Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance"

Transcription

1 Parte I : Gesto de portefeulles actos Chaptre 3 Gesto de Portefeulle Moyee-arace Gesto de Portefeulle D. Msae

2 edemet d ue acto Cette parte est cosacrée à u apport mportat de la théore facère modere qu est celu de formalser das u cadre rgoureu la relato qu este etre le redemet et le rsque d u placemet e actfs rsqués.. edemet atcpé d ue acto Sot u vestssemet qu cosste à fare l acqusto d ue acto et cec pour u horzo de placemet f T. Le ga algébrque de cette opérato provet d ue plus-value ou mos-value lors de la cesso du ttre et évetuellemet d u dvdede. Gesto de Portefeulle D. Msae

3 edemet d ue acto Le redemet sur T d u ttre s écrt : S o se place à l stat T l vestsseur e peut que costater le redemet de so vestssemet o parle alors de redemet e post. Or le cho d vestssemet se fat à l stat 0 et à cet stat l vestsseur e coaît pas le pr futur PT de l acto et as l e peut qu atcper le redemet o parle alors de redemet atcpé e ate Gesto de Portefeulle D. Msae 3

4 edemet espéré et rsque d ue acto edemet espéré d ue acto Sachat que la valeur du ttre e f de pérode est aléatore as que das certas cas les dvdedes perçus l vestsseur e peut qu estmer u redemet espéré qu est la moyee des redemets possbles podérés par leur probablté d occurrece : sque d ue acto Les fluctuatos du cours de l acto mplque ue varablté de ses redemets. Doc la déteto d ue acto mplque u rsque que le redemet atcpé e se réalse pas. s o déft le rsque d ue acto comme la dsperso de ses redemets autour du redemet espéré. La mesure de la dsperso la plus utlsée est la varace ou l écart type de la varable aléatore T. Gesto de Portefeulle D. Msae 4

5 edemet espéré et rsque d ue acto Utlsato des doées hstorques Etat doé la dffculté à détermer le redemet espéré et le rsque atcpés o utlse souvet les redemets hstorques pour détermer des estmatos de ces paramètres : L utlsato des doées hstorques soulève des questos sur le cho du pas d observato et de l horzo d observato. Gesto de Portefeulle D. Msae 5

6 edemet espéré et rsque d u portefeulle Sot P u portefeulle composé de actos. Notos la proporto de l acto veste das le portefeulle P. Le redemet du portefeulle s écrt: E passat à l espérace mathématque o obtet le redemet espéré du portefeulle : Gesto de Portefeulle D. Msae 6

7 edemet espéré et rsque d u portefeulle Le rsque global d u portefeulle peut être mesuré par l écart-type ou la varace de ses redemets. Toutefos l est pas égal à la somme des rsques attachés à chacue des actos qu le composet. E effet la varace du portefeulle s écrt : O peut écrre la covarace sous la forme : Où est le coeffcet de corrélato Il vérfe toujours la double égalté : Gesto de Portefeulle D. Msae 7

8 éducto du rsque Détermato du pods de l actf permettat de mmser le rsque du portefeulle à actfs p p Doc : Gesto de Portefeulle D. Msae 8 cov p cov p cov cov p La varace est mmale lorsque sa dérvée est ulle. O cherche alors tel que P d d P 0

9 éducto du rsque s : 0 cov 4 cov. ' p 0 cov cov. ' p Gesto de Portefeulle D. Msae 9 0 cov cov. ' p D où :.cov cov.

10 Dversfcato et réducto du rsque Sot p le redemet du portefeulle composé de actfs caractérsés par leur redemet respectf. E d autres termes : p. Gesto de Portefeulle D. Msae 0 E vue de détermer E p et p supposos que : E E E E σ E E E E E E p...

11 Supposos das u premer temps que les redemets de chacu des actfs fluctuet dépedammet les us des autres. Das ce cas la varace d ue somme est égale uquemet à la somme des varaces. s : p... σ σ σ S ted vers l f alors σ ted vers 0. Gesto de Portefeulle D. Msae Supposos mateat que les redemets de chacu des actfs soet corrélés les us au autres. Das ce cas : S j j p cov. < σ Où : S < j j cov

12 Sot C la covarace moyee du portefeulle P. Par défto : C < j dstctes. cov N j N S où N correspod au ombre de covaraces La lste de toutes les covaraces possbles correspod à la matrce des varaces et covaraces c-après : cov cov cov cov cov cov cov cov cov Gesto de Portefeulle D. Msae

13 Das la mesure où cov j cov j les termes stués au dessus de la dagoale de la matrce sot detques à leurs symétrques par rapport à la dagoale. Le ombre de termes stués au dessus de la dagoale est égal : - à la derère lge : 0 - à l avat derère lge : - - à la premère lge : - l y a termes et o e retet pas cov. u total le ombre N de termes est égal à : 0 - Das la mesure où C N S o a : S N. C C Gesto de Portefeulle D. Msae 3

14 Falemet : σ σ σ p S. C. C σ Lorsque ted vers l f ted vers 0 et ted vers le rapport des termes de plus haut degré. Ce rapport est égal à. E multplat ce résultat par C o e dédut que p ted vers la covarace moyee C. Le rsque égal à l écart type de p e peut doc être élmé même par dversfcato du portefeulle das la mesure où l ted doc vers la race carrée de la covarace moyee. Graphquemet cela sgfe que la courbe représetatve du rsque e focto du ombre de ttres etrat das la composto du portefeulle admet ue asymptote horzotale d équato yc. Gesto de Portefeulle D. Msae 4

15 Le graphque c-dessous préseté à ttre llustratf suppose que la covarace moyee est égale à. 5 0 s sque ombre de ttres etrat das la composto du portefeulle Gesto de Portefeulle D. Msae 5

16 La frotère de Markowtz Comme o vot le vor l est pas possble de cocler etre le redemet et le rsque. E effet lorsque le rsque dmue le redemet espéré dmue auss et lorsque le redemet espéré augmete le rsque augmete auss. Le problème doc pour tout vestsseur cosste à chosr u portefeulle qu réalse pour lu le melleur comproms etre rsque et redemet. Cette problématque est à la base de la gesto de portefeulle moyee-varace. Le rasoemet et so llustrato sot comme sut : Gesto de Portefeulle D. Msae 6

17 Etre portefeulles caractérsés par leur redemet supposé aléatore o retet : à rsque detque celu qu a l espérace de redemet la plus élevée ; à espérace de redemet detque celu qu présete le rsque le plus fable. Ce prcpe codut à élmer u certa ombre de portefeulles mos effcets que d autres. La courbe qu rele l esemble des portefeulles effcets s appelle la frotère effcete de Markowtz des actfs rsqués. E dessous de cette courbe tous les portefeulles rejetés sot dts domés. Eemple d u portefeulle composé de actos Hypothèses : cto E 0% 0% 30% 50% σ 55% 7% Gesto de Portefeulle D. Msae 7

18 Il est possble de détermer E P e focto des pods respectfs et des actfs et das le portefeulle : σ p E P r - 0 0% 00% 0% 707% 707% 707% 0% 90% 9% 586% 6387% 69% 0% 80% 8% 456% 576% 675% 30% 70% 7% 3307% 55% 6593% 40% 60% 6% 05% 4775% 6434% 50% 50% 5% 797% 447% 674% 60% 40% 4% 458% 4336% 65% 70% 30% 3% 73% 438% 5955% 80% 0% % 968% 4604% 5796% 90% 0% % 4% 4980% 5637% 00% 0% 0% 5477% 5477% 5477% Gesto de Portefeulle D. Msae 8

19 Graphquemet : sque e focto de la retablté 8000% 7000% 6000% 5000% sque 4000% 3000% 000% 000% 000% 0% 9% 8% 7% 6% 5% 4% 3% % % 0% r %458% r r Gesto de Portefeulle D. Msae 9

20 Costructo de la frotère de Markowtz Supposos que sur le marché l este actos. Problème : Chercher les proportos qu mmset l écart-type ou la varace du portefeulle à redemet espéré doé. Le problème est formulé sous la forme : La soluto de ce problème permet de tracer pot par pot la frotère effcete de Markowtz. Gesto de Portefeulle D. Msae 0

21 Gesto de Portefeulle D. Msae

22 Itroducto de l actf sas rsque O suppose qu l este sur le marché u actf o rsqué c est-àdre u actf dot le redemet vérfe : r 0 peut être le tau d térêt correspodat à l horzo de placemet de l vestsseur. L troducto de l actf o rsqué permet de smplfer et amélorer la frotère effcete. O obtet as la drote de marché des captau d équato : Gesto de Portefeulle D. Msae

23 La drote de marché des captau Gesto de Portefeulle D. Msae 3

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression L Meto Iformatque UE Probabltés Chaptre 4 : Smulato - Régresso Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer I- Smulato de varables aléatores. Itroducto Das certaes expéreces «réelles», où le

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction : Statstque 3 ème Maths Ma 00 A LAATAOUI I Itroducto : La statstque est ue scece ayat pour objet l étude des phéomèes socau surtout ceu doat leu à des varatos ou ceu e pouvat être suffsammet maîtrsés que

Plus en détail

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

Séries chronologiques

Séries chronologiques Séres chroologques Rappel : Détermato de l équato d ue drote passat par pots. ( so équato peut se mettre sous la forme y ax + b ) ex : Détermato de l équato de la drote passat par les pots : A ( - ; -5

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

5. Variables aléatoires simultanées

5. Variables aléatoires simultanées 5. Varables aléatores smultaées 5.1 Coule de varables aléatores Défto 1 Pour tout dce das 1, sot X ue varable aléatore. O dt que X X 1 X est ue varable aléatore de dmeso. Nous ous téresseros rcalemet aux

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 page1/6 CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 Dosser "Défcece" 1) = 30 pour les groupes. Les classes sot d'ampltudes dfféretes doc...utlser la desté (rappel : desté = effectf/ampltude). Durée

Plus en détail

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements :

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements : wwwelmerouajmdocom Statstques II Sc Éco & Gesto S r M El Meroua Chaptre : roaltés I Itroducto : -Epreuve ou expérece : O appelle épreuve ou expérece ue certae acto que l o peut répéter pluseurs fos ar

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

LOI NORMALE ET LOIS DERIVEES

LOI NORMALE ET LOIS DERIVEES Prcpes et Méthodes de la Bostatstque Chaptre 5 LOI NORMALE ET LOIS DERIVEES A-LA LOI NORMALE Présetato La dstrbuto ormale, dte ecore de Laplace-Gauss, est pour des rasos qu apparaîtrot plus lo, la plus

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres Ift 4 Chaptre 7 Itroducto au valeurs propres et au vecteurs propres Ift4 Chaptre 7 Défto : S A est ue matrce de, alors u vecteur o ul est dt vecteur propre de A s A est appelé valeur propre de A, et vecteur

Plus en détail

PRINCIPES DES STATISTIQUES INFERENTIELLES

PRINCIPES DES STATISTIQUES INFERENTIELLES Chaptre 3 PRINCIPES DES STATISTIQUES INFERENTIELLES Bases de la statstque féretelle PLPSTA0 0 Chaptre 3 1. Problématque. Objectfs des statstques féretelles.1 Estmato poctuelle. Estmato par tervalles.3

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins.

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins. Résumé statstque.6 Le coeffcet de corrélato Corrélato etre deux composats: pod/talle d'u dvdu. r = å å =1 x - xy - y å x - x y - y =1 =1 La valeur se stuera etre -1 corrélato égatve/versée et 1corrélato

Plus en détail

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie Los de probabltés lées aux trages de boules das ue ure Approche sodage : échatlloage et estmato das ue populato fe Das le ouveau programme de secode, retrée 2009, sot scrtes les otos d'tervalle de fluctuato

Plus en détail

1. Test d indépendance du KHI-2

1. Test d indépendance du KHI-2 1. Test d dépedace du HI- Ecrre ue focto qu réalse le test d dépedace du kh-. Etrée : x et y, deux vecteurs, de type factor Sorte : statstque de test, degrés de lberté, p-value Idcatos : Vous devez vérfer

Plus en détail

Programmation linéaire en nombres entiers

Programmation linéaire en nombres entiers Programmato léare e ombres eters Itroducto Problème de programmato léare e ombres eters (P) M Suet à = = c a = b =,, m 0, eter =,, Eemple M z = Suet à, + 0 5 0 0, eter F(P) = domae réalsable de P Itroducto

Plus en détail

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez Corrgé de CCIP 2000 par Perre Veullez Das tout le problème, désge u eter aturel o ul. O cosdère ue ure U coteat boules umérotées de à. O tre ue boule au hasard das U. O ote k le uméro de cette boule. S

Plus en détail

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b Correcto Exercces du MODULE : MExo4b Dstrbuto statstque à u caractère Exercce Mexo4 b Objectf : Cet exercce trate du calcul

Plus en détail

PRO 1 EXPRO010 EXPRO019

PRO 1 EXPRO010 EXPRO019 Exercces résolus de mathématques. PRO 1 EXPRO010 EXPRO019 http://www.matheux.be.tf Jacques ollot 1 avrl 03 www.matheux.be.tf - PRO 1-1 - EXPRO010W Ue ure cotet boules blaches ( 4) et 10 boules ores. O

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble E des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

Chapitre III : Les caractéristiques de dispersion

Chapitre III : Les caractéristiques de dispersion Chaptre III : Les caractérstques de dsperso Les caractérstques de tedace cetrale e sot pas toujours suffsates pour caractérser ue sére statstque, car séres peuvet avor Mo= Me = x alors qu elles sot dstrbuées

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

IR homogène de degré α ( α IR ). (0.5 pt.)

IR homogène de degré α ( α IR ). (0.5 pt.) Javer 05 ( heures et 0 mutes) a) Sot IN 0 \ {} Défr : sous-esemble boré de IR sous-esemble covee de IR b) Soet les sous-esembles suvats de IR : A [-4,0] [0,] B {(,y) IR : + y 9} Représeter graphquemet,

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier).

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier). Bla UE 1C G. EXERCICES BILAN Exercce 1 : Aaloge etre équlbres acdo-basques et équlbres de complexato (Applcato du Prcpe de Le Châteler). Objectfs de l'exercce - Coassaces/Compéteces testées das cet exercce

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

RADIOPROTECTION CIRKUS. Sommaire

RADIOPROTECTION CIRKUS. Sommaire RADIOPROTECTION CIRKUS Documet techque Radoprotecto Crkus 89 D boulevard du Fer 74000 Aecy www.rpcrkus.org - cotact@rpcrkus.org Assocato lo 1901 créée le 9 mars 010 W91300355 - Eregstrée à la préfecture

Plus en détail

Introduction. Mais le modèle de Markowitz est très générale et difficile à appliqué en pratique pour deux sorte de raisons :

Introduction. Mais le modèle de Markowitz est très générale et difficile à appliqué en pratique pour deux sorte de raisons : Sommare Itroducto Chatre : «le modèle de H.Markowtz» Prce Les hyothèses du modèle 3 Les crtères du chox d u ortefeulle otmal 4 La résetato mathématque du modèle 5 La dversfcato et les lmtes Chatre : «le

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles L Meto Iformatque UE Probabltés Chaptre 3 : Varables aléatores réelles Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer, Serge Solovev Sot (, A, P) Ω et X : Ω R ue varable aléatore. I. Varable

Plus en détail

III GRANDEURS MOLAIRES

III GRANDEURS MOLAIRES Chaptre III GRNDEURS MOLIRES Gradeurs molares - Gradeur molare d u corps pur ou d u age de corps purs Sot u système thermodyamque costtué de moles d u même composé, o assoce à ue gradeur extesve de ce

Plus en détail

Texte Analyse en composantes principales

Texte Analyse en composantes principales Uverstés Rees I Épreuve de modélsato - Agrégato Extere de Mathématques 2007 Page Texte Aalyse e composates prcpales Itroducto E archéologe, l aalyse de la composto de matéraux est deveue u outl essetel

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale Mstère de l téreur, de l outre-mer ublcato : «le gude statstque de et des collectvtés terrtorales la fscalté drecte locale 2007» Aexe 2 Note méthodologque sur le calcul des évolutos de bases, taux et produts

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables.

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables. COUPLE DE VARIABLES ALEATOIRES O cosdère deux varables aléatores et. O amerat coatre s l y a fluece etre ces deux varables. I Coule de varables dscrètes : 1) Lo ote : Soet et deux varables dscrètes, à

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

NOMBRES COMPLEXES EXERCICES CORRIGES

NOMBRES COMPLEXES EXERCICES CORRIGES Cours et exercces de mathématques NOMRES COMPLEXES EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; Exercce. Calculer, et = ; = ; = ; 5 006 009 E dédure

Plus en détail

NOTATIONS ET FORMULAIRE

NOTATIONS ET FORMULAIRE Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 1/5 PROTOCOLE SUR U ECHA TILLO NOTATIONS ET FORMULAIRE Esemble des sujets de l échatllo S { s 1 ; s ;.; s } (1) Varable

Plus en détail

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i )

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i ) Leço 08 : Statstques Termale E premer leu, l te faut relre les cours de premère sur les statstques à ue varable, l a tout u lagage à se remémorer : étude d u échatllo d ue populato, mode, moee et médae

Plus en détail

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES " Hajeb Laayoun "

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES  Hajeb Laayoun Sére d'exercces *** 4 ème Maths Lycée Secodare Al ouaou LES N COMPLEXES " Hajeb Laayou " I / L esemble des ombres complexes : Défto : O appelle esemble des ombres complexes, et o ote C, l esemble des ombres

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

MATHEMATIQUES. Semestre 2. Statistiques à deux variables COURS. Cours en ligne : sur section DUT Maths S2.

MATHEMATIQUES. Semestre 2. Statistiques à deux variables COURS. Cours en ligne : sur  section DUT Maths S2. Départemet TECHNIQUES DE COMMERCIALISATION MATHEMATIQUES Semestre 2 Statstques à deux varables COURS Cours e lge : sur http://jff-dut-tc.weebly.com secto DUT Maths S2. IUT de Sat-Etee Départemet TC J.F.Ferrars

Plus en détail

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1.

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1. NOMBRES COMPLEXES - EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; = ; = ; = ; 5 = Exercce. Calculer, et E dédure la valeur de 006 et de 009, pus les

Plus en détail

EXERCICES CORRIGES. Partie 1 : Suites numériques = 4

EXERCICES CORRIGES. Partie 1 : Suites numériques = 4 EXERIES ORRIGES Parte : Sutes umérques Exercce : Ue sute arthmétque est telle que la somme de ses premers termes est égale à 8 et la somme de ses 6 premers termes est égale à 7 68. alculer le 5 ème terme

Plus en détail

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1 LGL Cours de Mathématques 26 Exemples de sutes das le domae des faces 1) Itérêts composés O place 1. à térêts composés au taux de 4,5 % par a. Détermer le captal dspoble à la f de chaque aée et ce pedat

Plus en détail

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2 - Varables aléatores et dstrbutos - Chaptre : Varables aléatores et dstrbutos. Varable aléatore.... Focto de répartto....3 Focto de masse et de desté....4 Dstrbuto cojote de varables aléatores...5.4. Dstrbuto

Plus en détail

CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ

CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ CHAPITRE Les carrés das (Z/Z Das ce chatre o s téresse à l esemble des carrés das le cors Z/Z, mas auss das certas aeaux Z/Z avec o remer O todut le symbole de Legedre qu caractérse les carrés O trodut

Plus en détail

Variables j.. p. Xij

Variables j.. p. Xij L alyse e Composates Prcpales (CP) O possède u tableau rectaulare de mesure dot les coloes sot des varables quattatves (mesuratos, taux, statos clmatques) et dot les les représetet des dvdus statstques

Plus en détail

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation ère S Lmtes de foctos () Approche tutve ; tes des foctos de référece II. La focto carrée ) Tableau de varato Das ce chaptre, o lasse provsoremet de côté les dérvées. I. Itroducto ) Rappel Déà vu : oto

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Chapitre II : Application du second principe à l étude de la réaction chimique ; Potentiel chimique

Chapitre II : Application du second principe à l étude de la réaction chimique ; Potentiel chimique Chaptre II : Applcato du secod prcpe à l étude de la réacto chmque ; Potetel chmque Pla : ********************** I- Eocé du secod prcpe de la thermodyamque... 2 1- Eocé du secod Prcpe de la hermodyamque...

Plus en détail

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n 1 Notes de cours de l'isima, premère aée http://wwwsmafr/ leborge Méthode des modres carrés : melleure approxmato léare Glles Leborge 31 ma 2005 Table des matères 1 Rappel de dérvato 1 2 Cas 1-D 2 21 Les

Plus en détail

( (p, q) IN 2 ) A p A q = A p+q ( (p, q) IN 2 ) (A p ) q = A pq ( k IN) (A ) k = (A k ) ( k IN) Dét (A k ) = (Dét A) k

( (p, q) IN 2 ) A p A q = A p+q ( (p, q) IN 2 ) (A p ) q = A pq ( k IN) (A ) k = (A k ) ( k IN) Dét (A k ) = (Dét A) k Algèbre Chaptre 6 Les matrces carrées Hypothèses : est u eter strctemet postf I est la -matrce uté I La trace d ue matrce carrée La trace d ue -matrce est la somme de ses termes dagoaux O ote la trace

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

Les nombres complexes

Les nombres complexes haptre 6 termale S Les ombres complexes 1 hstorque et créato : N Z ID Q R es esembles ot été costruts au fl de l hstore grâce à u même problème : certaes équatos ot des solutos das u esemble doé mas d

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 005 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

I. Introduction. Les constantes totales de stabilité des complexes respectifs sont: Marina Iliescu, C. Podina et Cristina Mandravel

I. Introduction. Les constantes totales de stabilité des complexes respectifs sont: Marina Iliescu, C. Podina et Cristina Mandravel L ÉTUDE DE L ÉTAT IONIQUE RÉEL DE CERTAINS IONS ÉTALLIQUES DANS DES SOLUTIONS AQUEUSES TRÈS DILUÉES. I. DETERINATION DES CONSTANTES TOTALES DE STABILITE DANS LE CAS OU LES IONS ETALLIQUES FORENT UN SEUL

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Chapitre 1. Résumé d une distribution statistique

Chapitre 1. Résumé d une distribution statistique Chaptre. Résumé d ue dstrbuto statstque.. Cocepts de base de la statstque descrptve Populato = O appelle populato assocée à ue épreuve l esemble des résultats possbles d ue «épreuve». E statstques, le

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

M ( ) n,p. Chapitre 15 Matrices et systèmes linéaires. I Généralités. Dans tout le chapitre K désigne le corps R ou C.

M ( ) n,p. Chapitre 15 Matrices et systèmes linéaires. I Généralités. Dans tout le chapitre K désigne le corps R ou C. PSI 1 hatre 15 Matrces et systèmes léares Das tout le chatre K désge le cors R ou I Gééraltés 1 Défto Défto : Ue matrce est u tableau d élémets de K coteat lges et coloes Notatos : U matrce A est otée

Plus en détail

Niveau 7C 05 février Solution. L x y z ( utilisation du théorème de. (x y z) x y z 2xy 2xz 2yz

Niveau 7C 05 février Solution. L x y z ( utilisation du théorème de. (x y z) x y z 2xy 2xz 2yz Olympades Natoales de Mathématques 07 Sélectos régoales er tour Nveau 7C 05 févrer 07 Durée 3 h Exercce (4 pots) ) Vérfer que, pour tous réels x, y, z o a : (x y z) x y z xy xz yz. Soluto ) La somme des

Plus en détail

MPSI du lycée Rabelais semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n

MPSI du lycée Rabelais  semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n MPSI du lycée Rabelas http://mps.satbreuc.free.fr semae du septembre 5 CALCULS ALGÉBRIQUES Sommes et produts fs Exercce : Parm les formules suvates, lesquelles sot vraes?.. 3. α+a α+ a +b αa α a + a a

Plus en détail

Chapitre 4 Fonction de transfert

Chapitre 4 Fonction de transfert Chatre 4 Focto de trasfert Chatre 4 Focto de trasfert 4.. Exresso de la focto de trasfert Pour u système léare cotu et varat, ous avos vu que la relato etre la sorte s( et l etrée e( est doée ar ue équato

Plus en détail

Mesures et incertitudes

Mesures et incertitudes Mesures et certtudes Mesurer ue gradeur phsque est ue actvté fodametale das les laboratores de recherche scetfque et das l'dustre Mas la mesure d'ue gradeur 'est jamas parfatemet précse et l faut doc sstématquemet

Plus en détail

Le cours Interprétation physique de la dérivée

Le cours Interprétation physique de la dérivée Il est égalemet possble de procéder à la «dérvato umérque» d ue sute de valeurs {(t ; f )}. La sute dérvée est elle-même costtuée de couples {(t ; f )} ; la valeur f de correspodat au tau de varato mesuré

Plus en détail

Espaces probabilisés.

Espaces probabilisés. Espaces probablsés Chaptre 6 : cours complet Itroducto Défto : Défto 2 : Défto 3 : uvers évèemet aléatore évèemets mpossbles, certas, compatbles 2 Espaces probablsés fs Défto 2 : Défto 22 : Théorème 2

Plus en détail

CORRECTION DU BAC 2007

CORRECTION DU BAC 2007 ORRTION U B 7 Trmal S mérqu du Nord rcc Sot (P l pla dot u équato st : + y z + = lors, d coordoés ( ; ;, st u vctur ormal d (P omm H st l projté orthogoal d sur (P, alors H t sot coléars Il st H = k H

Plus en détail

MAT4081 Chapitre 3 Régression 3 Transformation de variables

MAT4081 Chapitre 3 Régression 3 Transformation de variables MAT408 Chaptre 3 Régresso 3 Trasformato de varables Les graphques ou les techques dagostques peuvet révéler des volatos des hypothèses de la régresso léare : hétéroscédastcté, par exemple, ou absece de

Plus en détail

EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES. et z 2 = e. Z i ( Z = 0 ou arg(z) = π 2 [π] ) Z imaginaire pur Z + Z = 0

EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES. et z 2 = e. Z i ( Z = 0 ou arg(z) = π 2 [π] ) Z imaginaire pur Z + Z = 0 EXERCICES RÉDIGÉS SUR LES NOMRES COMPLEXES Exercce 1 Valeur exacte du us et du sus de /1 O dère les deux ombres complexes suvats : 1. Écrre z 1 et z sous forme algébrque. z 1 = e 3 et z = e. Détermer les

Plus en détail

TS Les nombres complexes (1)

TS Les nombres complexes (1) TS Les omres complexes () Chptre d lgère I Itroducto ) ref hstorque Nomres mpossles omres mgres (Descrtes) omres complexes ) Esemles de omres x 7 0 x 7 0 x 0 L équto x ps de soluto ds ( x ou x ) x chque

Plus en détail

Alain MORINEAU

Alain MORINEAU www.deeov.com Ala MORINEAU Cet artcle est ue reprse et u extrat de l artcle «Note sur la Caractérsato Statstque d'ue Classe et les Valeurs-tests», publé das la revue Bullet Techque du Cetre de Statstque

Plus en détail

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!!

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!! Cours : Statstques I. Itroducto Classe de ère S O a vu que our caractérser ue sére statstque, o utlse des : - aramètres de tedace cetrale : - la moyee ; - la médae. Ils ermettet d dquer la «osto» de la

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIERITÉ E FAX École upéreure de Commerce Aée Uverstare 3 / 4 Audtore : Trosème Aée Études upéreures Commercales & ceces Comptables ÉCIION FINANCIÈRE Note de cours N 8 euxème Parte : La décso de facemet

Plus en détail

Chapitre I : Introduction à la résistance des matériaux & Rappel de statique. (August Wöhler)

Chapitre I : Introduction à la résistance des matériaux & Rappel de statique. (August Wöhler) Chaptre I : Itroducto à la résstace des matéraux & appel de statque (August Wöhler) Premer cours de ésstace des atéraux a été doé par August Wöhler à l'uversté de Göttge (Allemage) e 842. aculty of echacal

Plus en détail

Chapitre 4 : RÉGRESSION

Chapitre 4 : RÉGRESSION Chaptre 4 : RÉGRESSION 4. Régresso léare smple 4.. Équato de la régresso 4.. Estmato par les modres carrés 4..3 Coeffcet de détermato 4..4 Iférece sur les coeffcets 4..5 Prévso et aalyse des résdus Régresso

Plus en détail

Loi de Fisher. Test de Fisher. Exemple. Solution. ANOVA à un facteur. df = (29, 28) df = (19, 6) df = (6, 6)

Loi de Fisher. Test de Fisher. Exemple. Solution. ANOVA à un facteur. df = (29, 28) df = (19, 6) df = (6, 6) ! amlle de dtrbuto. Lo de her! Chaque membre de la famlle et détermé par deux paramètre: le ombre de degré de lberté du umérateur et le ombre de degré de lberté du déomateur.! et cotue et potve.! et potvemet

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail

Statistique à 2 variables

Statistique à 2 variables Statstque à varables. Exemples Nous sommes souvet cofrotés à des doées etre lesquelles ous essayos d'établr des les telles que : La talle et le pods d'u groupe d'dvdus. le budget vacaces et les reveus

Plus en détail

CALCUL BARYCENTRIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako

CALCUL BARYCENTRIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako CLCUL RYCENTRIQUE Ste athstice de dama Traoré Lycée Techque amao I Focto vectorelle de Lebz: Das ce chaptre désgos par ue drote, u pla, ou u espace, et l esemble des vecteurs ppelos pot podéré le couple

Plus en détail