Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Dimension: px
Commencer à balayer dès la page:

Download "Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :"

Transcription

1 OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période de placemet s ajoute au capital placé pour deveir productif d itérêts la période suivate. La valeur acquise par le capital iitial au bout de périodes de placemet est égale à : = + t avec t : taux d itérêts sur ue période Le motat des itérêts acquis est la différece etre la valeur acquise et le capital placé : i = Les périodes de capitalisatio des itérêts peuvet être le mois, le trimestre, le semestre ou l aée. Le motat des valeurs acquises, 2, 3, formet ue suite géométrique de raiso : ( + t). Les itérêts composés sot surtout utilisés pour des placemets à log terme. U capital de est placé à itérêts composés au taux auel de 4 % pedat as. La première aée les itérêts se calculet sur le capital = : i =,4 = 2 La valeur acquise de la première aée est : = 2 L aée suivate, les itérêts se calculet sur le capital = 2 : i 2 = 2,4 = 28 La valeur acquise de la deuxième aée est : = 48 Aisi de suite, la valeur acquise de la ciquième aée est : = + t =, 4 soit = 683, 26. II) alculer le motat d u capital placé oaître la valeur acquise, le ombre de périodes, le taux périodique. Trasformer la formule : t = + t = ( + ) équivaut à ours sur les itérêts composés /7

2 Quel capital faut-il placer pedat as au taux de 3, % l a pour obteir ue valeur acquise de? III) alculer u taux de placemet = ; t = 3, % ; = as. = + t =, 3 ; soit = 429,87. oaître le motat du capital placé, la valeur acquise et le taux périodique. Trasformer la formule de capitalisatio : = ( + ) équivaut à ( t) t soit : t + = + = d où t =. U capital de 2 placé e capitalisatio trimestrielle pedat trimestres a ue valeur acquise de 2 46,68 au terme du placemet. alculer le taux trimestriel de placemet. = 2 ; = 2 46, 68 ; = trimestres. où IV) alculer ue durée de placemet ( + t) = 246, , 68 t = 2 soit t =,4 Le taux trimestriel est de,4 %. oaître le motat du capital placé, la valeur acquise et le taux périodique. Trasformer la formule de capitalisatio : = ( + ) équivaut à ( t) t + = ours sur les itérêts composés 2/7

3 Utiliser le logarithme épérie (ou décimal) pour détermier la valeur de placée e exposat : ( + t) = l soit ( t) l l + = l d où l = l +. ( t) U capital de 4 placé à itérêts composés à capitalisatio mesuelle au taux de, % le mois. Au terme du placemet sa valeur acquise est alculer la durée du placemet. = 4 ; = 44 8 ; t =, % par mois. 448 ( + t) = soit, = l = 4 d où =. l, La durée de placemet est de mois. Le ombre de périodes doit être u etier. Si ce est pas le cas, la pratique commerciale admet la gééralisatio de la formule des itérêts composés à ue fractio de période. Aisi 6, mois = 6 mois et jours. V) Taux équivalets Défiitio Deux taux, défiis sur des périodes différetes, sot équivaletes lorsque appliqués à u même capital pedat la même durée, ils produiset le même itérêt et doc la même valeur. Les taux proportioels aux durées des périodes de placemet e sot pas équivalets pour le calcul des itérêts composés. Aisi les taux de 2 % l a et % le mois sot proportioels. Ils e sot pas équivalets e itérêts composés. U capital de placé à au taux auel de 2 % a ue valeur acquise au bout d u a de placemet égale à : = + t =,2 soit = 2. ours sur les itérêts composés 3/7

4 Le même capital placé e capitalisatio mesuelle au taux de,9 % le mois acquiert au bout d u a, soit 2 mois, la valeur : = + t =, 9 Soit 2 2. Les deux valeurs acquises sot égales. Le taux auel de 2 % est équivalet au taux mesuel de,9 %. VI) Valeur actuelle d u capital ou d u effet Défiitio La valeur omiale d u effet de commerce est u capital devat être payé à la date d échéace de l effet. Actualiser ce capital reviet à détermier sa valeur, appelée valeur actuelle, à ue date atérieure à la date d échéace. La valeur actuelle du capital, périodes avat la date d échéace est égale à : = + t avec t : taux périodique d actualisatio ou d escompte. Valeur actuelle et valeur acquise représetet l évolutio de la valeur d u capital das le temps. APITALISATION périodes apital Valeur temps acquise ATUALISATION périodes Valeur apital temps actuelle U effet de valeur sera à échéace das 8 mois. U commerçat l escompte au taux mesuel de,2 %. La valeur actuelle de l effet est : 8 t = + =, 2 soit = 4 44,92. U capital, égal à la valeur actuelle, aurait au bout de 8 mois de placemet ue valeur acquise de. ours sur les itérêts composés 4/7

5 VII) Equivalece de capitaux ou d effets Défiitio Deux capitaux ou deux effets de commerce sot équivalets, à ue date doée, s ils ot la même valeur actuelle, à u taux doé, à cette date. = 2 Deux groupes de capitaux ou d effets sot équivalets si la somme des valeurs actuelles de chaque groupe est idetique. L équivalece de capitaux, à itérêts composés, e déped pas de la date d équivalece fixée. Aisi, u a après, les deux capitaux ci-cotre ot ecore même valeur actuelle, ils sot toujours équivalets. U capital de est à échéace das 2 as au taux de % l a. 2 Sa valeur actuelle est : ( t) = + =, soit = 432, 23. U autre capital de, au même taux, est à échéace das 3 as. 3 Sa valeur actuelle est : 2 ( t) = + =, soit 2 = 432, 23. Les deux capitaux sot équivalets. VIII) alculer la valeur omiale d u effet équivalet alculer ou exprimer e foctio des doées la valeur actuelle de chaque effet ou de chaque capital. Ecrire l équatio d équivalece : = 2. Résoudre l équatio d équivalece. U effet de 4 échéat das 3 mois est remplacé par u effet dot l échéace est fixée das 8 mois. alculer la valeur omiale de l effet de remplacemet si le taux mesuel d escompte est de,8 %. t = + = 4, 8 La valeur actuelle du premier effet est : 3 Soit = 3669,3. périodes 2 2 périodes 2 8 La valeur actuelle du deuxième effet s écrit : ours sur les itérêts composés / = + t =, 8. temps temps

6 D où l équatio d équivalece : = 2 soit 8 2, 8 = 3669,3 3669,3 8 2 = = ,3,8.,8 La valeur omiale de l effet de remplacemet est 2 = 469,3. IX) Détermier ue échéace commue ou ue échéace moyee. Défiitio L échéace commue est la date d équivalece d u effet uique à u groupe d effets. A cette date, la valeur actuelle de l effet uique est égale à la somme des valeurs actuelles des effets remplacés. Lorsque la valeur omiale de l effet uique de remplacemet est égale à la somme des valeurs omiales des effets remplacés, la date d échéace se situe alors etre les dates d échéaces extrêmes des effets à remplacer, c est ue échéace moyee. alculer ou exprimer e foctio des doées la valeur actuelle de chaque effet. Ecrire l équatio d équivalece : La somme des valeurs actuelles des effets remplacés est égale à la valeur actuelle de l effet de remplacemet : + 2 =. Résoudre l équatio d équivalece dot est l icoue. La pratique commerciale admet la gééralisatio de la formule aux fractios de période. U effet de échéat das 2 mois et u autre effet de 26 échéat das 9 mois sot remplacés par u effet uique de 4. Le taux d actualisatio trimestrielle est de 3, %. alculer l échéace de l effet de remplacemet. t = + =, 3 Les valeurs actuelles des effets remplacés sot : 7 soit : = 789,86, 3 2 t = + = 26, 3, soit : 2 = 239, 48., La valeur actuelle de l effet de remplacemet s écrit : ours sur les itérêts composés 6/7 t = + = 4, 3. L équatio d équivalece s écrit : 789, , 48 = 4,3. 369,34 Soit :, 3 = =, D où : l, 3 = l,872, l,872 = = 4,3. l, 3 L échéace commue est de 4 trimestres et trois jours (,3 9).

7 X) Retabilité d u ivestissemet Défiitio Etudier la retabilité d u ivestissemet reviet à estimer les sommes qu il rapportera et à les comparer à ce qu il coûte. La valeur actuelle ette (VAN) de l ivestissemet est la différece etre les recettes ettes actualisées egedrées par l ivestissemet et le motat de cet ivestissemet. La valeur actuelle ette se défiit le jour de l ivestissemet. Les recettes ettes et la valeur résiduelle de l ivestissemet sot actualisées à u taux doé. L ivestissemet est retable si la valeur actuelle ette est positive. Le taux de retabilité itere (TRI) est le taux d actualisatio pour lequel la valeur actuelle ette est ulle. Aisi, le calcul ci après effectué avec u taux de 7,27 % doe ue valeur actuelle ette pratiquemet ulle. Le TRI de cet ivestissemet est 7,27 %. Pour u taux supérieur, l ivestissemet est pas retable. La détermiatio du TRI se fait par ecadremets successifs à partir de différets taux. Aisi, das l exemple ci-cotre : Pour t =7 % VAN = 234,. Pour t =8 % VAN = -66,88. D où 7% < TRI < 8% Ue société effectue u ivestissemet de 4 das ue machie outil achetée au comptat. Les recettes ettes attedues de cet ivestissemet sot : - la ère aée, - 2 la 2 ème aée, - la 3 ème aée. Au terme de la troisième aée la machie outil aura ue valeur résiduelle de. L ivestissemet sera-t-il retable pour u taux d actualisatio de 7 % l a? Le jour de l achat de la machie, les valeurs actuelles des recettes sot : ère aée :,7 = 934,79. 2 ème 2 aée : 2, 7 = 84, ème 3 aée :, 7 = 2244, La valeur résiduelle actualisée de la machie est égale à,7 = 862,98 La valeur actuelle ette au taux de 7% l a est doc : VAN = 934, , , ,98 4 soit VAN = 234,. La valeur actuelle ette est positive, l ivestissemet est retable au taux de 7%. ours sur les itérêts composés 7/7

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

2 Mathématiques financières

2 Mathématiques financières 2 Mathématiques fiacières 2.1 Cours et TD Les créaciers prêtet des capitaux cotre ue rémuératio : les itérêts, ce que l o rembourse e plus du capital empruté. Nous percevos égalemet des itérêts lorsque

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Augmentation de la demande du produit «P» Prévision d accroître la capacité de production (nécessité d investir) Investissement

Augmentation de la demande du produit «P» Prévision d accroître la capacité de production (nécessité d investir) Investissement Augmetatio de la demade du produit «P» Prévisio d accroître la capacité de productio (écessité d ivestir) Ivestissemet Etude de retabilité du produit «P» Jugemet de l opportuité et de la retabilité du

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

i-mathematiques.com 2016/2017

i-mathematiques.com 2016/2017 mr.mage@live.fr i-mathematiques.com 06/07 Les suites A redre le ludi 6 mars Dossier de la semaie. Exercice - Suites Marc postule pour u emploi das ue etreprise. La société ALLCAUR propose à compter du

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Analyse mathématique II

Analyse mathématique II UNIVERSITÉ IBN ZOHR Faculté des Scieces Juridiques Écoomiques et Sociales Corrigés des QCM Aalyse mathématique II FILIÈRE SCIENCES ÉCONOMIQUES ET GESTION PREMIERE ANNÉE Sessio ormale 03/04 40 questios

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

COMITE DE NORMALISATION OBLIGATAIRE "C.N.O." Association régie par la loi du 1er juillet 1901

COMITE DE NORMALISATION OBLIGATAIRE C.N.O. Association régie par la loi du 1er juillet 1901 COMITE DE NORMALISATION OBLIGATAIRE "C.N.O." Associatio régie par la loi du 1er juillet 1901 Le 17 Mars 2005 Règles de calcul des coupos des empruts d Etat sur le marché de gros Après décisio de so A.G.

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules est à dispositio olie et sera doé aux cadidats lors des exames oraux

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Le meilleur scénario pour votre investissement

Le meilleur scénario pour votre investissement ivestir Best Strategy 2012 Le meilleur scéario pour votre ivestissemet U ivestissemet diversifié U coupo uique de 0% à 50% brut* à l échéace Ue courte durée : 4 as et demi Votre capital garati à l échéace

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Gestion du Risque de Change

Gestion du Risque de Change A / Pratiques de cotatio Gestio du Risque de Chage - Moaies «i» : FRF, DEM «pré i» : GBP «out» : USD EONIA : Europea over ight idex average TEC : taux à échage costat Toute cotatio compred deux prix :

Plus en détail

Fiche standardisée pour plan tarifaire mobile à prépayement

Fiche standardisée pour plan tarifaire mobile à prépayement Fiche stadardisée pour pla tarifaire mobile à prépayemet Opérateur Mobile Vikigs Pla tarifaire 10 Date de derière mise à jour 27/05/2015 Date de limite de validité Ne s applique pas Valeur de recharge

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Rappels. A-Oukhai Suites géométriques 2 e Science

Rappels. A-Oukhai Suites géométriques 2 e Science A-Oukhai Suites géométriques e Sciece Rappels Pour motrer que u est ue suite géométrique : Soit o exprime u +1 e foctio de u et o doit trouver ue relatio de la forme u +1 qu où q est u réel qui e déped

Plus en détail

Proposés par Hugues SILA, professeur de mathématiques des lycées

Proposés par Hugues SILA, professeur de mathématiques des lycées Téléchargé gratuitemet sur le site http://sila.e-mosite.com tél : 00237 675 277 432 Travaux dirigés de mathématiques Classe : 1 ères C, D, TI aée Scolaire 2014/2015 Proposés par Hugues SILA, professeur

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Partie I : Gestion de portefeuilles actions Chapitre 2 Evaluation actuarielle des actions

Partie I : Gestion de portefeuilles actions Chapitre 2 Evaluation actuarielle des actions Patie I : Gestio de potefeuilles actios Chapite 2 Evaluatio actuaielle des actios Gestio de Potefeuille La valeu omiale d ue actio est éale au capital social divisé pa le ombe de tites. Pou les sociétés

Plus en détail

le billet vert Autocall EUR/USD investir n Profiter d une possible appréciation du dollar américain

le billet vert Autocall EUR/USD investir n Profiter d une possible appréciation du dollar américain ivestir Autocall EUR/USD Feu vert pour le billet vert Profiter d ue possible appréciatio du dollar américai U coupo uique évetuel de 8% brut la 1 re aée à 40% brut la 5 e aée U capital garati à 100% à

Plus en détail

Mathématique financière Sous le thème Les annuités variables : cas Des annuités en suite géométrique

Mathématique financière Sous le thème Les annuités variables : cas Des annuités en suite géométrique Les auités variables : cas e suites géométriques 1 Mathématique fiacière Sous le thème Les auités variables : cas Des auités e suite géométrique Préseter par : TAYEBI par : AHLAM ecadré MERYEM BENJELOUN

Plus en détail

EXTRAITS SUJETS DE BAC 1 C. Liban Mai PARTIE A : On considère la suite u n définie par u 0 = 10 et pour tout entier n par u = 0.9u 1.

EXTRAITS SUJETS DE BAC 1 C. Liban Mai PARTIE A : On considère la suite u n définie par u 0 = 10 et pour tout entier n par u = 0.9u 1. Liba Mai 203 PARTIE A : O cosidère la suite u défiie par u 0 = 0 et pour tout etier par u = 0.9u. 2 + + ) O cosidère la suite u défiie par pour tout etier, o pose v = u 2 a) Démotrer que (v ) est ue suite

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Suites. q et k IN et n IN : u. Démonstration : A l aide du schéma ci-dessous on peut établir la formule explicite du terme général en fonction de n :

Suites. q et k IN et n IN : u. Démonstration : A l aide du schéma ci-dessous on peut établir la formule explicite du terme général en fonction de n : Suites A) Suites géométriues Défiitio et formules Défiitio : forme récursive Ue suite est géométriue lorsue, à partir du terme iitial, l o passe d'u terme de la suite au terme suivat e multipliat toujours

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

L Évaluation d entreprise

L Évaluation d entreprise JOB : mp DIV : 10571 ch10 p. 1 folio : 303 --- 29/8/07 --- 15H31 [ L Évaluatio d etreprise q L évaluatio se pratique à de multiples occasios : cessio de l etreprise, émissio d actios ouvelles, fusio, itroductio

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Cours Termiale S La foctio logarithme épérie O a vu das u chapitre précédet que la foctio epoetielle est cotiue et strictemet croissate sur R et que l image de R par cette

Plus en détail

Suites arithmétiques et suites géométriques Bilan et croissances

Suites arithmétiques et suites géométriques Bilan et croissances Sites arithmétiqes et sites géométriqes Bila et croissaces I Bila sr les sites arithmétiqes et géométriqes ) Tablea de formles Défiitio Relatio etre dex termes coséctifs Calcl d terme 4 ) Ue qestio de

Plus en détail

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1)

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1) CYCLE DESS-A 02 JUILLET 200 20 ème Promotio 200 / 202 CONCOURS D ENTREE A L IIA EPREUVES AU CHOIX DU CANDIDAT Durée : De 09 h 00 à 2 h 00 (Heure de Yaoudé, TU + ) Le cadidat traitera au choix l ue des

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

CHAPITRE 1 MARCHÉS FINANCIERS ET CARACTÉRISTIQUES DES PRODUITS DE TAUX D INTÉRÊT

CHAPITRE 1 MARCHÉS FINANCIERS ET CARACTÉRISTIQUES DES PRODUITS DE TAUX D INTÉRÊT CHAPITRE 1 MARCHÉS FINANCIERS ET CARACTÉRISTIQUES DES PRODUITS DE TAUX D INTÉRÊT TESTEZ VOS CONNAISSANCES Qu'et-ce qu'u marché fiacier et quel et o rôle? Qu'et-ce qu'ue ititutio fiacière? Quelle ot le

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

1. Activité. La légende du jeu d échec

1. Activité. La légende du jeu d échec . Activité La légede du jeu d échec O place sur la première case d u échiquier u grai de riz, sur la e case, deux grais de riz, sur la troisième, quatre grais de riz, et aisi de suite e doublat à chaque

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

ESSCA(Management - Finances)

ESSCA(Management - Finances) parteaire de PREPAVOGT Yaoudé, 3 mai 04 BP : 765 Yaoudé Tél : 0 63 7 / 96 6 46 86 E-mail : prepavogt@yahoofr wwwprepavogtorg ESSCA(Maagemet - Fiaces) CONCOURS D ADMISSION RAISONNEMENT LOGIQUE ET MATHEMATIQUE

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

DROITES, TABLEAUX, FORMULES. Location de voitures. - Pour chaque société déterminer k et f et exprimer P en fonction de n.

DROITES, TABLEAUX, FORMULES. Location de voitures. - Pour chaque société déterminer k et f et exprimer P en fonction de n. 1/8 Situatios Des essais de locatio de voitures ot été effectués das trois sociétés de locatio différetes. our chaque essai, la voiture 'a été louée qu'ue jourée. Société Aimatour J'ai payé u jour 34 pour

Plus en détail

1. OPC sans terme fixe et sans protection de capital

1. OPC sans terme fixe et sans protection de capital Associatio Belge des Orgaismes de Placemet Collectif Belgische Vereigig va de Istellige voor Collectieve Beleggig Aveue Marixlaa 8 (III+4) 000 BRUSSEL/BRUXELLES el. (3-) 547 74 06/09/0 Fax (3-) 547 74

Plus en détail

Mathématiques financières

Mathématiques financières Uiversité Paris 7 Master ère aée 25/26 E. Temam Mathématiques fiacières Partie I Email : temam@math.jussieu.fr I. Les marchés fiaciers... 3 A. Vocabulaire des marchés fiaciers... 3 B. Les produits fiaciers...

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

Cours : Le choix des investissements grâce à l actualisation : La VAN (Valeur Actualisée Nette) et le TIR (Taux Interne de Rendement)

Cours : Le choix des investissements grâce à l actualisation : La VAN (Valeur Actualisée Nette) et le TIR (Taux Interne de Rendement) Cours : Le choix des ivestissemets grâce à l actualisatio : La VAN (Valeur Actualisée Nette) et le TIR (Taux Itere de Redemet) 1 La VAN, la Valeur Actualisée (ou Actuelle) Nette e aveir certai 11 La comparaiso

Plus en détail

CHAPITRE IV. Rappels et compléments sur les suites

CHAPITRE IV. Rappels et compléments sur les suites CHPITRE IV Rappels et complémets sur les suites SUITES NUMÉRIQUES 1 Sommaire I Notio de suite...................................... 30 Exemples.......................................... 30 B Défiitio..........................................

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Correction Bac ES Liban juin 2010

Correction Bac ES Liban juin 2010 Correctio Bac ES Liba jui 2010 EXERCICE 1 (4 poits) Commu à tous les cadidats 1) A et B sot deux évéemets idépedats et o sait que p(a) = 0,5 et p(b) = 0,2. La probabilité de l évéemet A B est égale à :

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

I ECRITURE FRACTIONNAIRE

I ECRITURE FRACTIONNAIRE LES FRACTIONS OBJECTIFS : Compredre l écriture fractioaire Simplifier les fractios Additioer des fractios Soustraire des fractios 5 Multiplier des fractios 6Diviser des fractios I ECRITURE FRACTIONNAIRE

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR TI Nspire Documet de Formatio T3 Walloie TI-Nspire Le tout e u des mathématiques Suites umériques La loi de Verhulst Applicatio «Calculs» Applicatio «Graphiques» Applicatio «Tableur et listes» FR Formatios

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

MATHEMATIQUES. Semestre 1. Calcul et analyse COURS

MATHEMATIQUES. Semestre 1. Calcul et analyse COURS Départemet TECHNIQUES DE COMMERCIALISATION MATHEMATIQUES Semestre Calcul et aalyse COURS % Documet e lige : sur l ENT, sectio «outils pédagogiques», plateforme Clarolie, TC, Cours «MATHS». IUT de Sait-Etiee

Plus en détail

FONCTIONS : LIMITES ET ASYMPTOTES I. QUELQUES RAPPELS SUR LES LIMITES. 1. Limites et fonctions polynômes :

FONCTIONS : LIMITES ET ASYMPTOTES I. QUELQUES RAPPELS SUR LES LIMITES. 1. Limites et fonctions polynômes : FONCTIONS : LIMITES ET ASYMPTOTES I. QUELQUES RAPPELS SUR LES LIMITES. Limites et foctios olyômes : Soit P ( ) = a + a +... + a+ a u olyôme de degré. Alors P ( ) = ( a) et P ( ) = ( a) + + Justificatio

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2.

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2. BAC BLANC DE MATHEMATIQUES EN TM et TM2. L ordre des exercices a pas d importace. La clarté de la rédactio et des raisoemets iterviedrot pour ue part importate das l appréciatio des copies. La calculatrice

Plus en détail

Chapitre 8 wicky-math.fr.nf Suites. Exercices : Suites. 4.u n = n u n = cos n π ) 6.u n =n 2 n + 1. u n+1 = u n 1.

Chapitre 8 wicky-math.fr.nf Suites. Exercices : Suites. 4.u n = n u n = cos n π ) 6.u n =n 2 n + 1. u n+1 = u n 1. 1 Défiir ue suite Exercices : Suites Exercice 1. Pour chacue des suites suivates, trouver la foctio f à valeurs réelles telle que, pour tout, u =f), puis calculer les termes deu 0 àu 5 1.u = + 5.u = 1

Plus en détail