SERIES ET INTEGRALES IMPROPRES

Dimension: px
Commencer à balayer dès la page:

Download "SERIES ET INTEGRALES IMPROPRES"

Transcription

1 4 - Gérard Lavau - htt://erso.waadoo.fr/lavau/idex.htm Vous avez toute liberté our télécharger, imrimer, hotocoier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio commerciale est iterdite sas accord de l'auteur. Si vous êtes le gestioaire d'u site sur Iteret, vous avez le droit de créer u lie de votre site vers mo site, à coditio que ce lie soit accessible libremet et gratuitemet. Vous e ouvez as télécharger les fichiers de mo site our les istaller sur le vôtre. SERIES ET INTEGRALES IMPROPRES PLAN I : Défiitios ) Séries ) Exemles de séries 3) Proriété de Cauchy 4) Itégrales imrores II : Séries à termes ositifs et foctios ositives ) Critères de covergece ) Comaraiso avec ue itégrale 3) Foctios et séries de réferece III : Séries ou itégrales quelcoques ) Absolue covergece ) Covergece e moyee, e moyee quadratique 3) Série roduit 4) Critère de D'Alembert 5) Séries alterées 6) Séries de vecteurs Aexe I : Absolue covergece, semi-covergece Aexe II : La formule de Stirlig das le calcul d'etroie Aexe III : La trasformée de Lalace Aexe IV : Série de vecteurs (Comlémet de cours MP/MP*) Aexe V : Accélératio de covergece Das ce chaitre sot traités e arallèle les séries umériques (à valeurs réelles ou comlexes) et les itégrales imrores de foctios. E effet, les méthodes utilisées et les théorèmes éocés sot comarables das ces deux domaies. Les foctios sot défiies sur des itervalles I ouverts ou semi-ouverts, borés ou o. O suosera les foctios cotiues ar morceaux sur tout segmet J iclus das I, et o dira qu'elles sot cotiues ar morceaux sur I. I : Défiitios Séries DEFINITION : O aelle série ( x ) de terme gééral x, réel ou comlexe, la suite de terme gééral S = x x, aelée somme artielle. La série coverge si la suite des sommes artielles coverge. La limite S s'aelle somme de la série. La quatité R = S S s'aelle reste de rag. O ote x la limite lorsqu'elle existe. = - -

2 La défiitio choisie our la covergece est la lus simle qui uisse doer u ses à ue somme ifiie, mais ce 'est as la seule. Sigalos ar exemle qu'euler, au XVIIIème teait le raisoemet suivat : soit S = Alors S = ( ) = S doc S =. Cette méthode était largemet accetée à l'éoque, bie que le même, aliqué aux uissaces de, suscitât des réticeces. Soit S = = + ( ) = + S doc S =!!! Si certais eset que tout ceci 'est que fariboles et divagatios, je leur aredrai que la formule = est vraie das u certai cors de ombre (dit cors -adique : à titre idicatif, o eut écrire das ce cors les ombres avec u déveloemet ifii vers la gauche au lieu d'utiliser u déveloemet ifii vers la droite comme our le cors des réels. Si o travaille e base, o vérifiera bie que, si S =..., alors S + =, la reteue se roageat idéfiimet vers la gauche, et doc que S = ) et que la formule = serait vraie si o reait comme défiitio de la somme d'ue série o as la limite des sommes artielles, mais la limite de leur moyee (dite limite au ses de Cesaro, les sommes artielles reat alterativemet les valeurs et, leur moyee ted vers ). Euler a égalemet cherché à doer u ses à la somme de la série! +! 3! + 4! +... Sas se soucier du fait que la série y = x!.x +!.x 3 3!.x 'est jamais covergete our x, il la dérive terme à terme et obtiet formellemet l'équatio différetielle x y' + y = x. Or cette équatio a effectivemet ue seule solutio telle que y() =, doée ar l'exressio : x e /t xe u y(x) = e /x dt = t + xu du (avec u = t x ) Euler cosidère doc que y() est la somme qu'il cherche, soit aroximativemet,596347, valeur qu'il obtiet égalemet ar d'autres méthodes. Il existe efi des situatios aussi bie e mathématiques qu'e hysique das lesquelles o obtiet des séries divergetes au ses usuel et our lesquels il faut bie attribuer ue somme. Citos ar exemle le cas suivat. O eut motrer que (formule de Stirlig) : l(!) = ( + )l() + l(π) + B.. B ( ) B ( ).. + o( + ) à tout ordre, où les ( ) B sot les ombres dits de Beroulli. A fixé, la récisio est d'autat meilleure que est grad, mais à fixé, il est illusoire de redre davatage de termes car la série diverge lorsque ted vers l'ifii. Ce roblème est articulièremet euyeux car o souhaiterait bie que la formule de Stirlig doe ue valeur de l(!) à ue récisio arbitraire!! Vers la fi du XIXème se osait doc le roblème suivat. Etat doé ue suite (a ), commet doer u ses à la somme des a? Voici u bref résumé de quelques méthodes : La méthode usuelle, celle que ous allos étudier, qui cosiste à redre la limite des sommes artielles. Elle date de Cauchy, das la remière moitié du XIXème : S = lim + a k k= La méthode de Cesaro, qui cosiste à redre la limite des moyees des sommes artielles : S = lim + S k k= + où S k = a a k La méthode d'abel qui cosiste à multilier a k ar r k avat de faire tedre r vers : - -

3 S = lim r r < = a r = lim r r < lim N a r N + = La méthode de Borel, cosistat à utiliser le fait que! = e t t dt our défiir : S = e t a =! t dt e esérat que la série a =! t coverge au ses usuel. Boros-ous à sigaler que la méthode usuelle est la lus simle, mais as la lus efficace. E effet, les méthodes de Césaro et d'abel sot lus uissates : das le cas où la méthode usuelle doe ue valeur à S, il e est de même de ces deux méthodes (avec la même valeur de S). E ce qui cocere ar exemle la covergece au ses de Cesaro, c'est u exercice classique de motrer que, si ue suite S admet ue limite S, alors la S suite des moyees k admet la même limite. Cet exercice est souvet traité e remière aée, k= + mais so itérêt our les séries e eut être souligé à cette ériode. Car l'itérêt de la covergece au ses de Césaro est de ouvoir attribuer ue somme à des séries divergetes au ses usuel. Il e est de même de la méthode d'abel. Par exemle, la série d'euler se voiet attribuer la valeur ar les méthodes de Césaro et d'abel alors que la méthode usuelle échoue. Quat à la e t méthode de Borel, elle attribue à cette série la valeur ( ) t 'est autre que e t de sorte que l'itégrale deviet! ( ) =! e t dt = là aussi. t dt or ous verros que = La luart des résultats éocés das ce chaitre sot dus à Cauchy e 8, qui écrira à cette occasio : Je me suis vu forcé d'admettre lusieurs roositios qui araîtrot eut-être u eu dures au remier abord. Par exemle [...] qu'ue série divergete 'a as de somme. - Exemles de séries EXEMPLE : u remier exemle de série est fouri ar le déveloemet décimal d'u réel. O a e effet : x = M + = où M est la artie etière de x, et les a i des chiffres tels que, m >, a m 9. (Cette coditio a our but d'éviter les écritures décimales avec ue ifiité de 9. Au lieu de, , o a tout simlemet). EXEMPLE : il 'est as difficile de motrer que, our x <, o a x =. Il s'agit d'ue série = x géométrique. a

4 EXEMPLE 3 : o aelle série harmoique la série. Elle diverge. Les démostratios e sot = iombrables, certaies datat du milieu du XVIIème : Démostratio La somme artielle, de à N = k est miorée ar : k = = + k = = k qui ted vers + avec k Démostratio Posos S = k= k et D = S S. O a évidemmet D >. De lus : D D = + = >. Doc la suite (D ) est strictemet croissate et strictemet ositive, doc elle e eut tedre vers, ce qui serait si la suite (S ) covergeait. Doc (S ) diverge. Démostratio 3 O a l( + x) x our x > doc k= k l( + k= k ) = +k l k= k série diverge vers + quad ted vers +. Démostratio 4 Posos S = k= k. O a : S = = avec = + + et k k + k Doc S = + S Si la suite (S ) covergeait vers ue limite S, o aurait : S + S doc /. Démostratio 5 Posos S = k= k. O a : = l (+)! = l(+), doc la! S S = ombre de termes lus etit terme = = Si la série covergeait vers S, o aurait, e assat à la limité : = S S - 4 -

5 Démostratio 6 Pour tout etier, o a : = + k= + k + = doc, e regrouat les termes de la série géométrique ar aquets etre l'idice et, o eut déasser toute quatité doée. Aisi : + ( ) + ( ) + + = 3 Les regrouemets euvet être effectués aussi loi que l'o veut. Démostratio 7 Pour tout etier, o a doc : + ( ) + ( ) ( ) soit S 3+ + S. Si la suite (S ) des sommes artielles covergeait vers S, o aurait S + S. EXEMPLE 4 : our tout x, l'iégalité de Taylor Lagrage doe : e x ( + x + x x! ) M x + (+)! où M est u majorat de e x etre et x. O eut choisir ar exemle M = ex x. Le membre de droite de l'iégalité ted vers quad ted vers +, doc, our tout x : E articulier, =! = e et = ( )! = e e x = = EXEMPLE 5 : o motre das le chaitre FOURIER.PDF que = x! = π 6 et = 4 = π4. Le calcul 9 de ces deux séries costituèret u défi au début du XVIIIème et leur somme fut établie ar Euler. L'exressio remarquable du résultat 'a d'égal que l'étoemet que l'o eut avoir sur la ossibilité de l'établir. Cela laisse faiblemet etrevoir la joie qu'a dû érouver Euler. Plus gééralemet o coaît la valeur de la série somme des iverses de 'imorte quelle uissace aire, mais o e coaît aucue formule our = irratioel). 3 (o sait seulemet deuis 978 qu'il s'agit d'u L'exemle 3 motre qu'il e suffit as que le terme gééral x d'ue série tede vers. C'est ceedat écessaire. E effet, si ue série coverge, alors S S ted vers S S =. Or

6 S S = x. Aisi, la série ( ) diverge et ous 'attribueros aucue valeur à cette somme, cotrairemet à Euler. Il est facile de vérifier que l'esemble des séries covergetes forme u esace vectoriel, et que l'o a = u + v = u + = = v et = λu = λ u. si u est comlexe égal à x + iy, alors la série = coverge si et seulemet si les séries x et y coverget et u = égalemet u = = = u. Cela résulte e effet des théorèmes sur les limites des suites. 3 Proriété de Cauchy = = = = x + i = u = y. O a Raelos la roriété de Cauchy our les suites : ue suite (u ) est covergete si et seulemet si : ε >, N, N,, u u < ε Pour ue série, cette roriété s'exrime ar : ue série ( u ) est covergete si et seulemet si : ε >, N, N,, uk < ε k=+ Preos ar exemle la série harmoique (démostratio 8). Alors, our tout, o a : k=+ k (ombre de termes fois le lus etit) Quad ted vers +, ce miorat ted vers. Si doc ε =, il est imossible de trouver N tel que la roriété de Cauchy soit vérifiée. La série est doc divergete. 4 Itégrales imrores Ue défiitio comarable de covergece eut être osée our les foctios cotiues ar morceaux sur des itervalles autres que les segmets : b Si f est cotiue ar morceaux sur [a, b[, o dit que l'itégrale f(t) dt est imrore (ou a x gééralisée). Elle est covergete si f(t) dt admet ue limite quad x ted vers b, e restat das a b [a, b[. f(t) dt désige alors la valeur de cette limite.l'itégrale est divergete s'il 'y a as de a limite. Ci-dessus, b est évetuellemet ifii. Das le cas d'u itervalle du tye ]a, b], (a évetuellemet ifii), o défiira : - 6 -

7 b f(t) dt = lim x a b f(t) dt si cette limite existe a x et das le cas d'u itervalle du tye ]a, b[, o osera : b f(t) dt = lim (x,y) (a,b) y f(t) dt = lim a x a c f(t) dt + lim x y b y f(t) dt si chacue des deux x c limites existe. c est u oit quelcoque de [a, b]. La covergece des itégrales est souvet lus facile à traiter car o disose arfois de rimitives : EXEMPLE : Soit a > e t dt = lim [ ] x x e t ce qu'o ote arfois [ e t ] = EXEMPLE : EXEMPLE 3 : t dt = lim x [ t] x = [ t] = dt = lim t x [ lt] x = diverge mais ous verros ci-arès des critères de covergece raides à mettre e oeuvre. Par assage à la limite des bores de l'itégrale, o motre facilemet que les roriétés usuelles de l'itégrale sur u segmet sot vérifiées ar les itégrales imrores (liéarité, relatio de Chasles, iégalité de la moyee, chagemet de variables). O redra garde ceedat que, our l'itégratio ar arties our laquelle l'itégrale I uv' est trasformée e la somme [ uv] I u'v, l'itégrale iitiale eut être covergete, alors que, séarémet [ uv] et u'v euvet diverger. Il I I coviet das ce cas d'itégrer ar arties sur des segmets J iclus das I et de e asser à la limite qu'à la fi du calcul. II : Séries à termes ositifs et foctios ositives Critères de covergece Ce aragrahe s'alique aux séries à terme gééral réel de sige costat. Quitte à chager tous les siges, o eut se rameer à des séries à terme gééral ositif. Pour ces séries, o disose des théorèmes de covergece suivats : PROPOSITION : i) Soit ( u ) ue série à termes ositifs ou uls. Alors la série coverge si et seulemet si les sommes artielles sot majorées. Das ce cas, = u = lim + S = Su S. I

8 ii) Soiet ( u ) et ( v ) deux séries à termes ositifs. Si u = O(v ) et si v coverge, alors u coverge. iii) Si ( u ) et ( v ) sot des séries de sige costat, et si u v au voisiage de +, alors u et v sot simultaémet covergetes ou divergetes (o dit que les deux séries sot de même ature). Démostratio : i) La suite des sommes artielles S = u u est ue suite croissate. E effet, S + S = u + est suérieur ou égal à. Cette suite coverge si et seulemet si elle est majorée et alors, elle coverge vers sa bore suérieure. ii) O suose qu'il existe N et M tel que, our N, o ait u Mv. Suosos que la série ( v ) coverge. O a alors : k=n uk M k=n vk M k=n vk = M ( k= N vk vk ) k= car la série ( v ) coverge e croissat vers sa limite. Les sommes artielles uk sot doc k= majorées et o alique le i). Le lus souvet, o cherche directemet ue majoratio u v. Pour qu'ue série à termes ositifs coverge, il suffit de la majorer ar ue série covergete. E reat la cotraosée, our qu'ue série à termes ositifs diverge, il suffit de la miorer ar ue série à termes ositifs divergete. iii) Au voisiage de l'ifii, o a : v u 3v, doc : u = O(v ) et v = O(u ) d'où l'équivalece. EXEMPLE : Cette série est ue série divergete, car so terme gééral est équivalet à qui est ositif, et terme gééral d'ue série divergete. EXEMPLE : Cosidéros la série α. Nous disosos du résultat suivat : Les séries ( α ) coverget si et seulemet si α >. Si α, alors α, et comme la série diverge, il e est de même de α. Si α >, alors o remarque que : = α + α 3 α = α α 4 + α 5 + α 6 + α 7 4 α 4 = α... 4 α - 8 -

9 ( ) + α ( + ) + α ( + ) α ( + ) α ( ) = α ( ) α N E majorat la somme artielle = α ar ue somme artielle aalogue comreat u ombre de termes suérieur à N de la forme + et e utilisat les iégalités récédetes, o a : N = coverge vers α = ( ) = α = ( α ) = ( α ) série géométrique de terme gééral α < qui. Les sommes artielles état majorées, la série = α α coverge. Il faut redre garde que les séries sot des limites et o des sommes fiies, sous eie de coaître des déboires cuisats. Doos de suite u exemle fraat (U autre exemle tout aussi troublat est doé das le III)-4) séries alterées EXEMPLE ). E 655, Wallis doe la formule suivate : π = Il s'agit d'u roduit ifii mais o se ramèe à des séries e reat le logarithme. Nous e chercheros as à motrer cette formule mais ous ous livreros simlemet à quelques calculs élémetaires... et aradoxaux. Cosidéros doc : l( ) = l( ) = l( ) + l(3 ) + l(3 4 ) + l(5 4 ) + l(5 6 ) + l(7 6 ) + l(7 8 ) +... somme de la forme (l = l + l + ). So terme gééral eut s'écrire : + + l = l( + ) + l( + ) = + + O( ) (déveloemet limité de l) = ( ) + O( )) 4 terme de sige costat Comme la série coverge, il e est de même de (l + l + = ). Remarquos maiteat que, état eutre our le roduit, o devrait aussi bie avoir : π = que π = ou π = Mais la formule π = est costitué de roduits , 5 4, 7 6,... tous lus grads que, doc le roduit augmete et est suérieur à, et e saurait coverger vers, qui est strictemet π iférieur à. D'ailleurs, e reat les logarithmes, o trouve : - 9 -

10 l( 3 ) + l( 5 4 ) + l( 7 ( + ) 6 ) +... = + l = () = l = - - = l( + ) série à termes = ositifs dot le terme gééral est équivalet à, terme gééral d'ue série divergete. Aisi, le fait même de surimer le facteur ourtat sas itérêt das u roduit (ou de surimer de la somme l() qui est ul) et de réordoer les termes red la formule divergete. Si au cotraire, o rajoute our obteir la formule , alors les facteurs sot, 3 4, 5 6,... tous iférieurs à, doc le roduit sera iférieur au remier facteur = 4 alors que π est strictemet suérieur à cette valeur. Aburdité égalemet. E reat les logarithmes, le terme gééral ( ) deviet l () = l = l( + ) là aussi terme gééral d'ue série divergete. Pour les foctios, le théorème corresodat s'éoce comme suit, ar exemle das le cas où I = [a, b[. Le lecteur adatera aisémet le résultat our les autres formes ossibles d'itervalles. PROPOSITION : i) Soit f ue foctio cotiue ar morceaux sur I et ositive ou ulle. Alors l'itégrale f coverge si et seulemet si les itégrales f où J arcourt les segmets iclus das J sot J majorées. ii) Soit f et g défiies sur [a, b[, ositives. Si, au voisiage de b, f = O(g) et si g coverge alors f coverge. I iii) Si, au voisiage de b, f g, alors g et f sot de même ature (toutes deux covergetes ou I I toutes deux o divergetes). Démostratio : elle est tout à fait comarable à celle relative aux séries. i) f est la limite des f lorsque les bores de J tedet vers celles de I. Comme f croît avec J, I J cette limite existe si et seulemet si les f sot borés. J ii) Il existe M et c élémet de [a, b[ tels que, our x élémet de [c, b[, o ait : f(x) Mg(x), et doc : x x b x f(t) dt M g(t)dt M g(t)dt uisque g(t)dt est ue foctio croissate de x c c c c b c majorée ar sa limite g(t)dt. E rajoutat f(t)dt qui est u ombre fii, o voit que la quatité c a f(t)dt est ue foctio croissate de x est majorée, doc covergete. I J I a x

11 Le lus souvet, o cherche directemet ue majoratio f g au voisiage de b. Pour que l'itégrale d'ue foctio ositive coverge, il suffit de la majorer ar ue foctio dot l'itégrale coverge. E reat la cotraosée, our qu'ue itégrale d'ue foctio ositive diverge, il suffit de la miorer ar ue foctio ositive dot l'itégrale diverge. iii) Il suffit de remarquer que sur u voisiage [c, b[ de b, o a u ecadremet du tye g f 3g. Si l'itégrale de g coverge, il e est de même de celle de 3g et doc de f, d'arès i). De même, si l'itégrale de f coverge, celle de g aussi. Comaraiso série-itégrale Début de artie réservée aux PSI/PSI* L'aalogie etre série et itégrale imrore aaraît de maière ecore lus aarete das le théorème suivat : THEOREME : Soit f ue foctio ositive décroissate sur [,+[, cotiue ar morceaux sur tout itervalle [,x]). Alors : i) la série de terme gééral w = f(t) dt f() est covergete. ii) la série ( f()) coverge si et seulemet si l'itégrale f(t) dt coverge. E outre, Démostratio : i) f état décroissate ositive coverge vers ue limite l e +. Pour tout, o a : f() f(t) dt f( ) f(t) dt f() f( ) f() Il suffit doc de rouver que la série ( f( ) f()) coverge, or les sommes artielles de cette série valet f(k ) f() = f() f() qui coverge vers f() l. O remarquera que : k= w w = f(t) dt f() k= Aisi, la différece etre l'itégrale artielle sur [,] et la somme artielle est-elle covergete. ii) Suosos maiteat que f coverge. O a alors : k f(k) f(t) dt = k= k= f(t) dt f(t) dt k doc la série coverge (les sommes artielles sot majorées). Réciroquemet, si la série coverge, o eut majorer les itégrales artielles. Si x est u réel de artie etière, o a : - -

12 x f(t) dt + + k + f(t) dt = f(t) dt f(k ) = f(k) f(k) k= k= k= k= k Comme l'itégrale artielle est ue foctio croissate de x et majorée, elle coverge. O a efi l'ecadremet : + f(t) dt k= f(k) f() + f(t) dt Ci-dessous les grahiques ermettet d'illustrer la démostratio : f(k) f(t) dt k= f(t) dt f(k) k= Les termes w sot les triagles curviliges aaraissat das la figure de gauche au dessus des rectagles. Si o les délace das la même coloe [,] [, f()], il aaraît clairemet que toute somme artielle des w est majorée ar f(). EXEMPLE : la série harmoique ( ) diverge (démostratio 9) car elle est de même ature que l'itégrale de dt. Ceedat, la différece etre la somme artielle et l'itégrale de à t coverge, ce qui ermet d'écrire : = l() + C + o() où C est ue costate, aelée costate d'euler. Ue valeur arochée est

13 EXEMPLE : o eut égalemet rocéder à des ecadremets e cas de foctio croissate. Cosidéros ar exemle l(!). O a : l(t) dt l() + l(t) dt l() ( )l( ) l() (+)l(+) l() O somme esuite les iégalités, de à our l'iégalité de gauche, et de à our celle de droite : l() + l(!) (+)l(+) e e! (+) + e Comme (+) + = ex[ (+)l(+)] = ex[ (+)l() + (+)l( + )] = ex[ (+)l() + (+)( + o( ))] = ex[ (+)l() + + o()] e! o e déduit que e est comris etre e et e qqc qui ted vers. Par des méthodes u eu lus! comliquées, o eut motrer que e π, ou ecore que! e π, ou efi que l(!) = l() + l() + l(π) + o() (Formule de Stirlig). Fi de la artie réservée aux PSI/PSI*. Retour à la artie commue PSI/PC 3- Foctios et séries de réferece Pour voir si ue série à termes ositifs ou ue itégrale imrore d'ue foctio ositive coverge, o red u équivalet our se rameer à ue exressio lus simle, servat de référece. Les cas les lus fréquets que l'o obtiet figuret ci-dessous. O vérifiera aisémet, e calculat ue rimitive que : α dt coverge si et seulemet si α > t diverge si et seulemet si α α dt coverge si et seulemet si α < t diverge si et seulemet si α a dt coverge si et seulemet si α < α t t t diverge si et seulemet si α e αt dt coverge our tout α > l(t) dt coverge - 3 -

14 = α coverge si et seulemet si α > diverge si et seulemet si α. Le résultat sur les séries a été démotré lus haut La série ci dessus s'aelle série de Riema. Elle sert souvet de série de référece our voir si ue série à termes ositifs coverge. EXEMPLE : P(t) dt où P est de degré et Q de degré m. Q(t) a E suosat Q o ul sur [a, +[, le seul roblème de covergece se ose e +. O a alors P(t) Q(t) x m. L'itégrale coverge si et seulemet si m >. EXEMPLE : Trouver les valeurs de x our lesquelles Γ(x) coverge, avec Γ(x) = E, e t.t x t x = t x dot l'itégrale coverge si et seulemet si x >. e t t x dt. E +, o a e t.t x t uisque e t.t x+ ted vers quad t ted vers +. Doc l'itégrale coverge e + our tout x. Aisi, Γ(x) est défii sur + *. O vérifiera que Γ(x+) = x Γ(x) et doc ar récurrece que, our etier, Γ(+) =!. Aisi, Γ est ue extesio aux réels strictemet ositifs de la factorielle. Voici le grahe de la foctio Γ etre 5 et 5, obteu avec MAPLE : O O eut s'étoer d'u tel grahe alors que ous avos vu que Γ 'était défii que our x >. E effet, o y voit Γ défii our les valeurs égatives o etières de x. E fait, o a rologé Γ aux valeurs égatives, ar exemle au moye de l'u des rocédés suivats : Das la relatio Γ(x) = Γ(x+), le membre de droite est défii our x élémet de ],[ ],+[. x O eut doc utiliser cette relatio our défiir Γ(x) sur ],[. Mais rereat la même relatio - 4 -

15 avec l'extesio de Γ, le membre de droite est cette fois défii sur ], [ ],[ ],+[, ermettat d'étedre Γ à ], [. De roche e roche, o défiit aisi Γ sur tout itervalle ], [. O eut aussi écrire (la coaissace du chaitre "Suites et Séries de foctios" est écessaire ici) : Γ(x) = e t t x dt = e t t x dt + e t t x dt = = ( t)! t x dt + = ( t) t x dt + e t t x dt =! ( ) = = (+x)! + e t t x dt exressio qui est défiie our tout x réel o etier égatif. e t t x dt avec covergece ormale de la série sur [,] Voici ue curieuse utilisatio de la foctio Γ : Cosidéros... ex( x... x ) dx dx... dx = ex( t ) dt Si o asse e coordoées shériques, x x = r avec r variat de à l'ifii. L'élémet de volume sera égal à dr aire de la surface de la shère S (r) = {(x,..., x ), x x = r }. Par homothétie de cetre de raort r, la surface de cette shère est égale à r aire de S (). (O a S (r) = πr et S (r) = 4πr ). O a doc :... ex( x... x ) dx dx... dx = S () ex( r ) r dr Posos t = r. O a ex( r ) r dr = ex( t) t / dr = Γ(/). O a doc fialemet : ex( t ) dt = S () Γ(/) Pour =, cette formule corresod à ex( t ) dt = S () Γ() = π, doc : ex( t ) dt = π formule qu'o recotre égalemet sous la forme t ex( ) dt = π - 5 -

16 O e déduit égalemet que π = S () Γ(/) π Γ(/). Pour = 3, o obtiet : π3 = π Γ(3/) Γ(3/) = et doc que l'aire de la shère uité de est π = Γ(/) Γ(/) = π Motros efi la formule de Stirlig :! e Séries de foctios" SUITESF.PDF est écessaire ici). O écrit :! = Γ(+) = e t t dt = = e ex( u ) ( + u ) ex( u + l( + u )) du L'itégrale est de la forme f (u) du avec : f (u) = si u < = ex( u + l( + u )) our u π (la coaissace du chaitre "Suites et du e faisat le chagemet de variable t = + u Quad ted vers +, our u fixé, f (u) sera égal à ex( u + l( + u )) our assez grad, de limite ex( u ). O vérifiera e outre que, our tout et tout u, f (u) ϕ(u) avec ϕ itégrable défiie ar : ϕ(u) = ex( u ) our u = (+u) ex( u) our u Le théorème de covergece domiée ermet alors de coclure que l'itégrale ted vers u ex( ) du, et dot la valeur est π comme vu récédemmet. III : Séries ou itégrales quelcoques Das ce aragrahe, o s'attache à détermier la covergece de deux tyes de séries, les séries dites absolumet covergetes, et les séries dites alterées. O aborde aussi le cas des itégrales absolumet covergetes. Absolue covergece DEFINITION Ue série ( u ) est dite absolumet covergete si ( u ) coverge. Ue itégrale f est dite absolumet covergete si I itégrable sur I. I f coverge. O dit aussi que f est - 6 -

17 Cette otio 'a évidemmet d'itérêt que our les séries à coefficiets (ou des foctios à valeurs) comlexes ou réels de sige o costats PROPOSITION : Ue série absolumet covergete est covergete. Ue itégrale absolumet covergete est covergete. Démostratio : Si u est à coefficiets comlexes, o écrit u = x + iy, et comme x et y sot iférieurs ou égaux à u, les séries obteues e reat les arties réelles et imagiaires sot elles mêmes absolumet covergetes. Il suffit doc de raisoer sur. O suose doc u réel. O ose : u + = u si u = sio u = u si u = sio O a alors : u = u + + u u = u + u Les séries ( u + ) et ( u ) sot des séries à termes ositifs ou uls, majorées ar la série covergete ( u ). Elles sot doc covergetes Il e est de même de la série ( u ), différece de ces deux séries. O a ar ailleurs, e majorat la valeur absolue des sommes artielles et e assat à la limite : = u = u Pour f à valeurs réelles, o rocède de maière aalogue e osat : f + = Su(f,) = (f + f ) f = Su( f,) = ( f f) de sorte que f = f + + f et f = f + f. Si f est itégrable, il e est doc de même de f + et f. O a alors : f(t) dt = f + (t) dt f (t) dt I I I O a ar ailleurs : f(t) dt = f + (t) dt + f (t) dt I I I de sorte que I f(t) dt I f(t) dt - 7 -

18 Si I = [a, b[, la limite lim x b a x 'existet : lim x b f + (t) dt, lim a x b a x f(t) dt eut fort bie exister sas qu'aucue des limites suivates x f (t) dt, lim x f(t) dt. O eut très bie avoir ar exemle : x b a x x lim x b f + (t) dt = lim a x b f (t) dt = + a alors que la différece coverge. De même our les séries. Il existe des séries qui sot covergetes sas être absolumet covergetes. Pour ces séries, o a + u = u = +, mais la série des différeces coverge. Nous verros que c'est le cas de ( ) + qui coverge vers l(). O aelle = semi-covergetes de telles itégrales ou séries. L'absolue covergece est ue coditio suffisate de covergece. Démostratio our les séries : Début de artie réservée aux PSI/PSI* Si la série ( u ) est absolumet covergete, elle vérifie le critère de Cauchy, à savoir : = = O e déduit qu'a fortiori : ε >, N, N,, k=+ u k < ε ε >, N, N,, uk < ε k=+ Doc la série ( u ) vérifie le critère de Cauchy et est covergete. Fi de la artie réservée aux PSI/PSI*. Retour à la artie commue PSI/PC Afi de voir si ue série ou ue itégrale quelcoque est covergete, o regarde si elle est absolumet covergete, se rameat aisi à des séries à termes ositifs ou à des foctios ositives. O eut alors aliquer les méthodes d'équivalets, de majoratios, de mioratios, de comaraiso avec les séries ou les itégrales de Riema. Les séries absolumet covergetes formet u esace vectoriel. E effet, si ( u ) et ( v ) sot absolumet covergetes, il e est de même de la somme, uisque : u + v u + v et la série somme, e valeur absolue, coverge, état majorée ar ue série covergete. La vérificatio our le roduit ar u scalaire est facile. Il e est de même des foctios itégrables. EXEMPLE : - 8 -

19 ( ( )+ ) est absolumet covergete. O eut même e calculer la somme. E effet, ous avos doé lus haut la valeur de = artielles avat de redre leurs limites) que : air = = () = 4 = = π. O e déduit (au besoi e cosidérat les sommes 6 = π 4 imair = = air = π 6 π 4 = π 8 ( ) + = = imair air = π 8 π 4 = π EXEMPLE : si(x) x est itégrable sur [, +[ car si(x) x x qui est itégrable sur [,+[. Par cotre si(x) 'est as itégrable sur [,+[. E effet : x (k+)π si(x) (k+)π dx x (k+)π kπ si(x) dx = terme gééral d'ue série divergete (k+)π kπ Ceedat, si(t) dt coverge car : t x si(t) dt = t cos(t) x t x cos(t) t dt Le crochet admet ue limite et la foctio cos(t) t est, elle, itégrable, doc le membre de droite admet ue limite. De même, cos(t ) 'est as itégrable sur [,+[, mais cos(t ) dt existe (faire le chagemet de variable u = t uis ue itégratio ar artie). EXEMPLE 3 : Pour z comlexe de artie réelle ositive, o a e t t z ose alors Γ(z) = e t t z dt, défiie our z comlexe tel que Re(z) >. = e t t Re(z), itégrable our Re(z) >. O - Covergece e moyee, e moyee quadratique L'esemble C(I) des foctios cotiues itégrables sur I à valeurs comlexes forme u esace vectoriel. E effet, l'iégalité triagulaire ermet de motrer que, si f et g sot itégrables, il e est de même de f + g. Si o ose : - 9 -

20 N (f) = I f(t) dt N défiit alors ue orme sur C(I) dite orme de la covergece e moyee. f est dite de carré itégrable si I f(t) dt existe. Si f et g sot de carrés itégrables, alors fg est itégrable. E effet, our tout segmet J, l'iégalité de Schwarz ermet de coclure que : f(t)g(t) dt f(t) dt g(t) dt J J J E reat les limites des bores de J, o voit que cette iégalité reste valable sur I. O e déduit que l'esace des foctios cotiues de carrés itégrables est u sous-esace vectoriel de C(I). E effet, si f et g sot de carrés itégrables, il e est de même de f + g, uisque (f + g) = f + fg + g et que toutes les foctios du secod membre sot itégrables. O ose alors : N (f) f(t) dt I N est ue orme aelée orme de la covergece e moyee quadratique. L'iégalité de Schwarz doe : ou ecore : I f(t)g(t) dt I f(t)g(t) dt <f,g> N (fg) N (f)n (g) I f(t) dt I g(t) ce qui exrime que le roduit scalaire est ue forme biliéaire cotiue our la orme N. 3- Série roduit Début de artie réservée aux PSI/PSI* Soit ( u ) et ( v ) deux séries. O aelle série roduit (ou roduit de Cauchy) la série ( w ) de terme gééral : w = u v + u v u k v k u v = uk v k k= PROPOSITION : Si les séries ( u ) et ( v ) sot absolumet covergetes, il e est de même de la série ( w ) et l'o a : Démostratio o exigible Démostratio : Si les séries sot à termes ositifs, o a : et il suffit de asser à la limite. N = = N w = u = v = u v w u = N = N = N v = dt - -

21 Si ( u ) et ( v ) sot absolumet covergetes, alors, la série ( z ) défiie comme série roduit de ( u ) et ( v ) coverge. Comme w est iférieur ou égal à z, (car w = uk v k alors que k= z = k= u k v k, la série ( w ) est absolumet covergete. Il reste à motrer que sa somme est le roduit des sommes des deux séries. O a e effet : N = N u = N v w = u v q = (,q) E où E = {(,q) +q >,, q }. La somme est majorée ar : (,q) E N u v q = = N u = N v z = et cette derière exressio ted vers e vertu du résultat récédet sur les séries roduit à termes ositifs. Les résultats suivats sot doés à titre uremet idicatif our motrer que la situatio est mois triviale qu'il e araît : Il suffit que l'ue des séries u ou v soit absolumet covergete et l'autre covergete our que la série roduit w soit bie égale au roduit des deux séries. Si les deux séries sot covergetes, mais qu'aucue 'est absolumet covergete, il se eut que ( w ) diverge. Preos ar exemle u = v = ( ) dot ous motreros tout à l'heure la covergece, our. La série roduit est défiie ar : w = k= ( ) ( ) or ( ) est majoré ar 4, doc sa racie est majorée ar. O a doc w qui est mioré ar ( ) et qui e ted as vers quad ted vers +. Doc la série roduit diverge. Si u coverge, il existe ue série v covergete telle que w diverge. Si les trois séries u, v et w sot covergetes, la série roduit w est bie égale au roduit des deux séries. Si les deux séries u et v coverget, et si u = O( ) et v = O( ), alors la série roduit w soit bie égale au roduit des deux séries. Fi de la artie réservée aux PSI/PSI*. Retour à la artie commue PSI/PC 4 Critère de D'Alembert Voici efi u critère de covergece, articulièremet adaté our les séries dot les termes utiliset des uissaces ou des factorielles. Soit ( u ) ue série à termes o uls. Alors : - -

22 (i) si lim + u + u = l <, la série est absolumet covergete. u (ii) si lim + = l >, la série est diverge. + u Das tous les autres cas, o e sait as coclure. O otera que les cas où l'o e sait as coclure sot fréquets, uisqu'il y figure toutes les séries de Riema, covergetes ou divergetes! Démostratio : (i) Soit q comris etre l et. Il existe N tel que, our N, o ait : u + u q doc u u N q N et u = O(q ). La série ( u ) se trouve majorée ar ue série géométrique de raiso q iférieure à, doc covergete. Elle est doc elle même covergete. (ii) Soit q comris etre et l. Il existe N tel que, our N, o ait : u + u q et doc ici, o a u u N q N. Comme lim q = +, il e est de même de u est la série diverge. + EXEMPLE : rereos la série de l'exoetielle, mais aliquée aux comlexes. u = z!. Alors : u + u = La série = cette série. 5 Séries alterées z qui, our tout z, ted vers. + z est doc covergete our tout z. O aelle exoetielle comlexe la somme de! O dit que ( u ) est alterée si ( ) u est de sige costat. PROPOSITION : Soit ( ( ) u ) ue série alterée dot le terme gééral u est ositif et décroît et ted vers. Alors la série coverge. E outre, le reste R est majoré e valeur absolue ar u + et du sige de u +. Démostratio : O suose ar exemle u du sige de ( ), et doc de la forme ( ) v avec v ositif. O a alors : S + S = u + + u + = v + v + S + S = u + + u = v + + v - -

23 Doc la suite (S ) est décroissate. La suite (S + ) est croissate, et S S + = v +. Ces deux suites sot doc adjacetes et ossèdet ue limite commue S, ce qui sigifie que la série iitiale coverge vers S. Pour ue telle série, o a, our tout : S + S S Doc u + = S + S R = S S. De même, R = S S S S = u Il résulte de cette roositio que, our tout α ositif, la série ( ( ) ) coverge. α EXEMPLE : la série ( ( ) ) coverge. Soit L sa limite. O a : k= ( ) k k = k= k k= k or P + I = k= et P = k= I P = l() + C + o() où C est la costate d'euler. k k = (l() + C + o()) I = l() + l() + C + o() I P = l() + o() de sorte que la limite cherchée est L = l() = ( ) k k= k A titre de curiosité, où est l'erreur das le raisoemet suivat? Nous avos : l() = O ermute les termes de faço à ce que, our imair, le terme soit lacé derrière le terme, et our air, le terme soit lacé devat le terme. O obtiet alors : + l() = k + k+ 4k+... = k + 4k+... = [ + = l()??? k + k+... ] EXEMPLE : Raelos la formule de Taylor avec reste itégral our ue foctio de classe C

24 f(b) = f(a) + (b a)f '(a) + (b a) f"(a) (b a) f( ) b (a) ( )! + (b t) a Preos f(x) = l(+x), a =, b =. O a f '(x) = formule doe doc : l() = + ( ) et l'itégrale est majorée e valeur absolue ar f() (t) ( )! dt +x et, ar récurrece f(k) k (k )! (x) = ( ) (+x) k. La ( t) ( ) (+t) dt ( t) dt = qui ted vers. Doc : EXEMPLE 3 : O eut ecore rocéder comme suit : t l() = ( ) k k= k Soit I = ( ) +t dt. O a I = l() et o eut écrire I sous la forme : I = ( ) t (+t) t dt = ( ) t +t dt + I = ( ) + I I = ( ) + ( ) I = l() ( ) k k= k E outre, o a I t dt = qui ted vers, doc, e assat à la limite, o obtiet : + = l() ( ) k k= k EXEMPLE 4 : La même méthode s'alique à : I = ( ) t +t dt = ( ) t (+t ) t +t dt = ( ) t dt + I = ( ) + I avec I = +t dt = π 4 I = ( ) + ( ) I = π 4 k= ( ) k k E outre, o a I t dt = qui ted vers, doc, e assat à la limite, o obtiet : + ( ) k = π 4 k= k ou ecore π 4 = k= ( ) k k EXEMPLE 5 : Plus gééralemet, la même méthode ermet de motrer que, our tout α strictemet ositif : - 4 -

25 t α +t α dt = k= Il suffit de redre I = ( ) +t dt. O aura I α = ( ) k kα+ ( ) α α+ + I. EXEMPLE 6 : Le rogramme e révoit que deux situatios où l'o sait coclure sur la covergece de séries à termes quelcoques : les séries absolumet covergetes, et les séries alterées. Il est ceedat ossible de coclure das d'autres cas, mais c'est lus difficile. Nous ous boreros à u exemle : = si(x) Pour x mod π, Posos U = si(x) si(x) de sorte que : k= si(kx) k = k= U k U k k = U + U k k= k U k k+ = U k= = U k k= k U k k= k = U k k= k U k k= k+ U k k(k+) O a utilisé la méthode d'abel cosistat à faire ue "sommatio ar arties", comarable à ue itégratio ar arties. O remarque alors que, x état fixé, (U ) est ue suite borée. E effet : U = Im ( + e ix + e ix e ix ) = Im si (+)x si x e(+)ix e ix = si x U si x Doc, quad ted vers +, U ted vers. Par ailleurs, la série U k k(k+) covergete. Doc la série si(kx) coverge. k est absolumet Aexe I : Absolue covergece, semi-covergece La série ( ) est covergete sas être absolumet covergete. Elle est dite semi-covergete. E 89, das u article sur les séries trigoométriques, Dirichlet relève ue erreur chez Cauchy. Das u article de 83, ce derier utilise le fait que, si le quotiet de u sur si(x) ted vers, alors u coverge uisque si(x) coverge. L'erreur, commuémet commise de os jours ar tout étudiat débutat das l'étude des séries, est de croire que u coverge lorsque la suite (u ) est équivalete à la suite (v ) et que v coverge. Raelos que our établir ce résultat, ous avos utilisé le fait que les séries étaiet ositives. Dirichlet doe u cotre-exemle : ( ) coverge, - 5 -

26 mais ( ) ( ) ( + ) diverge, alors même que le quotiet des termes de même rag ted vers. E 854, das so mémoire sur les séries trigoométriques, Riema défiit à la suite de Dirichlet deux tyes de séries, celles que ous ommos maiteat série absolumet covergete et semicovergete : E javier 89, arut das le Joural de Crelle u mémoire de Dirichlet, où la ossibilité de la rerésetatio ar les séries trigoométriques se trouvait établie e toute rigueur our les foctios qui sot, e gééral, suscetibles d'itégratio, et qui se résetet as ue ifiité de maxima et de miima. Il arriva à la découverte du chemi à suivre our arriver à la solutio de ce roblème, ar la cosidératio que les séries ifiies se artaget e deux classes suivat qu'elles restet covergetes ou o covergetes, lorsqu'o red leurs termes tous ositifs. Das les remières, les termes euvet être itervertis d'ue maière quelcoque ; das les deux autres, au cotraire, la valeur déed de l'ordre des termes. Si o désige, e effet, das ue série de secode classe, les termes ositifs successifs ar a, a, a 3,..., et les termes égatifs ar b, b, b 3,..., il est clair que a, aisi que b, doit être ifiie ; car, si ces deux sommes étaiet fiies l'ue et l'autre, la série serait ecore covergete lorsqu'o doerait à tous les termes le même sige ; si ue seule était ifiie, la série serait divergete. Il est clair maiteat que la série, e laçat les termes das u ordre coveable, ourra redre ue valeur doée C ; car, si l'o red alterativemet des termes ositifs de la série jusqu'à ce que sa valeur soit lus grade que C, uis des termes égatifs jusqu'à ce que sa valeur soit moidre que C, la différece etre cette valeur et C e surassera jamais la valeur du terme qui récède le derier chagemet de sige. Or les quatités a, aussi bie que les quatités b, fiissat toujours ar deveir ifiimet etites our des valeurs croissates de l'idice, les écarts etre la somme de la série et C deviedrot ecore ifiimet etits, lorsqu'o rologera assez loi la série, c'est-à-dire que la série coverge vers C. C'est aux seules séries de la remière classe que l'o eut aliquer les lois des sommes fiies ; elles seules euvet être cosidérées comme l'esemble de leurs termes ; celles de la secode classe e le euvet as : circostace qui avait échaé aux mathématicies du siècle derier, ricialemet ar la raiso que les séries qui rocèdet suivat les uissaces ascedates d'ue variable aartieet, gééralemet arlat (c'est-à-dire à l'excetio de certaies valeurs articulières de cette variable), à la remière classe. Nous avos vu lus haut qu'e ermutat l'ordre des termes de la série ( ), o eut la faire coverger ou bie vers l() ou bie vers l(). L'exlicatio de ce héomèe est exliqué cidessus ar Riema. Il résulte du fait que la série 'est as absolumet covergete. La somme va déedre de l'ordre das lequel sot ris les termes. Ce héomèe e se roduit as avec les séries absolumet covergetes. Aexe II : La formule de Stirlig das le calcul d'etroie L'etroie d'u système das u certai état est défiie ar S = k lw, où k est ue costate et W le ombre de cofiguratios ermettat d'obteir l'état cosidéré. Plus ce ombre est imortat, lus S est élevé. Aisi, S doe ue mesure de la robabilité de l'état cosidéré, l'état le lus robable corresodat à u maximum. O red u logarithme car o souhaite que l'etroie de la réuio de deux systèmes idéedats soit S = S + S, avec S i etroie de chaque système. Or s'il y a W cofiguratios our le remier système et W our le deuxième, le ombre de cofiguratios our la - 6 -

27 réuio est W W. L'utilisatio d'u logarithme ermet de covertir ce roduit e somme. Efi, le choix de la valeur de la costate k est lié à des cosidératios thermodyamiques qui imortet eu ici. Cosidéros u système costitué de N articules, ouvat se réartir das iveaux, cavités, aquets... Aelos x i le ombre de articules das le i ème aquet, et i = x i la roortio de ces N articules. E rageat les N articules das u ordre arbitraire et e laçat les x remières das le N! remier aquet, les x suivates das le deuxième,..., o obtiet W =. E effet, il y a N! x!...x! faços de rager les N articules das l'ordre, mais armi celles-ci, les x! ermutatios des remières articules doerot la même cofiguratio, de même que les x! ermutatios des suivates, etc... O obtiet ue exressio de S sous forme de foctio cotiue et même différetiable e utilisat la formule de Stirlig : De même : N! N N e N πn l(n!) = NlN N + ln + l(π) + o() l(x i!) = x i lx i x i + lx i + l(π) + o() S k = lw = NlN N + ln + l(π) (xi l(x i ) x i + i= lx i + l(π)) + o() = NlN + ln l(π) (xi l(x i ) + i= lx i) + o() car i= Or tous les termes sot égligeables devat N sauf NlN et xi l(x i ) i= xi = N S k = NlN xi l(x i ) + o(n) i= = NlN i= Ni l(n i ) + o(n) = NlN i= = N ( i l( i ) + o()) (foctio f) i= Ni ln Ni l( i ) + o(n) i= N état e gééral extrêmet grad, cela coduit à défiir l'etroie comme état : S = Nk i l( i ) i= Cette exressio ermet de doer la réartitio statistique de Boltzma d'ue oulatio de articules e foctios de leur éergie. Suosos que les aquets das lesquelles o réartit les articules corresodet à iveaux d'éergie ar articule E,..., E. L'éergie moyee d'ue articule est alors, comte teu de la réartitio statistique, E E, et l'éergie totale du - 7 -

28 système est E = N( E E ). Comte teu du fait que =, ous cosidèreros que E est foctio des variables,...,. A savoir : E = N [ E ( - )E ] De même l'etroie S est foctio des variables,...,, à savoir : S = Nk [ i l( i ) + ( - ) l( - ) ] i= La quatité ds de est défiie à l'équilibre thermique comme état, où T est la temérature du milieu. T Or, our i comris etre et, o a d'ue art : S = Nk [ l( i ) + l( - ) ] = Nk l( i ) i et d'autre art : S = ds i de E = i T N [E i E ] l( i ) = E E i kt l( i ) + E i kt = l( ) + E = Cte idéedat de i kt i ex( E i ) = C Costate idéedat de i kt i = C ex( E i kt ) E La costate C est détermiée de faço que =, autremet dit C ex( i i= kt ) =. O eut vérifier les résultats obteus de la faço suivate : E = N i= S = Nk i= E i E i = NC ex( i i= kt ) E i de sorte que ds de = comme attedu. T E i l( i ) = NCk ex( i i= kt ) E i kt = NC T E ex( i i= kt ) E i = E T Ue autre démostratio de cette réartitio est doée das le chaitre FPLSVAR.PDF. Aexe III : La trasformée de Lalace Défiitio : O se lace sur l'esace des foctios f cotiues ar morceaux sur, ulles sur ],[. La trasformée de Lalace de f est : L(f)() = e t f(t) dt = F() - 8 -

29 où est u comlexe. Das la luart des cas, f sera borée de sorte que F est défiie au mois sur le demi-la comlexe Re() >, ce qui est égalemet le cas si f est majoré ar u olyôme. L est clairemet liéaire. Table de trasformée : La table qui suit se dresse aisémet. δ désige la distributio de Dirac e, défiie das le aragrahe suivat. u est la foctio d'heaviside ou foctio échelo, ulle sur ],[ et égale à sur ],+[ (la valeur e u oit de discotiuité d'ue foctio cotiue ar morceaux imorte eu). f(t) F() δ u(t) u(t a) e a t t! + e at + a e iωt iω = + iω + ω cos(ωt) + ω si(ωt) ω + ω Il est bie etedu que toutes les foctios sot suosées être ulles our t égatif. Par exemle, la foctio cos(ωt) ci-dessus désige e fait la foctio u(t)cos(ωt), ulle our t < et égale à cos(ωt) our t >, doc ayat ue discotiuité e. Par ailleurs, o vérifiera aisémet que : L(e at f)() = L(f)( + a) = F( + a) doat bie d'autres trasformées, et illustré das la table récédete ar : L(e at )() = L(e at u(t))() = L(u)( + a) = + a O a égalemet : L(tf)() = te t f(t) dt = d d e t f(t) dt = d d e t f(t) dt e vérifiat les hyothèses de domiatio adéquates = d d L(f)() - 9 -

30 C'est aisi que L(tsi(t))() = ( + ) Distributio de Dirac : Ue résetatio de la trasformée de Lalace e eut se faire de faço totalemet cohérete qu'e itroduisat les distributios, mises au oit ar Lauret Schwartz das les aées 95. Ue distributio est simlemet ue forme liéaire sur u esace de foctios. Sas etrer das les détails tro techiques, ous doeros comme seul exemle la distributio de Dirac. a état u réel ositif ou ul, cosidéros la foctio ar morceaux suivate : f h (t) = si t < a f h (t) = h si a < t < a + h f h (t) = si t > a + h a a+h f h corresod à ue imulsio, d'autat lus brève et itese que h est etit. L'aire coteue sous la courbe vaut. La trasformée de Lalace de cette imulsio vaut : L(f h )() = h a+h e t dt = e a e (a+h) dot la limite vaut e a quad h ted vers. La limite h a aisi obteue est aelée trasformée de Lalace de la distributio de Dirac δ a e a. δ a est ue forme liéaire qui, à toute foctio g, associe g(a). Par covetio de otatio et ar aalogie avec le calcul itégral, au lieu de oter g(a) = δ a (g), o ote, même si δ a 'est as ue foctio e tat que telle : g(a) = g(t) δa dt = g(t) δa dt si g est ulle sur ],[. Cette otatio se justifie ar le fait que, si g est cotiue, alors : g(a) = lim h g(t) fh (t) dt comme o ourra le motrer e exercice, de sorte que δ a est, d'ue certaie faço, la limite de f h quad h ted vers. Cette covetio d'écriture est e outre bie cohérete avec : L(δ a )() = e a = δ a (e t ) = e t δ a dt O remarque ar ailleurs que la rimitive de f h s'aulat sur ],[ est de la forme : - 3 -

31 a a+h Quad h ted vers, o obtiet la foctio échelo e a, t u(t a) : a Nous diros, qu'au ses des distributios, u(t a) est ue rimitive de δ a et que δ a est la dérivée de u(t a). Nous adoteros les otatios suivates : ' ou d désige la dérivée usuelle de sorte que u', dt dérivée usuelle de la foctio de Heaviside, est ulle sur * et o défiie e. D désige la dérivée au ses des distributios, de sorte que Du = δ. Si f est ue foctio cotiue C ar morceaux, alors Df = f '. Si f est cotiue ar morceaux et C ar morceaux, ous verros ci-arès commet est défii Df. Trasformée d'ue dérivée : Soit f cotiue, C ar morceaux, telle que f soit ulle sur ],]. O a : L(f ')() = e t f '(t) dt = e t f(t) dt e itégrat ar arties = L(f )() Qu'e est-il our ue foctio cotiue ar morceaux, C ar morceaux? O remarquera, qu'au ses des distributios, avec f = u, o a : L(Du)() = L(δ )() = = L(u)() uisque L(u)() = Cosidéros maiteat ue foctio ayat u ombre fii de discotiuité aux oits d'abscisse a i avec a < a <... < a. Notos s i = f(a + i ) f(a i ) = lim f(t) lim f(t) le saut de f e a i. Posos : x a i x a i x > a i x < a i g(t) = f(t) s u(t a ) s u(t a )... s u(t a ) g est obteue à artir de f e recollat de faço cotiue les morceaux discotius du grahe de f. Vérifios e effet que g est cotiue, ar exemle e a. O a : - 3 -

32 lim g(t) = lim f(t) s alors que lim g(t) = lim f(t) x a x a x a x a x > a x > a x < a x < a La différece etre les deux limites vaut lim f(t) lim f(t) s qui est ul ar défiitio de s. O x a x a x > a x < a rocède de même aux autres a i. f état ar ailleurs C ar morceaux, il e est de même de g, mais g est de lus cotiue, de sorte que la formule suivate est valide our g : L(g')() = L(g)() L(g')() = L(f(t) s u(t a ) s u(t a )... s u(t a ))() e remlaçat g ar sa défiitio L(g')() = [ L(f)() s e a e a s... s e a ] e utilisat la liéarité de L et la valeur de L(u(t a)) L(g')() = L(f)() s e a s e a... s e a e déveloat L(g')() = L(f)() s L(δ a )() s L(δ a )()... s L(δ a )() e utilisat la valeur de L(δ a ) L(f)() = L(g')() + s L(δ a )() + s L(δ a )() s L(δ a )() = L(g' + s δ a + s δ a s δ a )() e utilisat la liéarité de L O recoaît das g' + s δ a + s δ a s δ a la dérivée de f = g + s u(t a ) s u(t a ) à coditio de redre cette dérivatio au ses des distributios, c'est à dire de dériver les échelos corresodats aux discotiuités de f e des distributios de Dirac. Si f ' = g' e dehors des a i, o a Df = g' + s δ a + s δ a s δ a = f ' + s δ a + s δ a s δ a. Sous cette coditio, la relatio : reste valable. L(Df )() = L(f)() EXEMPLES : Das les exemles, ous avos rajouté systématiquemet u(t) e facteur our bie raeler que les foctios sot ulles our t < : Preos f(t) = u(t)si(ωt), cotiue sur. O a Df = f '(t) = ωu(t)cos(ωt) or L(u(t)si(ωt))() = ω + ω ω L(ωu(t)cos(ωt))() = + ω L(u(t)cos(ωt))() = ce qui est bie vérifié. + ω Preos f(t) = u(t)cos(ωt) discotiue e avec u saut égal à. O a, au ses des distributios, Df = f '(t) + δ = δ ωu(t)si(ωt). or L(u(t)cos(ωt))() = + ω L(δ ωu(t)si(ωt))() = + ω = ωl(u(t)si(ωt))() - 3 -

33 L(u(t)si(ωt))() = ω ce qui est bie vérifié. + ω Preos f(t) = u(t)e at, discotiue e, avec u saut de. Sa dérivée au ses des distributios, vaut Df = f '(t) + δ = δ au(t)e at. Doc : L(δ au(t)e at ) = L(u(t)e at ) al(u(t)e at ) = L(u(t)e at ) L(u(t)e at ) = ce qui est bie le cas. + a Foctio de trasfert d'u système : U système, automatique, mécaique, ou électrique, reçoit e etrée ue commade e(t) déedat du tems, et fourit e sortie u sigal s(t) déedat du tems égalemet. Par exemle, e(t) est l'agle d'ouverture d'u robiet et s(t) le débit d'eau du robiet. Ou bie e(t) est l'agle dot o toure u bouto et s(t) le iveau soore d'u haut-arleur... Das de très ombreuses situatios, e et s sot reliées ar ue relatio reat la forme d'équatio différetielle liéaire à coefficiets costats : a D s a Ds + a s = b m D m e b De + b e O suose que e et s sot uls our t <. O met le système e marche à t = e agissat sur e. O souhaite coaître s. Ue méthode de résolutio aisée reose sur la trasformée de Lalace. Notos S() = L(s)() et E() = L(e)(). Comte teu de la relatio L(Df)() = L(f)(), qui, itérée, doe L(D f)() = L(f)(), o obtiet : (a a + a )S() = (b m m b + b )E() S() = b m m b + b a a + a E() = H() E() avec H() = b m m b + b a a + a. H, idéedate de l'etrée choisie, est itrisèque au système. O l'aelle foctio de trasfert du système. La méthode de résolutio cosiste, au moye de tables de trasformées de Lalace à : (i) détermier la trasformée de Lalace E de l'etrée e(t) (ii) calculer le roduit S() = H()E() et, la luart du tems, le réduire e élémets simles. (iii) détermier la trasformée de Lalace iverse de S à l'aide la table des trasformées de Lalace. EXEMPLE : Circuit série RC. E t =, o ferme u circuit coteat e série u géérateur de tesio v, ue résistace R, ue caacité C de charge ulle. v R C Si i est l'itesité du courat, o a : i

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

dénombrement, loi binomiale

dénombrement, loi binomiale dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Des familles de deux enfants

Des familles de deux enfants Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Module : réponse d un système linéaire

Module : réponse d un système linéaire BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Partie 1 Automatique 1 et 2 (Asservissements Linéaires Continus)

Partie 1 Automatique 1 et 2 (Asservissements Linéaires Continus) Réublique Algériee Démocratique et Poulaire Miistère de l'eseigemet Suérieur et de la Recherche Scietifique Uiversité Djillali Liabès Sidi Bel-Abbès Faculté de Techologie Déartemet d'electrotechique Partie

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Gérer les applications

Gérer les applications Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

Sommaire Chapitre 1 - L interface de Windows 7 9

Sommaire Chapitre 1 - L interface de Windows 7 9 Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

TP : Outils de simulation. March 13, 2015

TP : Outils de simulation. March 13, 2015 TP : Outils de simulation March 13, 2015 Chater 1 Initialisation Scilab Calculatrice matricielle Exercice 1. Système Unix Créer sous Unix un réertoire de travail outil_simulation dans votre home réertoire.

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

Les algorithmes de tri

Les algorithmes de tri CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Régulation analogique industrielle ESTF- G.Thermique

Régulation analogique industrielle ESTF- G.Thermique Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité

Plus en détail

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble. II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café

Plus en détail

Accès optiques : la nouvelle montée en débit

Accès optiques : la nouvelle montée en débit Internet FTR&D Dossier du mois d'octobre 2005 Accès otiques : la nouvelle montée en débit Dans le domaine du haut débit, les accès en France sont our le moment très majoritairement basés sur les technologies

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques). CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur

Plus en détail

Une action! Un message!

Une action! Un message! Ue actio! U message! Cotact Master est u service exclusif de relaces automatiques de vos actes vers vos cliets, par SMS, messages vocaux, e-mails, courrier... Il se décleche lorsque vous réalisez ue actio

Plus en détail

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction A ew adaptive operator of fusio par Fraçois DELMOTTE LAMIH, Uiversité de Valeciees et du Haiaut-Cambrésis, Le Mot Houy, BP 3, 5933 Valeciees CEDEX 9 fdelmott@flore.uiv-valeciees.fr résumé et mots clés

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Tempêtes : Etude des dépendances entre les branches Automobile et Incendie à l aide de la théorie des copulas Topic 1 Risk evaluation

Tempêtes : Etude des dépendances entre les branches Automobile et Incendie à l aide de la théorie des copulas Topic 1 Risk evaluation Tempêtes : Etude des dépedaces etre les braches Automobile et Icedie à l aide de la théorie des copulas Topic Risk evaluatio Belguise Olivier Charles Levi ACM Guy Carpeter 34 rue du Wacke 47/53 rue Raspail

Plus en détail

STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO

STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO Des résultats du Programme de réductio des risques STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO 1. Cotexte La puaise tere Lygus lieolaris (figure 1) est

Plus en détail

Contribution à la théorie des entiers friables

Contribution à la théorie des entiers friables UFR STMIA École Doctorale IAE + M Uiversité Heri Poicaré - Nacy I DFD Mathématiques THÈSE présetée pour l obtetio du titre de Docteur de l Uiversité Heri Poicaré, Nacy-I e Mathématiques par Bruo MARTIN

Plus en détail

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1 UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. remy.garadel@utbm.fr ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1 3- LE MONOOLE DISCRIMINANT Le monoole eut vendre ertaines unités de roduit à des rix différents. On arle de disrimination ar les rix. Selon une terminologie due à igou (The Eonomis of Welfare, 1920), on

Plus en détail

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus Réseaux d odelettes et réseaux de euroes pour la modélisatio statique et dyamique de processus Yacie Oussar To cite this versio: Yacie Oussar. Réseaux d odelettes et réseaux de euroes pour la modélisatio

Plus en détail

Chaînes de Markov. Arthur Charpentier

Chaînes de Markov. Arthur Charpentier Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2. Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

MESURE DE L'INFORMATION

MESURE DE L'INFORMATION MESURE DE L'INFORMATION Marc URO TABLE DES MATIÈRES INTRODUCTION... 3 INCERTITUDE D'UN ÉVÉNEMENT (OU SELF-INFORMATION)... 7 INFORMATION MUTUELLE DE DEUX ÉVÉNEMENTS... 9 ENTROPIE D'UNE VARIABLE ALÉATOIRE

Plus en détail

Petit recueil d'énigmes

Petit recueil d'énigmes Petit recueil d'éigmes Patxi RITTER (*) facile (**) mois facile (***) pas facile (****) il faudra de l aide Solutios e rouge. 1) Cryptarithme (**) Trouvez la valeur de A, B et C satisfaisat l équatio suivate.

Plus en détail

S2I 1. quartz circuit de commande. Figure 1. Engrenage

S2I 1. quartz circuit de commande. Figure 1. Engrenage TSI 4 heures Calculatrices autorisées 214 S2I 1 L essor de l électronique nomade s accomagne d un besoin accru de sources d énergies miniaturisées. Les contraintes imosées à ces objets nomades sont multiles

Plus en détail