Chaque élément de la population étudiée est : une unité statistique ou un individu (élève, pièce fabriquée, trajet journalier)

Dimension: px
Commencer à balayer dès la page:

Download "Chaque élément de la population étudiée est : une unité statistique ou un individu (élève, pièce fabriquée, trajet journalier)"

Transcription

1 htt://maths-scences.fr STATISTIQUES I) Le vocabulare utlsé en statstques ) Caractère d une oulaton Les outls et les méthodes des études statstques s alquent à des ensembles d éléments nommés oulatons (exemle : l ensemble des élèves d un lycée, l ensemble des èces fabrquées en une heure ar une machne, l ensemble des trajets journalers des élèves d un LP). Chaque élément de la oulaton étudée est : une uté statstque ou un ndvdu (élève, èce fabrquée, trajet journaler) Le caractère ou varable statstque d une oulaton est la rorété sur laquelle orte l étude statstque. Le caractère statstque eut être : qualtatf (couleur d une voture, marque d un aarel électroménager) quanttatf (Dans ce cas le caractère statstque est mesurable, l eut être noté ar une varable statstque.) Une varable statstque eut être : dscrète (Elle rend un nombre f de valeurs comme ar exemle un nombre de votures ar ussance fscale ou un nombre de ersonnes ar foyer.) contnue (Elle rend toutes les valeurs à l ntéreur d un ntervalle donné.) L étude statstque d une oulaton ar raort à une varable contnue mose de regrouer le grand nombre de valeurs en tranches ou classes. (classes d âge our une oulaton de ersonnes ; classes du montant des achats our une oulaton de clents d une grande surface.) 2) Classes et effectfs Une classe, c est la orton de l ntervalle auquel aartennent les valeurs de caractère. Une sére statstque assoce à chaque valeur x du caractère le nombre d ndvdus corresondant, aelé effectf artel et noté n. L effectf de la oulaton est noté et on a : = On aelle effectf cumulé crossant de la valeur x (noté n ) la somme des effectfs de toutes les valeurs du caractère nféreures ou égales à x. On aelle effectf cumulé décrossant de la valeur x (noté n ) la somme des effectfs de toutes les valeurs du caractère suéreures ou égales à x. n Cours sur les statstques /6

2 htt://maths-scences.fr La fréquence d une valeur x du caractère est le quotent de l effectf n de ce caractère ar l effectf total : f = Remarques : La somme des fréquences est égale à. f Les fréquences sont souvent exrmées en ourcentage arès multlcaton ar 00 du raort. = La fréquence cumulée crossante de la valeur x (notée f ) est le raort La fréquence cumulée décrossante de la valeur x (notée f ) est le raort II) Dfférentes rerésentatons grahques ) Dagramme en bâtons On l utlse our les séres à caractère dscret. Pour celles qu utlsent un reère cartésen : - sur l axe des abscsses : valeur du caractère ; - sur l axe des ordonnées : valeurs des effectfs ou des fréquences. Prnce : les hauteurs des dfférents bâtons sont roortonnelles aux effectfs corresondants. 2) Dagramme crculare ou à secteurs On l utlse dans le cas d une varable dscrète. Caractère Prnce : chaque secteur a un angle au centre de mesure roortonnelle à la fréquence de la classe corresondante exrmée en ourcentage. 23% 4% 36% 2% 25% Cours sur les statstques 2/6

3 htt://maths-scences.fr 3) Hstogramme et olygone des effectfs On l utlse our les séres à caractère contnu, lorsque les valeurs de la varable sont réartes en classes. Prnce : les ares des dfférents rectangles sont roortonnelles aux effectfs (aux fréquences) corresondantes. Effectfs () Hstogramme des effectfs Polygone des effectfs Abscsse : lmtes des classes Remarque : lorsque les classes n ont as la même amltude on rend un ntervalle utare. 4) Dagramme olare On l utlse our les séres chronologques. Le reérage se fat : - avec l angle θ - avec la longueur OM. M O θ axe olare ou ôle O D 0 J F 5 0 M A S A J J M Cours sur les statstques 3/6

4 htt://maths-scences.fr III) Caractères de oston ) Mode d une sére statstque On aelle mode d une sére statstque à caractère dscret la valeur du caractère statstque (notée M 0 ) qu corresond au lus grand effectf. (mode = domnante). On aelle classe modale d une sére statstque à caractère contnu la classe qu corresond au lus grand effectf. Le mode est le centre de la classe modale. 2) Médane d une sére statstque C est la valeur (notée M e ) de la varable our laquelle l exste dans cette sére autant de valeurs lus grandes que de valeurs lus ettes. La médane se détermne grahquement à l ade du ont d ntersecton du olygone statstque des effectfs cumulés crossants et décrossants. La médane eut auss être calculée dans le cas d une sére à caractère contnu en utlsant la méthode de l nterolaton lnéare. 3) Quartles Les tros quartles sont les tros valeurs du caractère qu artagent la oulaton totale en quatre artes d effectfs égaux. Le remer quartle Q corresond à 25 % de l effectf total. Le deuxème quartle Q 2 corresond à la médane (50 % de l effectf total). Le trosème quartle Q 3 corresond à 75 % de l effectf total. L ntervalle nterquartle est la dfférence entre les quartles extrêmes ; l a our valeur Q 3 Q. Q3 Q L écart nterquartle relatf : Q2 4) Décles D, D 2,, D 9 ; chaque décle artage en dx artes égales l effectf total. L ntervalle nterdécle est la dfférence entre les décles extrêmes : l a our valeur D 9 D Cours sur les statstques 4/6

5 htt://maths-scences.fr IV) Caractères de dserson ) Calcul d une moyenne d une sére dstrbuée en classes On aelle moyenne d une sére statstque et on note x le nombre : x désgne le centre de classe. x x n = = f x 2) Étendue L étendue est la dfférence entre la lus grande valeur et la lus ette valeur de la sére. 3) Écart moyen d une sére statstque L écart moyen est une caractérstque qu déft la dserson des valeurs d une sére statstque. L écart moyen est égal à la moyenne des écarts à la moyenne. 4) Varance E m = n x x x : valeur ou centre de classe n : effectf corresondant : effectf total x : moyenne La varance V est la moyenne des carrés des écarts à la moyenne. ( ) 2 2 V = x x = x x² Avec : effectf total x : valeur de la varable n : effectf de la varable x x : moyenne de la sére 5) Écart-tye L écart tye déft la dserson des valeurs d une sére statstque. n n n x Etendue de la dserson Etendue de la dserson Etendue de la dserson Les valeurs sont lus Les valeurs sont réartes Les valeurs sont lus nombreuses vers la de art et d autre de la nombreuses vers la lmte nféreure classe au centre lmte suéreure x x Cours sur les statstques 5/6

6 htt://maths-scences.fr L écart-tye σ (lre : sgma) est la racne carrée de la varance : σ = V De nombreuses séres statstques dont l effectf est mortant ont une oulaton dstrbuée suvant une lo dte normale avec une courbe des effectfs aelée courbe de Gauss. Dans une lo normale, valeur moyenne, valeur médane, valeur modale, sont égales. Pour une sére statstque «normalement» dstrbuée, l y a envron : - 68 % de la oulaton dans l ntervalle [ x σ ; x + σ ] - 95 % de la oulaton dans l ntervalle [ x 2σ ; x + 2σ ] - 99% de la oulaton dans l ntervalle [ x 3σ ; x + 3σ ] x -3 σ x -2 σ x - σ x x + σ x +2 σ x +3 σ 68 % 95 % 98% 6) Coeffcent de dserson On aelle coeffcent de dserson (exrmé en %) d une sére statstque de moyenne x et d écart-tye σ, le raort x σ (exrmé en % ; nombre abstrat) Cours sur les statstques 6/6

Statistiques. A) Vocabulaire. B) Caractéristiques de position et de dispersion.

Statistiques. A) Vocabulaire. B) Caractéristiques de position et de dispersion. Statstques A) Vocabulare. Poulaton et ndvdu : La oulaton est l ensemble des ndvdus sur lequel vont orter les observatons. Caractère : Le caractère est la rorété étudée. Le caractère est qualtatf s l n

Plus en détail

f i (Fréquence) 0,1 0,2 0,1 0,2 effectifs cumulés croissants n x

f i (Fréquence) 0,1 0,2 0,1 0,2 effectifs cumulés croissants n x Habb Gammar Statstques I- Séres statstques à une varable :. Exemles : Tableau : Dans un groue de dx élèves, voc les notes à un devor :, 4, 6, 6, 0, 7, 9,, 9,. Cette sére de note est une sére statstque

Plus en détail

CHAPITRE 1 : Distribution statistique à une dimension

CHAPITRE 1 : Distribution statistique à une dimension Chatre1 : Dstrbuton Statstque à une dmenson I.H.E.T de Sd Dhr CHAPITRE 1 : Dstrbuton statstque à une dmenson Secton 1 : Vocabulare élémentare de la statstque descrtve 1. Poulaton et ndvdu Dénton On aelle

Plus en détail

STATISTIQUES. Dans ce chapitre, on considère des séries à caractères quantitatifs discrètes ou continues.

STATISTIQUES. Dans ce chapitre, on considère des séries à caractères quantitatifs discrètes ou continues. STATISTIQUES Dans ce chatre, on consdère des séres à caractères quanttatfs dscrètes ou contnues. 1- Notatons x 1, x 2,, x sont les valeurs du caractère ou les centres des classes s ces valeurs sont regrouées

Plus en détail

3) Calculer le pourcentage de personnes ayant entre 30 et 50 ans.

3) Calculer le pourcentage de personnes ayant entre 30 et 50 ans. http://maths-scences.fr EXERCICES SUR LES STATISTIQUES Exercce 1 Un concessonnare automoble étude l âge des acheteurs de votures de son garage. Deux documents ncomplets (un tableau et un hstogramme) rendent

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Chapitre 3 Analyse statistique de données Première S

Chapitre 3 Analyse statistique de données Première S Chatre Analyse statstque de données Premère S Le vocabulare relatf au statstques La statstque est la scence qu consste à réunr des données chffrées, à les analyser, à les crtquer Une étude statstque se

Plus en détail

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005)

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005) EXERCICES SUR LES STATISTIQUES Exercce 1 Un commerçant effectue des lvrasons de fuel pour les chaudères. La répartton des volumes dstrbués à chaque lvrason s effectue selon le tableau suvant : Volumes

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Traitement probabiliste de l information

Traitement probabiliste de l information Maths 4: Probablté et Statstques (00/0) Zendagu Maths 4 : Probabltés et Statstques Inttulé du domane Scences et Technologe Année ème année Annuel ou semestrel Semestrel Unté d ensegnement UEM3 Méthodologe

Plus en détail

Chap.3 : Statistique descriptive. Analyse de données.

Chap.3 : Statistique descriptive. Analyse de données. Chap3 : Statstque descrptve Analyse de données I Vocabulare La statstque a pour but la collecte, l analyse et l nterprétaton des observatons relatves à des phénomènes collectfs Une étude statstque comprend

Plus en détail

République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique

République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Réublque Algérenne Démocratque et Poulare Mnstère de l Ensegnement Suéreur et de la Recherche Scentfque Unversté Mouloud Mammer de Tz-Ouzou MEMOIRE DE MAGISTER En Automatque Oton : Automatque des Systèmes

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

CH V Statistique II : Caractéristiques de position et de dispersion

CH V Statistique II : Caractéristiques de position et de dispersion CH V Statstque II : Caractérstques de poston et de dsperson I) Les caractérstques de poston : Les caractérstques de poston sont des données mportantes pour l étude des séres statstques. 1) Le mode d une

Plus en détail

Module de statistiques

Module de statistiques Module de statstques On utlsera les exemples suvants dans tout le chaptre : Exemple 1 : Dans une maternté, on a référencé les pérmètres crânens à la nassance de 290 nouveaux nés. Pérmètre ( en cm ) 32

Plus en détail

Banque d exercices pour le cours de "mise à niveau" de statistique de M1 AgroParisTech

Banque d exercices pour le cours de mise à niveau de statistique de M1 AgroParisTech Banque d exercces pour le cours de "mse à nveau" de statstque de M1 AgroParsTech Instructons pour les exercces 1. Lorsque ren n est précsé, on suppose que la dstrbuton étudée est gaussenne. Pour les exercces

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

STATISTIQUES = N. = n i N. On a : p f i Caractéristiques de position de tendance centrale

STATISTIQUES = N. = n i N. On a : p f i Caractéristiques de position de tendance centrale STATISTIQUES 1. Vocabulaire et notations Dans ce chaitre, on considère des séries à caractères quantitatifs discrètes (sous forme «onctuelle») ou continues (sous forme d intervalles) (avec, dans le cas

Plus en détail

Les emprunts indivis. Auteur : Philippe GILLET

Les emprunts indivis. Auteur : Philippe GILLET Les emruts dvs Auteur : Phle GILLET Emrut dvs et emrut oblgatare Emrut dvs Emrut oblgatare Souscrt ar ue ou luseurs baques Pluseurs souscrteurs Dvsé e arts : oblgatos Oblgatos cotées Grad ombre de souscrteurs

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Transistors a effet de champ

Transistors a effet de champ Transstors a effet de cham e transstor à effet de cham (Feld Effect Transstor) est un dsostf magné ar Schockley en 1958. e rnce en est le contrôle du courant dans un barreau semconducteur à l'ade de deux

Plus en détail

f(t) g(t)dt f²(t)dt g²(t) dt a a a

f(t) g(t)dt f²(t)dt g²(t) dt a a a PCSI Chatre 4 : Produts scalares-résumé Das ce chatre E est u -ev. Produts scalares. Défto et exemles de référeces Def: O aelle rodut scalare sur E toute alcato de E² das est bléare. est symétrque: x,ye,

Plus en détail

Statistiques: rappels et compléments

Statistiques: rappels et compléments Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

Plus en détail

Afin de dégager une tendance générale, on élimine les fluctuations les plus grandes en lissant la série.

Afin de dégager une tendance générale, on élimine les fluctuations les plus grandes en lissant la série. I MOYEES MOBILES 1 Série chronologique Définition Une série chronologique orte sur des observations réalisées dans le tems, usuellement à intervalles égaux. EXEMPLE : On a relevé les réciitations, en mm/m,

Plus en détail

Commande MPPT et Contrôle d un Système Photovoltaïque par la Logique Floue

Commande MPPT et Contrôle d un Système Photovoltaïque par la Logique Floue Commande MPPT et Contrôle d un Système Photovoltaïque ar la Logque Floue Z. Ayache, A. Bendaoud, H. Slman, B. Benazza, H. Mloud, A. Bentaallah 1 Laboratore IRECOM, Unversté Djlal Labès Sd Bel Abbès 22,

Plus en détail

Mathématiques Année 2009 2010 Module n 4 : Statistiques ( 2 ème partie ) 2 nde

Mathématiques Année 2009 2010 Module n 4 : Statistiques ( 2 ème partie ) 2 nde Mathématques Année 2009 2010 Module n 4 : Statstques ( 2 ème parte ) 2 nde On utlsera les eemples suvants dans tout le chaptre : Eemple 1 : Dans une maternté, on a référencé les pérmètres crânens à la

Plus en détail

POTENTIEL CHIMIQUE D UN CONSTITUANT PHYSICO-CHIMIQUE

POTENTIEL CHIMIQUE D UN CONSTITUANT PHYSICO-CHIMIQUE JL 2005-2006 2 PC HdB CHAPITRE 2 POTENTIEL CHIMIQUE D UN CONSTITUANT PHYSICO-CHIMIQUE Le otentel chmque d un consttuant hyscochmque est, comme nous l avons ndqué, la dérvée artelle de l enthale lbre ar

Plus en détail

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce document a été numérisé ar le CRDP de Montellier our la Base Nationale des Sujets d Eamens de l enseignement rofessionnel Ce fichier numérique ne eut être reroduit, rerésenté, adaté ou traduit sans

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type EAME FIAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSIO 1 - Correcton - Exercce 1 : 1) Questons à Chox Multples (QCM). Cochez la bonne réponse Classer ces statstques selon leur nature (ndcateur de poston

Plus en détail

CHAPITRE 2. La prévision des ventes

CHAPITRE 2. La prévision des ventes CHAPITRE La prévson des ventes C est en foncton des prévsons de ventes que l entreprse détermne la producton, les achats et les nvestssements nécessares. La prévson des ventes condtonne l ensemble de la

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Statistiques. sont les valeurs du caractère étudié et n ; n ; 1 2. correspondants, la moyenne de la série statistique est : x =

Statistiques. sont les valeurs du caractère étudié et n ; n ; 1 2. correspondants, la moyenne de la série statistique est : x = Statstques A) Vocabulare d une sére statstque. Poulaton et ndvdu : La oulaton est l ensemble des ndvdus sur lequel vont orter les observatons. Caractère : Le caractère est la rorété étudée. Le caractère

Plus en détail

) = n. ) = 2n. D - Inférence Statistique - Estimation et Tests d hypothèses 5. Tests du Khi-deux (non paramétrique) Loi du Chi-deux (χ 2 n

) = n. ) = 2n. D - Inférence Statistique - Estimation et Tests d hypothèses 5. Tests du Khi-deux (non paramétrique) Loi du Chi-deux (χ 2 n 5. Tests du Kh-deux (non paramétrque) Lo du Ch-deux (χ n ) à n degrés de lberté (ddl) S X 1, X,..., X n, sont n varables ndépendantes, suvant toutes une lo normale N (0,1), la varable χ n = X 1 + X + +

Plus en détail

Exercices sur la géométrie plane

Exercices sur la géométrie plane Eercces sur la géoétre plane Sot un trangle équlatéral et M un pont ntéreur au trangle n note H, K, L les projetés orthogonau respectfs de M sur les tros côtés éontrer que la soe MH + MK + ML est constante

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes Snthèse de cours PanaMaths (Termnale S) L ensemble des nombres complees Défntons n pose tel que = 1 { } L ensemble des nombres complees, noté, est l ensemble : z /(, ) = + Le réel est appelé «parte réelle

Plus en détail

Session 2010 Examen : BEP Tertiaire 1 Spécialités du Secteur 6 : Métiers de la comptabilité. Durée : 1 heure Epreuve : Mathématiques Page : 1/5

Session 2010 Examen : BEP Tertiaire 1 Spécialités du Secteur 6 : Métiers de la comptabilité. Durée : 1 heure Epreuve : Mathématiques Page : 1/5 SUJET 2010 Examen : BEP Tertiaire 1 Sécialités du Secteur 6 : Métiers de la comtabilité Coeff : Selon sécialité Logistique et commercialisation Vente action marchande Durée : 1 heure Ereuve : Mathématiques

Plus en détail

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010.

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010. Master 1ère année de Mathématques Analyse Numérque - Projet A rendre au plus tard le jour de l examen fnal, en Janver 2010. CMI, Unversté de Provence Année 2009-2010 Ce qu vous est demandé : Rédger les

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

Cours réalisé par Laurent DOYEN. La statistique descriptive

Cours réalisé par Laurent DOYEN. La statistique descriptive Cours réalsé par Laurent DOYEN La statstque descrptve . Introducton et défntons Statstque descrptve: Analyse et synthèse, NUMERIQUE et GRAPHIQUE, d un ensemble de données . Introducton et défntons Statstque

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

CH1 : Introduction à l Analyse Des Données (ADD) B- Les données et leurs caractéristiques C- Grandeurs associées aux données

CH1 : Introduction à l Analyse Des Données (ADD) B- Les données et leurs caractéristiques C- Grandeurs associées aux données CH1 : Introduction à l Analyse Des Données (ADD) A- Introduction A- Introduction B- Les données et leurs caractéristiques C- Grandeurs associées aux données A-1 Les méthodes Lors de toute étude statistique,

Plus en détail

35 personnes 40,0% 360 jours 18 jours 150 80. 270 personnes 18,0%

35 personnes 40,0% 360 jours 18 jours 150 80. 270 personnes 18,0% POURCENTAGES Exercice n. Comléter ce tableau, en indiquant dans chaque case l'oération effectuée et son résultat (arrondir à décimale en cas de besoin) Ensemble de référence Part en nombre en ourcentage

Plus en détail

Exemple 1 : «Histogramme à pas constant»

Exemple 1 : «Histogramme à pas constant» III. Représentatons graphques d une sére statstque 1. es Dagrammes en bâtons ( ou en barres ) :, formés de barres dont l abscsse est x et dont la hauteur est proportonnelle à n ou à f. 2. es Dagrammes

Plus en détail

Exercice 1. Enoncé 1. Nombre de jours d absences. Nombre d étudiants. 1 ) Représenter graphiquement cette distribution.

Exercice 1. Enoncé 1. Nombre de jours d absences. Nombre d étudiants. 1 ) Représenter graphiquement cette distribution. Républque Tunsenne Présdence du Gouvernement Ecole Natonale d Admnstraton 4, Avenue du Dr Calmette Mutuelle-vlle 08 Tuns Tél. (+6) 848 00 Fa (+6) 794 88 www.ena.nat.tn STATISTIQUE ET CALCUL DE PROBABILITE

Plus en détail

BACCALAURÉAT PROFESSIONNEL. «Traitements de surfaces»

BACCALAURÉAT PROFESSIONNEL. «Traitements de surfaces» BACCALAURÉAT PROFESSIONNEL «Traitements de surfaces» Éreuve E1B1-U1 SOUS-ÉPREUVE ÉCRITE Sujet Mathématiques et Sciences Physiques Durée : heures Coefficient : 1,5 Le sujet comorte 5 ages numérotées de

Plus en détail

Les Polyèdres Convexes Euclidiens à Faces Régulières

Les Polyèdres Convexes Euclidiens à Faces Régulières LA GEOMETRIE DES TRANSFORMATIONS dans l'arentissage des mathématiques Les Polyèdres Convexes Euclidiens à Faces Régulières ou 23 siècles our lever une ambiguïté! CAEN octobre 2005 Michel DEMAL Danielle

Plus en détail

Méthode d analyse régionale sur données individuelles : Introduction aux modèles multi-niveaux

Méthode d analyse régionale sur données individuelles : Introduction aux modèles multi-niveaux Méthode d analse régonale sur données ndvduelles : Introducton aux modèles mult-nveaux Magale Dnaucourt, INSEE, Drecton Régonale du Languedoc-Roussllon 74 Allée Henr II de Montmorenc - 34064 Monteller

Plus en détail

Représenter graphiquement une série statistique

Représenter graphiquement une série statistique Représenter graphiquement une série statistique Objectifs : - savoir identifier le caractère étudié - représenter une série statistique par une représentation graphique - savoir exploiter des données statistiques

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

Méthodologie version 1, juillet 2006

Méthodologie version 1, juillet 2006 Méthodologe verson, ullet 2006 Tendances Carbone résente chaque mos sx groues d ndcateurs :. Synthèse du mos 2. Clmat 3. Actvté économque. Energe 5. Envronnement nsttutonnel 6. Tableau de bord Ce document

Plus en détail

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!!

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!! Cours : Statstques I. Itroducto Classe de ère S O a vu que our caractérser ue sére statstque, o utlse des : - aramètres de tedace cetrale : - la moyee ; - la médae. Ils ermettet d dquer la «osto» de la

Plus en détail

SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12. Phénomènes d induction et conversion électromécanique:

SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12. Phénomènes d induction et conversion électromécanique: SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12 Phénomènes d nducton et converson électromécanque: 1/ Inductance propre et nductance mutuelle. 11/ Défntons et proprétés : 11a/ Défnr l'nductance propre L d un

Plus en détail

Statistique à une variable.

Statistique à une variable. Statstque à une varable. Bref rappel des notons acquses dans les classes antéreures. Une populaton est un ensemble d ndvdus sur lesquels on étude un caractère ou une varable, qu prend dfférentes valeurs

Plus en détail

Cette série statistique est représentée par le nuage de points placés dans le repère. Bac Pro Secrétariat Lille 2008 Page 1 / 5

Cette série statistique est représentée par le nuage de points placés dans le repère. Bac Pro Secrétariat Lille 2008 Page 1 / 5 Le gérant d une salle de remse en forme vous demande de réalser une étude ermettant de révor la rentablté de son centre en 008, en suvant les étaes suvantes : - En tenant comte de la quantté d abonnements

Plus en détail

Statistiques descriptives (1/2)

Statistiques descriptives (1/2) Statistiques descriptives (1/2) Anita Burgun 2011-2012 http://www.med.univ-rennes1.fr Introduction! Statistique: méthode scientifique qui consiste à réunir des données chiffrées sur des ensembles d individus

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA)

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Unversté d Orléans Econométre des Varables Qualtatves Chaptre 3 Modèles à Varable Dépendante Lmtée Modèles Tobt Smples et Tobt Généralsés Chrstophe Hurln

Plus en détail

A. Notion d intégrale double

A. Notion d intégrale double UT ORSAY Mesures Physiques ntégrales doubles Calcul d aires et de volumes Cours du ème semestre A Notion d intégrale double A- omaine quarrable On suose que le lan est muni d un reère orthonormé ( O; i;

Plus en détail

STATISTIQUE DESCRIPTIVE

STATISTIQUE DESCRIPTIVE Statstque descrtve ECS STATISTIQUE DESCRIPTIVE I Vocabulare de la statstque descrtve ) Poulato La statstque descrtve est ue scece qu recuelle et aalyse des formatos sur u esemble f, dot le cardal est souvet

Plus en détail

Ajustement affine par les moindres carrés

Ajustement affine par les moindres carrés 1. Nveau Termnales STG et ES Ajustement affne par les mondres carrés 2. Stuaton-problème proposée Introducton à la méthode des mondres carrés. 3. Support utlsé Tableur et calculatrce. 4. Contenu mathématque

Plus en détail

Variable continue : histogramme. Définition. La moyenne, notée x, est le nombre défini par : x = = ni xi = f

Variable continue : histogramme. Définition. La moyenne, notée x, est le nombre défini par : x = = ni xi = f Statstques I) Vcabulare - tats STTISTIQUES : COURS Pulat : Esemble sur lequel rte l'étude statstque Idvdus : Elémets qu cmset la ulat Echatll : Ue arte de la ulat Caractère étudé : La rrété que l' bserve

Plus en détail

UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL

UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL Yohan KABLA ECP - 3 EME ANNEE MAP SMF UTILISATION DES COPULES POUR ANALYSER L IMPACT DES DEPENDANCES SUR UN PORTEFEUILLE DE CREDITS RAPPORT DE STAGE D INGENIEUR CONFIDENTIEL 5 MAI NOVEMBRE 00 MAITRES DE

Plus en détail

MODELISATION DES PROCESSUS LINEAIRES

MODELISATION DES PROCESSUS LINEAIRES MDELISATIN DES PRCESSUS LINEAIRES Dans un premer temps, nous ne consdérons que des processus partculers, supposés notamment statonnare. Cec permet de présenter un certan nombre d'outls dans un cadre relatvement

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

L'effet de l'allocation unique dégressive sur la reprise d'emploi

L'effet de l'allocation unique dégressive sur la reprise d'emploi EMPLOI L'effet de l'allocaton unque dégressve sur la rerse d'emlo Brgtte Dormont Dens Fougère et Ana Preto* Le rofl de l ndemnsaton du chômage nfluence-t-l la rerse d emlo? Cette queston est étudée en

Plus en détail

Titre : Quels indicateurs optimaux pour cibler les pauvres? : une approche basée sur la

Titre : Quels indicateurs optimaux pour cibler les pauvres? : une approche basée sur la Titre : Quels indicateurs otimaux our cibler les auvres? : une aroche basée sur la minimisation des erreurs de ciblage au Burina Faso. Tambi Samuel KABORE UFR-SEG, CEDRES, 01 BP 6693 Ouaga 01 Université

Plus en détail

Impact de la chirurgie sur une cohorte d adultes d souffrant d éd. épilepsie partielle pharmacorésistante

Impact de la chirurgie sur une cohorte d adultes d souffrant d éd. épilepsie partielle pharmacorésistante Impact de la chrurge sur une cohorte d adultes d souffrant d éd éplepse partelle pharmacorésstante sstante: Analyse par score de propenson 4 ème Conférence Francophone d Epdémologe Clnque - Congrès thématque

Plus en détail

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce document a été numérisé ar le CRDP de Montellier our la Base Nationale des Sujets d Eamens de l enseignement rofessionnel Ce fichier numérique ne eut être reroduit, rerésenté, adaté ou traduit sans

Plus en détail

Chapitre III. Gaz parfaits

Chapitre III. Gaz parfaits Chatre III Gaz arfats IIIA : Déftos rorétés IIIAI : Gééraltés : U gaz arfat est u flude déal qu satsfat à l équato d état vr, ou ecore c est u gaz qu obét rgoureusemet aux tros los MARIOE, GAY LUSSAC et

Plus en détail

Indicateurs de compétitivité- prix et de performances à l exportation

Indicateurs de compétitivité- prix et de performances à l exportation Décembre 2009 Indcateurs de compéttvté- prx et de performances à Méthodologe Les ndcateurs présentés dans ce document vsent à mesurer en temps réel l évoluton des parts de marché des prncpaux exportateurs

Plus en détail

= 9 ; ( ) ex : Si f est la fonction «effectif», on a : f ( 5) Valeur 5 8 9 12 14 15 effectif 3 5 1 4 3 1

= 9 ; ( ) ex : Si f est la fonction «effectif», on a : f ( 5) Valeur 5 8 9 12 14 15 effectif 3 5 1 4 3 1 Seconde STATISTIQUES. Ch 0 I) Données : Définition : Une série statistique est une suite de nombres (rerésentant ar exemle le résultat d une enquête). ex : Dans tout le cours, on utilisera le relevé de

Plus en détail

COURS STATISTIQUES. Etude statistique de la couleur des yeux des stars de cinéma américaines. Population : Individu : Variable étudiée :

COURS STATISTIQUES. Etude statistique de la couleur des yeux des stars de cinéma américaines. Population : Individu : Variable étudiée : I) Vocabulaire de la statistique COURS STATISTIQUES Exemple : pour se rendre au collège des Chênes à Chambéry, 46 élèves utilisent un deux roues, 284 élèves utilisent les transports en commun, 163 élèves

Plus en détail

Master Recherche I.V.R.

Master Recherche I.V.R. Master Recherche I.V.R. Raort de stage Jun 24 Calbrage d un système d acquston mult-caméras. Par NOTARANGELO Salvatore Sous la tutelle de M. Edmond BOYER Jury : M. Augustn LUX M. Peter STURM Me. Sabne

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Exercices de révision pour examen #1

Exercices de révision pour examen #1 Exercces de révson pour examen #1 Queston 1. Questons théorques. a) Nommez les courants qu exstent quand une dode est en équlbre. Courants de dffuson et de drft. b) Dessnez la structure physque réelle

Plus en détail

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques IFT393 Qualté du logcel et métrques Chaptre 7 Collecte et aalyse des métrques Pla du cours Itroducto Qualté du logcel Théore de la mesure Mesure du produt logcel Mesure de la qualté du logcel Études emprques

Plus en détail

Examen : BEP ANCIENNE REGLEMENTATION Spécialité : Secteur 4

Examen : BEP ANCIENNE REGLEMENTATION Spécialité : Secteur 4 SUJET Métroole la Réunion - Mayotte Examen : BEP ANCIENNE REGLEMENTATION Sécialité : Secteur 4 Métiers de la Santé et de l Hygiène Éreuve : Coefficient : 4 Durée : 2 h Page : 1/9 Sécialité concernée :

Plus en détail

CALCULS STATISTIQUES AVEC EXCEL MOYENNE et ECART TYPE

CALCULS STATISTIQUES AVEC EXCEL MOYENNE et ECART TYPE BEP date : CALCULS STATISTIQUES AVEC EXCEL MOYENNE et ECART TYPE I- Situation L'étude porte sur la masse nette, exprimée en grammes, de céréales contenue dans des paquets de céréales. Elle s effectue dans

Plus en détail

Langages Formels, Calculabilité, Complexité: Travail de rédaction. Pavages et indécidabilité

Langages Formels, Calculabilité, Complexité: Travail de rédaction. Pavages et indécidabilité Langages Formels, Calculabilité, Comlexité: Travail de rédaction. Pavages et indécidabilité Matthieu SOLNON Vendredi 18 Janvier 2007 Table des matières 1 Introduction 1 2 Définition du roblème 2 2.1 Aroche

Plus en détail

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18 Première partie : Effectifs et fréquences Dans deux entreprises d'un groupe industriel a été mené une enquête sur le niveau de formation des employés. On a obtenu les résultats suivants : Entreprise 1

Plus en détail

Pédaler en danseuse P2 P1

Pédaler en danseuse P2 P1 Pédaler en danseuse Pédaler en danseuse consiste à ne as s asseoir sur la selle et à se dresser sur les édales. Le mouvement de édalage s écarte alors notablement du édalage assis. Notre roos est d analyser

Plus en détail

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques). CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur

Plus en détail

Coniques Parabole. 4ème Maths ABDELBASSET LAATAOUI

Coniques Parabole. 4ème Maths ABDELBASSET LAATAOUI Coniques Parabole 4ème Maths ABELBASSET LAATAOUI Activité 1 age 97 f : x x² ; P = Cf : y = -1/4 et F(, ¼) M(x, y) et H = ( M) 1) onner les coordonnées de H en fonction de x uis calculer et MH ) = MH 1

Plus en détail

STATISTIQUE DESCRIPTIVE : Séries statistiques à 1 variable Fiche Exercice 1/5 Pour mettre en évidence certaines particularités d une série

STATISTIQUE DESCRIPTIVE : Séries statistiques à 1 variable Fiche Exercice 1/5 Pour mettre en évidence certaines particularités d une série STATISTIQUE DESCRIPTIVE : Séries statistiques à 1 variable Fiche Exercice 1/5 Pour mettre en évidence certaines articularités d une série En statistiques, on eut être amener à étudier un caractère sur

Plus en détail

Traitement des valeurs manquantes et des valeurs aberrantes

Traitement des valeurs manquantes et des valeurs aberrantes Etudes Statstques 2 (1/10) Tratement des valeurs manquantes et des valeurs aberrantes Avant de trater les données, vérfer la qualté des données : Les données peuvent être : manquantes aberrantes : la valeur

Plus en détail

Introduction. 1. le modèle de survie de COX utilisé par O. Brandmeyer dans son stage de Master 2 IMOI au Centre de Médecine Préventive de Nancy ;

Introduction. 1. le modèle de survie de COX utilisé par O. Brandmeyer dans son stage de Master 2 IMOI au Centre de Médecine Préventive de Nancy ; Introducton Le groupe de Bo-Statstque a eu une actvté soutenue en 2006-2007. Cette dernère s est concrétsée par des réunons de petts groupes de traval autour de thèmes de recherche partculers et par la

Plus en détail

Soutien : Modèle de Potts mars 2015

Soutien : Modèle de Potts mars 2015 Année 04 05 Physque Statstque hors équlbre et transtons de phase Souten : Modèle de Potts mars 05 On onsdère une varante du modèle d Isng, dte de Potts, dans laquelle les N degrés de lberté (qu on appellera

Plus en détail

1 ière Partie: VIBRATIONS

1 ière Partie: VIBRATIONS ère Parte: VIBRATIONS Chatre : Généraltés sur les oscllatons Dr Fouad BOUKLI HACN P S T T L M C N A N N É 5-6 Objectfs:. Les coordonnées généralsées d un système en mouvement. Le nombre de degrés de lberté

Plus en détail

INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES Série des Documents de Travail 'Méthodologie Statistique

INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES Série des Documents de Travail 'Méthodologie Statistique INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES Sére des Documents de Traval 'Méthodologe Statstque N 9702 MODELES UNIVARIES ET MODELES DE DUREE sur données ndvduelles S. LOLLIVIER Cette

Plus en détail

Mécanique des fluides compressibles

Mécanique des fluides compressibles écanique des fluides comressibles I Raels Nous restreindrons l étude au cas du fluide idéal, non visqueux, en écoulement ermanent unidimensionnel. Précisons : - Fluide idéal gaz arfait (vr) à constant

Plus en détail

Oral 1 : Leçon 63 Transformée de Laplace. CAPES externe

Oral 1 : Leçon 63 Transformée de Laplace. CAPES externe Oral : Leçon 63 Transformée de Lalace. CAPES externe. Subi Nicolas Année 2 Plan Définition. Définition.....................................................2 Transformées usuelles.............................................

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite.

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite. www.mathsenlgne.com 2G3 - EQUATINS DE DRITES CURS (1/5) CNTENUS CAPACITES ATTENDUES CMMENTAIRES Drote comme courbe représentatve d une foncton affne. - Tracer une drote dans le plan repéré. - Interpréter

Plus en détail

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique Analyse fonctonnelle Chaptre S. Antone Tahan, ng. Ph.D. Département de géne mécanque Ma 009 Manuel : Métrologe MEC66 Auteur : Antone Tahan, ng., Ph.D. atahan@mec.etsmtl.ca ère édton : novembre 004 ème

Plus en détail

ANALYSE DES CORRESPONDANCES SIMPLES

ANALYSE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez MESURE DE LIAISON ENTRE DEUX VARIABLES QUALITATIVES KHI-DEUX Mesure de la laso etre deux varables qualtatves

Plus en détail

Chapitre 5. Menu de SUPPORT

Chapitre 5. Menu de SUPPORT 155 Chaptre 5. Menu de SUPPORT Ce que vous apprendrez dans ce chaptre Ce chaptre vous présentera des routnes supplémentares susceptbles de vous ader dans les analyses de données présentées dans le chaptre

Plus en détail