Devoir de synthèse n 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Devoir de synthèse n 2"

Transcription

1 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie par u 0 0 u 1 f u, 3, 1 a) Etudier le ses de variatio de f sur b) Motrer que pour tout etier aturel, 2 u 1 v 2 Soit a) Motrer que b) Ecrire la suite défiie, pour tout etier aturel, par v v est ue suite géométrique de raiso e foctio de c) Motrer, que pour tout etier aturel, u d) E déduire la limite de la suite u v u 1 u a) Calculer, e foctio de, la somme S v0 v 1 v v u 2 3 b) Vérifier que pour tout etier aturel, c) E déduire, e foctio de, S u 2 u 2 u Exercice 2: (5 poits) Ue ure cotiet quatre boules rouges umérotées de 0, 0, 1, 2, trois boules vertes umérotées de 0, 1, 2 et deux boules blaches umérotées 1, 2 Toutes les boules sot idiscerables au toucher 1 O tire simultaémet 3 boules de l ure Calculer la probabilité de chacu des évèemets suivats : A : «tirer les deux boules blaches» B : «tirer trois boules dot le produit des uméros est ul» C : «Obteir exactemet ue boule rouge et u uméro impair» 2 O tire successivemet et avec remise trois boules de l ure Calculer la probabilité de chacu des évèemets suivats : 1 / 4

2 Mr ABIDI Farid Devoir de sythèse 2 3 SE 1 Mai 2014 E : «Obteir trois boules de même couleur» F : «obteir au mois ue boule blache» G : «la somme des uméros portés par les trois boules tirées est égale à 4» 3 O tire successivemet et sas remise trois boules de l ure Calculer la probabilité de chacu des évèemets suivats : H : «tirer trois boules de trois couleurs différetes» I : «tirer trois boules portat le même uméro» K : «tirer trois boules de même couleur et portat le même uméro» L : «tirer trois boules de même couleur ou portat le même uméro» Exercice 3: (5 poits) L espace est mui du repère orthoormé direct O, i, j, k O cosidère les poits A(-1, 0, 2) et B(1,1,1) et la droite dot ue représetatio paramétrique 2 / 4 x 2 y 2, z 1 1 a) Doer les coordoées du poit C de d abscisse 0 et les composates d u vecteur directeur u de b) Calculer le détermiat des vecteurs AB, AC et E déduire que les droites et (AB) e sot pas coplaaires 2 Soit P le pla coteat la droite (AB) et parallèle à a) Motrer que x y z 1 0 est ue équatio cartésiee de P b) Soit N u poit quelcoque de u Vérifier que dn,p 3 Soit I le milieu de [AB] Calculer le produit scalaire ABAI Soit u réel, o cosidère le poit M 2 cos, 2 si, 9 a) Vérifier que M appartiet au pla P puis calculer, e foctio de, f ABAM b) Motrer que, pour tout réel, f ( ) f Que peut-o coclure à propos de la foctio f?

3 Mr ABIDI Farid Devoir de sythèse 2 3 SE 1 Mai 2014 c) Détermier la valeur de 0, f 3, de l itervalle, pour laquelle Exercice 4 : ( 4 poits) Le tableau suivat doe l'évolutio du ombre de uitées réservées das les hôtels d ue zoe touristique, e Tuisie au cours de dix aées : Aée Rag xi Nombre de uitées yi ( e milliers) 25,4 26,8 31, , ,8 37,2 39,3 45,7 Tous les résultats serot arrodis à u seul chiffre après virgule 1 Calculer la moyee et la variace de chacue des variables x et y 2 Représeter par u uage de poits la série statistique das u repère orthogoal O predra : 1 cm pour 1 aée e abscisse 1 cm pour 2 milliers de uitées e ordoée ( commecer à 25 ) 3 O partage l'esemble des poits du uage e deux sous-esembles correspodat l'u aux aées 2007 à 2011 et l'autre aux aées 2012 à 2016 Détermier les coordoées des poits moyes G1 et G 2 de chacu des sous-esembles précédets GG 4 Détermier l'équatio de la droite GG 1 2 Tracer la droite 5 A partir de quelle aée peut-o prévoir le doublemet du ombre de uitées par rapport à l'aée 2007? / 4

4 Mr ABIDI Farid Devoir de sythèse 2 3 SE 1 Mai 2014 Nom de l élève : Aexe à compléter et à redre avec la copie 4 / 4

5 Mr ABIDI Farid Devoir de sythèse 2 3 SE 1 Mai ) 2 ) les coordoées des poits moyes sot : G1 ( 3 ; 28,7) G2 ( 8 ; 37,28) 3 ) La démarche est la même qu'à l'exercice 5 L'équatio de la droite (G1G2) : y =1,716 x + 23,552 4 ) Le rag de cette aée est x = 13 doc le ombre de uitées sera : y = 1, ,552 = 45,86 5 ) Le ombre de uitées e 1991 est 25,4 le double est doc 50,8 Das ce cas il faut détermier 5 / 4

6 Mr ABIDI Farid Devoir de sythèse 2 3 SE 1 Mai 2014 quelle est la valeur de x correspodat à y = 50,8 O doit résoudre l'équatio : 50,8 = 1,716 x + 23,552 doc x 15,88 soit 16 aées eviro 6 / 4

DAEUB EXAMEN PREMIERE SESSION 2013/2014

DAEUB EXAMEN PREMIERE SESSION 2013/2014 DAEUB EXAMEN PREMIERE SESSION 2013/2014 LE SUJET EST COMPOSE DE TROIS EXERCICES INDEPENDANTS. LE CANDIDAT DOIT TRAITER TOUS LES EXERCICES. Les calculatrices sot autorisées. Les portables doivet être éteits.

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Mathématiques. Devoir de Synthèse N 3. Exercice N 1 : 4,5. Enseignant : Ghadhab Lassad. Le sujet comporte 3 pages

Mathématiques. Devoir de Synthèse N 3. Exercice N 1 : 4,5. Enseignant : Ghadhab Lassad. Le sujet comporte 3 pages Devoir de Sthèse ème Maths : M Date : le 0 / 0 / 00 Durée : heures oefficiet : Eseigat : hadhab Lassad Le sujet comorte ages Eercice : oits L esace est mui d u reère orthoormé de ses direct ( A i j k)

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c.

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c. NOUVELLE CALEDONIE NOVEMBRE 2007 Exercice 4 poits Commu à tous les cadidats Pour chaque questio, ue seule des trois propositios est exacte. Le cadidat idiquera sur la copie le uméro de la questio et la

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EXAMEN PROBATOIRE D ADMISSION DES ETRANGERS DANS LES ECOLES DE FORMATION D OFFICIERS EPREUVE DE MATHEMATIQUES DUREE DE L EPREUVE : 4 Heures Matériel autorisé : Calculatrice Circulaire 9986 du 6 ovembre

Plus en détail

TD 4 : Variables aléatoires discrètes

TD 4 : Variables aléatoires discrètes MA40 : Probabilités TD 4 : Variables aléatoires discrètes Exercice Soit N u etier aturel supérieur ou égal à.. Motrer les égalités suivates : N k k N N + ) N k k N N + ) N + ). Ue ure cotiet ue boule blache

Plus en détail

2 2 2) Compléter, en donnant dans chaque cas, l ensemble des solutions de l équation dans [-π,π]

2 2 2) Compléter, en donnant dans chaque cas, l ensemble des solutions de l équation dans [-π,π] Premières S Devoir 9 Jeudi 9 mai 06 Exercice (A complèter directemet sur la feuille de texte) sur poits Les trois questios sot idépedates ) Compléter, das chaque cas, par le réel de [-π,π] qui coviet :

Plus en détail

O i j. la courbe représentative de la fonction dans le repère orthonormal ; ; est représentée en annexe à rendre avec la copie. g x.

O i j. la courbe représentative de la fonction dans le repère orthonormal ; ; est représentée en annexe à rendre avec la copie. g x. DST 6 (4 heures) 1/05/013 La calculatrice est autorisée Exercice 1 (5 poits) Le pla est rapporté à u repère orthoormal O; i; j. 1) Étude d ue octio. l x O cosidère la déiie sur l itervalle 0; par x x.

Plus en détail

Devoir de synthèse n 1

Devoir de synthèse n 1 Mathématiques Lycée IBN KHALDOUN - RADES Devoir de sythèse 4 e Maths Mardi 06--0 Durée : heures Prof : ABIDI Farid Exercice :(pts) Répodre par Vrai à Faux et avec justificatio à chacue des trois propositios

Plus en détail

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes Jeudi 20 javier 2011 DEVOIR COMMUN Termiales S Mathématiques Cadidats o spécialistes Le sujet comporte 4 exercices. Ue feuille aexe est à redre complétée avec les copies. L'usage du téléphoe portable 'est

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1 Exercices 7 SUITES NUMÉRIQUES Récurrece O appelle factorielle et o écrit! le produit des etiers cosécutifs de à : Par covetio : 0! =.! = 3 ) Pour ue foctio f, o ote f ) sa dérivée - ième. Soit f défiie

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

Centres étrangers Enseignement spécifique. Corrigé

Centres étrangers Enseignement spécifique. Corrigé EXERCICE 1 Partie A Cetres étragers 13. Eseigemet spécifique. Corrigé 1) La durée de vie moyee d ue vae est l espérace de la variable aléatoire T. O sait que l espérace de la loi expoetielle de paramètre

Plus en détail

BACCALAURÉAT BLANC. OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT BLANC. OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT BLANC Mardi 23 Juillet 2013 13h 17 h MATHÉMATIQUES Série S OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio e

Plus en détail

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève.

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève. Lycée Féelo Saite-Marie Aée 2011-2012 Durée : 3 heures BAC BLANC avril Toutes calculatrices autorisées. Classe de Termiale ES Mathématiques Le sujet comporte u total de 4 exercices par élève. EXERCICE

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

1 Douala Mathematical Society : Lycée Bilingue Nylon Brazzaville - Séquence 2 Terminale C

1 Douala Mathematical Society :  Lycée Bilingue Nylon Brazzaville - Séquence 2 Terminale C Douala Mathematical Society : wwwdoualamathset MINESEC EVALUATION HARMONISEE ANNEE SCOLAIRE 06-07 Délégatio régioale du littoral Epreuve : Mathématiques Séquece Délégatio départemetale du Wouri Classe

Plus en détail

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points)

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points) ère S Cotrôle du vedredi 4-4-04 (30 miutes) Préom et om : Note : / 0 I ( poits) O cosidère la figure ci-cotre où ABC est u triagle isocèle e A O ote H le projeté orthogoal du poit C sur la droite (AB)

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

11 Soit (u n ) définie sur N par u 0 = 1 et. u n+1 = f(u n ). On a construit ci-dessous la courbe représentative

11 Soit (u n ) définie sur N par u 0 = 1 et. u n+1 = f(u n ). On a construit ci-dessous la courbe représentative Activités metales u est la suite défiie pour tout etier aturel par u = + +. Calculer u 4. u est la suite défiie pour tout etier aturel o ul par u =. Calculer les trois premiers termes de la suite. u est

Plus en détail

SESSION 2012 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2012 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 202 BACCALAURÉAT TECHNOLOGIQUE Scieces et Techologies de la Gestio Commuicatio et Gestio des Ressources Humaies MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficiet : 2 Dès que le sujet lui est

Plus en détail

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2.

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2. BAC BLANC DE MATHEMATIQUES EN TM et TM2. L ordre des exercices a pas d importace. La clarté de la rédactio et des raisoemets iterviedrot pour ue part importate das l appréciatio des copies. La calculatrice

Plus en détail

EXERCICES SIMULATION LOIS DISCRETES

EXERCICES SIMULATION LOIS DISCRETES EXERCICES SIMULATION LOIS DISCRETES EXERCICE 1 : 1) Ecrire u programme qui revoie le lacer d u lacer de dé équilibré 2) Trasformer le programme précédet pour qu il simule ue série de 100 lacers d u dé

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES. Série ES ENSEIGNEMENT SPECIFIQUE. Durée de l épreuve : 3 heures. Coefficient : 5

BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES. Série ES ENSEIGNEMENT SPECIFIQUE. Durée de l épreuve : 3 heures. Coefficient : 5 BACCALAURÉAT GÉNÉRAL Sessio 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT SPECIFIQUE Durée de l épreuve : 3 heures Coeiciet : 5 Les calculatrices électroiques de poche sot autorisées, coormémet à la réglemetatio

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

Exercices sur les fonctions trigonométriques réciproques

Exercices sur les fonctions trigonométriques réciproques Eercices sur les foctios trigoométriques réciproques O cosidère la foctio f défiie par f Arcta ) Détermier l esemble de défiitio D de f ) Simplifier l epressio de f pour D Idicatio : Poser y Arccos Soit

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Notes de cours : ajustement linéaire. 1 Cadre : mesure conjointe de deux caractères

Notes de cours : ajustement linéaire. 1 Cadre : mesure conjointe de deux caractères Documet dispoible à http://www.uiv-motp3.fr/miap/es/aes/l1/optiomath. AES optio mathématique Aée 2004 2005 Notes de cours : ajustemet liéaire 1 Cadre : mesure cojoite de deux caractères O se place das

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

Fiche d exercices 1 : Suites numériques

Fiche d exercices 1 : Suites numériques Fiche d exercices 1 : Suites umériques Révisios de première S Gééralités, Suites arithmétiques et géométriques Exercice 1 1. La suite (u ) est défiie pour tout etier aturel par u = 2 3 + 2 estelle arithmétique?

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

BACCALAUREAT GENERAL. Bac Blanc n 2 Lycée Gambetta-Carnot Arras

BACCALAUREAT GENERAL. Bac Blanc n 2 Lycée Gambetta-Carnot Arras BACCALAUREAT GENERAL Bac Blac Lycée Gambetta-Carot Arras ANNEE 06-07 MATHEMATIQUES Série : S DUREE DE L EPREUVE : 4 heures - COEFFICIENT : 7 Ce sujet comporte 6 pages umérotées de à 6 L utilisatio de la

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Calcul d'intégrales 2

Calcul d'intégrales 2 de même largeur égale à 5 de même largeur égale à 5 Mr ABIDI Farid Termiales Calcul d'itégrales Activité : méthode des rectagles I Résultats prélimiaires Démotrer par récurrece que, pour tout etier aturel,

Plus en détail

FAMILLE DE VECTEURS, BASES EXERCICES

FAMILLE DE VECTEURS, BASES EXERCICES EXERCCE 1 : O cosidère das AMLLE DE VECTEURS, BASES EXERCCES 4 les vecteurs u 1,,,4 et v 1,,, 4 1) Peut-o détermier deux réels x et y pour que le vecteur w ( x,1, y,1) appartiee au sous espace egedré par

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique.

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique. Suites 6 AU CŒUR DE LA TOILE Objectif Notios utilisées Traduire, à l aide d ue suite, u processus géométrique itératif et redre compte de so évolutio. Mettre e place les premiers pricipes d étude d ue

Plus en détail

Devoir de contrôle n 2

Devoir de contrôle n 2 Lycée IBN KHALDOUN - RADES Mathématiques Prof : IDI Farid Devoir de cotrôle 4 e M 1 *** Mercredi 17--1 *** Durée : heures Exercice 1: (4 poits) Répodre par Vrai ou Faux à chacue des propositios suivates

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

Question 3 Cet hypermarché vend des téléviseurs dont la durée de vie, exprimée en année, peut être modélisée par une variable aléatoire réelle 1

Question 3 Cet hypermarché vend des téléviseurs dont la durée de vie, exprimée en année, peut être modélisée par une variable aléatoire réelle 1 Das l esemble du sujet, et pour chaque questio, toute trace de recherche même icomplète, ou d iitiative même o fructueuse, sera prise e compte das l évaluatio. Exercice ( poits) Commu à tous les cadidats

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

E C R 1 C 0 M E. - < 22<- P+l Option Economique et Technologique EXERCICE 1. ECRICOME 1996 Mathématiques 1/6.

E C R 1 C 0 M E. - < 22<- P+l Option Economique et Technologique EXERCICE 1. ECRICOME 1996 Mathématiques 1/6. ECRICOME 1996 Mathématiques 1/6 399 E C R 1 C 0 M E Optio Ecoomique et Techologique EXERCICE 1 O désige par u etier aturel o ul, et l'o se propose d'étudier les racies de l'équatio : lz+t= (E) À cet effet,

Plus en détail

Correction Bac ES Liban juin 2010

Correction Bac ES Liban juin 2010 Correctio Bac ES Liba jui 2010 EXERCICE 1 (4 poits) Commu à tous les cadidats 1) A et B sot deux évéemets idépedats et o sait que p(a) = 0,5 et p(b) = 0,2. La probabilité de l évéemet A B est égale à :

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

Terminale S DS de Mathématiques n 3 le 4/02/2016. Durée : 4 heures. Terminale S3. Les calculatrices sont autorisées.

Terminale S DS de Mathématiques n 3 le 4/02/2016. Durée : 4 heures. Terminale S3. Les calculatrices sont autorisées. Termiale S DS de Mathématiques 3 le 4/02/2016 Durée : 4 heures Termiale S3 Les calculatrices sot autorisées Le sujet est composé de quatre exercices idépedats La qualité et la précisio de la rédactio serot

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série.

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série. 1 ère S1 Cotrôle du vedredi 13 février 015 (30 mi) O ote M, Q 1, Q 3 respectivemet la médiae, le premier quartile et le troisième quartile de la série. M... Q1... Q3... Préom : Nom : Note :. / 0 I. (4

Plus en détail

Baccalauréat Antilles-Guyane juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Antilles-Guyane juin 2013 Sciences et technologies du design et des arts appliqués accalauréat tilles-guyae jui 2013 Scieces et techologies du desig et des arts appliqués EXERCICE 1 5 poits Questioaire à choix multiples : pour chaque questio ue seule des propositios est exacte ; aucue

Plus en détail

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement " Hajeb Laayoun "

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement  Hajeb Laayoun Série d'exercices *** 3 ème M Lycée Secodaire Ali Zouaoui Déombremet " Hajeb Laayou " I / -ulet : Défiitio : Soit E u esemble o vide et * ;O aelle -ulet d élémet de E toute écriture de la forme : a a a

Plus en détail

Je choisis donc de situer ce dossier en Terminale ES, anciens et nouveaux programmes.

Je choisis donc de situer ce dossier en Terminale ES, anciens et nouveaux programmes. Dossier 9 : Exemples de traitemet d ue série statistique à deux variables umériques. Etude du uage de poits associé : poit moye, corrélatio liéaire, ajustemet affie, droite de régressio. Rédigé par Cécile

Plus en détail

Exercice 1: Donner les limites suivantes.détaillez les justifications sur et faites apparaître éventuellement les règles opératoires.

Exercice 1: Donner les limites suivantes.détaillez les justifications sur et faites apparaître éventuellement les règles opératoires. L.S.El Riadh Cotiuité et ites Mr Zribi Eercice 1: Doer les ites suivates.détaillez les justificatios sur et faites apparaître évetuellemet les règles opératoires. 1 3 5-33 + 7 2-5 + 1 + + 2 = 2-4 + 3-3

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

ENSEIGNEMENT DE SPÉCIALITÉ

ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

STATISTIQUES. En première les statistiques étudiées étaient à une seule variable ; en terminale l étude porte sur deux variables statistiques

STATISTIQUES. En première les statistiques étudiées étaient à une seule variable ; en terminale l étude porte sur deux variables statistiques Tle ES Statistiques H. Kereïs STATISTIQUES E première les statistiques étudiées étaiet à ue seule variable ; e termiale l étude porte sur deu variables statistiques 1. Nuage de poits, poit moe et covariace

Plus en détail

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe Termiale S mai 6 Cocours Fesic Calculatrice iterdite ; traiter eercices sur les 6 e h ; répodre par Vrai ou Fau sas justificatio + si boe répose, si mauvaise répose, si pas de répose, bous d poit pour

Plus en détail

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures

ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Baque d épreuves FESIC Samedi 4 mai 06 ÉPREUVE DE MATHÉMATIQUES Durée : heures INSTRUCTIONS AUX CANDIDATS L'usage de la calculatrice ou de tout appareil électroique est iterdit L'épreuve comporte 6 exercices

Plus en détail

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9 BACCALAUREAT BLANC 2014 LYCEE DES ILES SOUS LE VENT SERIE S EPREUVE DE MATHEMATIQUES Durée : 4h Coefficiet : 7 ou 9 La calculatrice est autorisée, mais est pas échageable de cadidat e cadidat. La qualité

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

POLYNESIE Série S Juin 2001 Exercice

POLYNESIE Série S Juin 2001 Exercice OLYNESIE Série S Jui 00 Exercice gros rouges et 3 petits rouges Ue boîte cotiet 8 cubes : gros verts et petit vert petit jaue U efat choisit au hasard et simultaémet 3 cubes de la boîte (o admettra que

Plus en détail

Contrôle du vendredi (45 minutes) 1 ère S1. II. (3 points) (E). Résoudre dans l équation sin 3x

Contrôle du vendredi (45 minutes) 1 ère S1. II. (3 points) (E). Résoudre dans l équation sin 3x 1 ère S1 Cotrôle du vedredi --01 ( miutes) Préom et om : ote : / 0 II ( poits) 1 Résoudre das l équatio si (E) Il est pas demadé d écrire l esemble des solutios I ( poits) f e foctio de cos et si O doera

Plus en détail

D E V O I R S U R V E I L L E

D E V O I R S U R V E I L L E D E V O I R S U R V E I L L E MATIERE : MATHEMATIQUES CLASSE de : SALLE : PROFESSEUR : DATE : HEURE Début : HEURE fi : MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON Rappel : Tous les prêts, échages

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

Bac Blanc de Mathématiques T STMG

Bac Blanc de Mathématiques T STMG Nom : Préom : Classe : Bac Blac de Mathématiques T STMG Mars 2014 Les 4 exercices ci-dessous sot idépedats. L utilisatio d ue calculatrice persoelle est autorisée. Vous utiliserez cet éocé de 4 pages e

Plus en détail

1 Définition et premiers exemples

1 Définition et premiers exemples Master Eseigemet Aalyse 1 2015-2016 Uiversité Paris 13 Devoir maiso d aalyse Le but de ce petit problème est d étudier les foctios covexes. À partir de la défiitio géométrique, o démotrera les propriétés

Plus en détail

Lycée de Souassi DEVOIR DE SYNTHESE N 3 08/05/2009 SECTIONS : 4 éme Scieces Expérimetales EPREUVE : Mathématiques DUREE : 3 heures PROFESSEUR : Mr FLIGENE Wissem EXERCICE N : (3 poits) Pour chacue des

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé Baccalauréat S Nouvelle-Calédoie 7 mars 4 Corrigé A. P. M. E. P. EXERCICE 4 poits Commu à tous les cadidats Aucue justificatio était demadée das cet exercice.. Répose b. : 4e i π Le ombre i a pour écriture

Plus en détail

ESSCA(Management - Finances)

ESSCA(Management - Finances) parteaire de PREPAVOGT Yaoudé, 3 mai 04 BP : 765 Yaoudé Tél : 0 63 7 / 96 6 46 86 E-mail : prepavogt@yahoofr wwwprepavogtorg ESSCA(Maagemet - Fiaces) CONCOURS D ADMISSION RAISONNEMENT LOGIQUE ET MATHEMATIQUE

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES

Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES Corrigé Exercice Sujets Bac Maths Aales Mathématiques Bac Sujets + Corrigés - Alai Piller Amérique du Nord BACCALAURÉAT GÉNÉRAL Aales Bac Maths SESSION MATHÉMATIQUES Série S Cadidats ayat pas suivi l eseigemet

Plus en détail

Durée : 4 heures. x + x x + x, lim 1 x sin

Durée : 4 heures. x + x x + x, lim 1 x sin PCSI DEVOIR SURVEILLÉ de MATHÉMATIQUES 9/0/00 QUESTIONS de COURS : Durée : 4 heures Soit f : I IR, soit a u réel adhéret à I Que sigifie la otatio lim fx +? x a + si x Ex Détermier lim, lim x + x x + x,

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique EXERCICE : EXERCICES SR LES SITES NMÉRIQES Site MathsTICE de Adama Traoré Lycée Techique I) r désigat respectivemet le premier terme, le ième terme, la raiso et la somme des premier termes d ue suite arithmétique,

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

EXERCICES PROBABILITES

EXERCICES PROBABILITES EXERCICE : Calculer, pour EXERCICES PROBABILITES Soit,,3, 4,5,6, ( ) x, l itégrale I dx. 0 x ; détermier le réel pour que l o défiisse ue probabilité p sur * e posat, pour tout etier,6 p I Quelle est la

Plus en détail

Bac Blanc Terminale ES - Février 2017 Correction de l Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2017 Correction de l Épreuve de Mathématiques (durée 3 heures) Bac Blac Termiale ES - Février 2017 Correctio de l Épreuve de Mathématiques (durée 3 heures) Exercice 1 (5 poits) pour les cadidats ayat pas choisi la spécialité MATH 1. Depuis le 28 jui 2007, la ville

Plus en détail

Correction partielle du TD n 19

Correction partielle du TD n 19 Correctio partielle du TD Correctio L uivers des possibles de X est [,5 ]. O a X = lorsqu o obtiet pile à au mois deux lacers. O a cas favorables le cas où l o obtiet pile aux trois lacers et cas où l

Plus en détail

BACCALAURÉAT GÉNÉRAL Session 2014 MATHÉMATIQUES. Série ES ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures.

BACCALAURÉAT GÉNÉRAL Session 2014 MATHÉMATIQUES. Série ES ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures. BACCALAURÉAT GÉNÉRAL Sessio 04 MATHÉMATIQUES Série ES ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : heures Coeiciet : 7 Les calculatrices électroiques de poche sot autorisées, coormémet à la réglemetatio

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

Exercice 1 (10 points)

Exercice 1 (10 points) Devoir surveillé 2 L usage de la calculatrice est autorisé La qualité de la présetatio et de la rédactio de la copie sera prise e compte das so évaluatio Sauf metio du cotraire, toute répose doit être

Plus en détail

Séries d exercices Aritmetiques

Séries d exercices Aritmetiques Séries d exercices Aritmetiques ème Maths Maths au lycee Ali AKIR Site Web : http://maths-akirmidiblogscom/ EXERCICE N )Quel est le reste de la divisio par 7 du ombre ) Quel est le reste de la divisio

Plus en détail