio du théorème fodametal des ombres premiers Fi de Licece 3, 26-27, Uiversité d'orsay, Professeur : M. Zuily. Table des matières Itroductio 2. Quelques rappels et otatios....................................

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart

Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart Uiversité Joseph Fourier, Greoble Maths e Lige Séries umériques Luc Rozoy, Berard Ycart Disos-le tout et, ce chapitre est pas idispesable : d ailleurs, vous e verrez pas vraimet la différece avec les suites.

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Aide Mémoire de Statistique

Aide Mémoire de Statistique Aide Mémoire de Statistique (E, E, P) modèle statistique (E, E, P) modèle probabiliste E probabilité, o coaît la loi P et o fait des calculs E statistique, o e coaît pas la loi (seulemet ue famille de

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Agrégation de Mathématiques 2012-2013. Intégration

Agrégation de Mathématiques 2012-2013. Intégration Agrégtio de Mthémtiques -3 CMI Uiversité d Aix-Mrseille Itégrtio. Itégrles défiies. Subdivisio. Soiet et b deux ombres réels tels que < b. O ppelle subdivisio de l itervlle [, b] toute suite fiie strictemet

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes

SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes SUITES ET FONCTIONS. Espaces vectoriels ormés réels ou complexes.. Normes et distaces. Exercice... F Soit E l espace vectoriel des foctios de classe C sur [a, b], o pose Nf = fc + f où c [a, b], f désigat

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Petit manuel de bonne rédaction

Petit manuel de bonne rédaction Petit mauel de boe rédactio «Bie rédiger» peut sigifier deux choses : 1) exposer sa pesée clairemet, c est-à-dire avec ordre et rigueur et si possible avec style ; U raisoemet faux peut être bie rédigé,

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

CTU, Licence de Mathématiques Statistique Inférentielle. Jean-Yves DAUXOIS. Université de Franche-Comté

CTU, Licence de Mathématiques Statistique Inférentielle. Jean-Yves DAUXOIS. Université de Franche-Comté CTU, Licece de Mathématiques Statistique Iféretielle Jea-Yves DAUXOIS Uiversité de Frache-Comté Aée scolaire 2011-2012 Ce polycopié cotiet le cours, les sujets d exercice et leurs corrigés aisi que les

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

1 Convergence simple et convergence uniforme

1 Convergence simple et convergence uniforme Mster Métiers de l Eseigemet, Mthémtiques - ULCO, L Mi-Voi, 0/03 ANALYSE Fiche de Mthémtiques 5 - Suites et séries de foctios Soiet E et F deu espces métriques quelcoques et (f ) ue suite d pplictios de

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Modélisation stochastique

Modélisation stochastique Uiversité de Lorraie Master 2 IMOI 2014-2015 Modélisatio stochastique Madalia Deacou 2 Table des matières Itroductio 5 1 Simulatio de variables aléatoires 7 1.1 Itroductio............................ 7

Plus en détail

Chapitre 2. Applications mesurables. 2.1 Topologie et tribus boréliennes de R et R +

Chapitre 2. Applications mesurables. 2.1 Topologie et tribus boréliennes de R et R + Chapitre 2 Applications mesurables 2.1 Topologie et tribus boréliennes de R et R + Dans la théorie de l intégration de Lebesgue, il est très commode de travailler avec des fonctions à valeurs dans la droite

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion

COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion COURS DE STATISTIQUES INFERENTIELLES Licece d écoomie et de gestio Laurece GRAMMONT Laurece.Grammot@uiv-st-etiee.fr http://www.uiv-st-etiee.fr/maths/cvlaurece.html September 19, 003 Cotets 1 Rappels 5

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Probabilités. Table des matières. Université Paris XI PCS0 Probabilités 2011/2012

Probabilités. Table des matières. Université Paris XI PCS0 Probabilités 2011/2012 Uiversité Paris XI PCS0 Probabilités 2011/2012 Probabilités Table des matières 1 Combiatoire 2 1.1 Choix............................................ 2 1.2 Les foctios cruciales du déombremet........................

Plus en détail

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S exercices 1 Exercices de base 1 1 Divisio Euclidiee - 1 (c) 1 Divisio Euclidiee- 1 3 Divisio Euclidiee-3 (c) 1 4 Multiples - 1 1 5 PGCD - 1 (c) 3 1 6 PPCM et PGCD - 1 7 PPCM et PGCD - 3 3 3

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA SESSION 993 SAINT-CYR MATHEMATIQUES - Epreuve commue Optios M, P, T, TA PREMIÉRE PARTIE ) Les polyômes L 0,, L sot + polyômes de R [X] qui est de dimesio + Pour vérifier que la famille (L i ) 0 i est ue

Plus en détail

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Les ratioels, les réels Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail