BAC BLANC DE MATHEMATIQUES EN TM1 et TM2.

Dimension: px
Commencer à balayer dès la page:

Download "BAC BLANC DE MATHEMATIQUES EN TM1 et TM2."

Transcription

1 BAC BLANC DE MATHEMATIQUES EN TM et TM2. L ordre des exercices a pas d importace. La clarté de la rédactio et des raisoemets iterviedrot pour ue part importate das l appréciatio des copies. La calculatrice est autorisée. I ( 5 poits) U propriétaire propose à partir du er javier 2000 u appartemet dot le loyer auel iitial est Il evisage deux types d'augmetatio : ) Das le premier cas, le loyer auel augmeterait chaque aée de 200. O désige par P le motat auel du loyer pour l'aée ( ). O a doc P 0 = a. Calculer P l et P 2. b. Motrer que (P ) est ue suite arithmétique. Détermier sa raiso. c. Exprimer P e foctio de. d. Quel serait le motat auel du loyer e 205, arrodi à l'euro près? e. E quelle aée le loyer dépassera-t-il le double du loyer iitial? f. Calculer le motat total des loyers versés de 2000 à 205 compris. 2 ) Das le deuxième cas, le loyer auel augmeterait de chaque aée de 3 %. O désige par Q le motat auel du loyer pour l'aée ( ). O a doc Q 0 = a. Calculer Q etq 2. b. Motrer que ( Q ) est ue suite géométrique. Détermier sa raiso. c. Exprimer Q e foctio de. d. Quel serait le motat auel du loyer e 205, arrodi à l'euro près? e. E quelle aée le loyer dépassera-t-il le double du loyer iitial? f. Calculer le motat total des loyers versés de 2000 à 205 compris. II ( 5 poits) Pour chacue des trois questios de ce questioaire à choix multiple (QCM), ue seule des trois propositios est exacte.le cadidat idiquera sur sa copie le uméro de la questio et la lettre correspodat à la répose choisie. Pour chaque questio, il est compté u poit si la répose est exacte, -0,5 si la répose est fausse, zéro sio. Aucue justificatio 'est demadée. ) U prix T.T.C. est de 29,90 avec ue T.V.A. à 9,6 %. Le prix H.T.arrodi au cetime est de : a. 55,36 ; b. 04,40 ; c. 08,6. 2 ) Le prix d'u produit augmete de 8 %, puis dimiue de 7 %. Fialemet la variatio est : a. ue augmetatio de 0,44 % ; b. ue dimiutio de % ; c. ue augmetatio de %. 3 ) Si a pour idice 00, quel est l'idice de438? a. 79 ; b. 27 ; c. 27 %. 4 ) Le volume d'u ballo publicitaire a augmeté de 60 % sous l effet de la chaleur. Pour retrouver so volume iitial il doit maiteat dimiuer de : a. 40 % ; b. 37,5 % ; c. 60 %. 5 ) Etre le 0/0/2000 et le 0/0/2005 le coût de la vie a augmeté de 7%. Cela correspod à ue hausse auelle moyee arrodie au cetième, de : a. 3,4 % ; b. 3 % ; c.3,9 %. - Termiale Mercatique Bac Blac

2 III ( 5 poits) E 990, ue etreprise de fabricatio de jouets a été créée. Le but de cet exercice est d'étudier l'évolutio du pourcetage des salariés travaillat à temps partiel par rapport au total des salariés de l'etreprise. Le tableau suivat doe, pour les aées idiquées, le ombre x d'aées écoulées depuis 990 et le pourcetage y de salariés à temps partiel correspodat. Aées x y (e %) 8,9 0,2 0,5 2,2 2,3 3,2 3,8 4,9 ) Das u repère orthoormal (O ; i, j ) d'uité graphique cm, représeter le uage des poits M de coordoées (x ; y). 2 ) Détermier les coordoées du poit moye G de ce uage et le placer sur le graphique précédet. 3 ) Détermier les coordoées du poit moye G du uage formé des quatre premiers poits et placer ce poit sur le graphique. 4 ) Détermier les coordoées du poit moye G 2 du uage formé des quatre derier poits et placer ce poit sur le graphique. 5 ) Détermier l équatio de la droite (G G 2 ). La droite (G G 2 ) s appelle la droite de Mayer. 6 ) Vérifier que le poit G appartiet à (G G 2 ). 7 ) Tracer cette droite sur le graphique précédet. 8 ) E utilisat l ajustemet affie précédet, quel sera le pourcetage de salariés travaillat à temps partiel par rapport au total des salariés de l'etreprise e 2007? 9 ) E utilisat l ajustemet affie précédet, détermier e quelle aée le pourcetage de salariés travaillat à temps partiel par rapport au total des salariés sera d au mois 20 %? 0 ) Avec votre calculette trouver l équatio de la droite de régressio par la méthode des moidres carrés de y e x. O doera les résultats à 0,0près. Comparer avec 5 ). IV ( 5 poits) Partie A : Étude de deux foctios ) Soit f la foctio défiie sur [0,4] par : f ( x) = 3 + l(2x + 2). a. Motrer que f '( x) =. E déduire le sige de f '( x ).Etablir le tableau de variatio de f. x + 2 ) Soit g la foctio défiie sur [,4] par : g( x) = x² 4x + 6. a. Calculer g '( x ). E déduire le sige de g '( x ). Etablir le tableau de variatio de g. b. Recopier et compléter le tableau de valeur suivat ; arrodir à x 0 0,5,5 2 2,5 3 3,5 4 f ( x ) g( x ) A l aide du tableau costruire la courbe représetative C f de f et la courbe représetative C g de g das u repère orthoormal : uité graphique est 2 cm pour ue uité sur les deux axes. Partie B : Applicatio écoomique Ue etreprise fabrique u certai type de pièces pour les téléphoes mobiles. O admet que pour x milliers de pièces fabriquées et vedues : la recette, e milliers d'euros, est f ( x ) et le coût total de productio, e milliers d'euros, est g( x ). ) Détermier graphiquemet sur quel itervalle l'etreprise réalise u bééfice. 2 ) Détermier graphiquemet ue valeur approchée de la productio x 0 pour laquelle le bééfice est maximal. 3 ) A l aide du tableau doer ue valeur approchée du bééfice maximal. Arrodir à la dizaie d euro. Termiale Mercatique Bac Blac

3 Corrigé BAC BLANC DE MATHEMATIQUES, Termiale Mercatique I a. D après l éocé P = P = 6200 et P2 = P = b. Pour passer d u terme au suivat o ajoute toujours 200, doc la suite est arithmétique de raiso 200 et de premier terme c. O sait alors que P = P0 + r cad P = d. Comme P correspod à 2000+, c est P 5 qui correspod à 205. O a P 5 = = er + derier e. O cherche à détermier P0 + P P5 = bre de termes = 6 = a. Pour augmeter u ombre de 3% o le multiplie par + 00 =.03. Aisi, Q 0 = = 680, Q = = b. Pour passer d u terme au suivat o multiplie toujours.03, doc la suite est géométrique de raiso.03 et de premier terme c. O a alors Q = Q0 q cad Q =. 5 2d. E 205, le loyer sera de Q 5 = (arrodi à l euro). bre determe 6 q.03 2e. O cherche à détermier Q0 + Q Q5 = er terme = q.03 II ) U prix T.T.C. est de 29,90 avec ue T.V.A. à 9,6 %. Le prix H.T.arrodi au cetime est de : a. 55,36 ; b. 04,40 ; c. 08,6. PTTC Comme PTTC =.96PHT o a P HT = ) Le prix d'u produit augmete de 8 %, puis dimiue de 7 %. Fialemet la variatio est : a. ue augmetatio de 0,44 % ; b. ue dimiutio de % ; c. ue augmetatio de %. Le coefficiet multiplicateur global est de =.0044 qui correspod a ue hausse de 0.44%. 3 ) Si a pour idice 00, quel est l'idice de438? a. 79 ; b. 27 ; c. 27 %. O a I doc I = = ) Le volume d'u ballo publicitaire a augmeté de 60 % sous l effet de la chaleur. Pour retrouver so volume iitial il doit maiteat dimiuer de : a. 40 % ; b. 37,5 % ; c. 60 %. O a V f =.6V i Vi = Vi or = doc Vi 0.625V i.6.6 baisse de = 37.5 % = et multiplier par reviet à appliquer ue 5 ) Etre le 0/0/2000 et le 0/0/2005 le coût de la vie a augmeté de 7%. Cela correspod à ue hausse auelle moyee arrodie au cetième, de : a. 3,4 % ; b. 3 % ; c.3,9 %. 5 5 O a ( + t ) =.7 t =.7 3.9%. m m Page 3 sur 6

4 III Aées x y (e %) 8,9 0,2 0,5 2,2 2,3 3,2 3,8 4,9 ) Voir figure joite. 2 ) Le poit moye a pour coordoées la moyee des abscisse et la moyee des ordoées. O a doc G 8;2. ( ) 3 ) De même, o a ( 4.75;0.45) G. 4 ) Et o a G 2 (.25;3.55 ). 5 ) La droite est o verticale doc so équatio est du type y = ax + b, avec : y y = = x x G2 G > a G2 G > d où y = 0.48x + b et comme ( ) 4.75;0.45 d où 0.45 = b b = = 8.7 G est sur la droite, ses coordoées vérifiet l équatio > aisi, l équatio réduite de la droite (G G 2 ) est y = 0.48x + 8.7, où les coefficiets ot été arrodis au cetième. 6 ) Remplaços l abscisse de G das l équatio : = 2.0 yg doc il semble que o. Cepedat, les erreurs d arrodis ous ot peut être trompés G est le poit moye du uage doc par costructio,c est le milieu de [ G G 2 ] doc il est bie sur la droite ( G G 2 )! 7 ) Voir figure. 8 ) 2007 correspod à x = 7 doc y = et o peut estimer à 6.33% le pourcetage de salariés travaillat à temps partiel par rapport au total des salariés de l'etreprise e ) O veut résoudre l iéquatio y x x.83 x 24.6 soit x = 25. Dès 205, le pourcetage de salariés travaillat à temps partiel par rapport au total des salariés sera d au mois 20 %. 0 ) Avec la calculette l équatio de la droite de régressio par la méthode des moidres carrés de y e x est doée par y = 0.5x + 8.0, ce qui est cohéret avec la méthode de Mayer. IV A. Soit f la foctio défiie sur [0,4] par : f ( x) = 3 + l(2x + 2). > Appliquos la formule ( l u) > Comme x est das [0 ;4], x+ est positif doc f (x) est positive sur [0 ;4]. > O e déduit le tableau de variatio de f : u ' ' = avec u = 2x + 2 : o obtiet u 2 f '( x) = 0 + = 2 x + 2 x +. x 0 4 f (x) + 3+l(0) 5.30 f (x) 3+l(2) 3.69 ր A2a. Soit g la foctio défiie sur [,4] par : g( x) = x² 4x + 6. > A l aide des formules classiques, o obtiet g '( x) = 2x 4. > A l aide du sige d ue foctio affie, o trouve que x g = 2x g (x) ց 2 ր Page 4 sur 6

5 A2b. Voir les tableaux de valeurs (arrodies à 2 0 ) obteus à l aide de la calculatrice. x 0 0,5,5 2 2,5 3 3,5 4 f ( x ) g( x ) Voir figure e fi de corrigé. Partie B : Applicatio écoomique Ue etreprise fabrique u certai type de pièces pour les téléphoes mobiles. O admet que pour x milliers de pièces fabriquées et vedues : la recette, e milliers d'euros, est f ( x ) et le coût total de productio, e milliers d'euros, est g( x ). B. Graphiquemet, l'etreprise réalise u bééfice quad la courbe recette (Cf) est au dessus de la courbe coût (Cg) cad pour x compris etre eviro 0.5 et 3.8 (milliers de pièces). Cela correspod à des productios d eviro 500 à 3800 pièces. B2. Graphiquemet, la productio x 0 pour laquelle le bééfice est maximal est la valeur de x pour laquelle la distace etre les courbes recette et coût est maximale (puisque Bééfice = Recette Coût). O lit que cette productio est d eviro 2.6 milliers de pièces produites. B3. Pour x = 2 : B(2) = = 2.79 Pour x = 2.5 : B(2.5) = = 2.7 Le bééfice maximale est doc d eviro 2.79 milliers d euros soit 2790 eviro. y beef max 2 0 domaie de retabilité 2 3 x Page 5 sur 6

6 7 y G G x Page 6 sur 6

SESSION 2012 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2012 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 202 BACCALAURÉAT TECHNOLOGIQUE Scieces et Techologies de la Gestio Commuicatio et Gestio des Ressources Humaies MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficiet : 2 Dès que le sujet lui est

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

Bac Blanc de Mathématiques T STMG

Bac Blanc de Mathématiques T STMG Nom : Préom : Classe : Bac Blac de Mathématiques T STMG Mars 2014 Les 4 exercices ci-dessous sot idépedats. L utilisatio d ue calculatrice persoelle est autorisée. Vous utiliserez cet éocé de 4 pages e

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève.

Toutes calculatrices autorisées. Le sujet comporte un total de 4 exercices par élève. Lycée Féelo Saite-Marie Aée 2011-2012 Durée : 3 heures BAC BLANC avril Toutes calculatrices autorisées. Classe de Termiale ES Mathématiques Le sujet comporte u total de 4 exercices par élève. EXERCICE

Plus en détail

Correction Bac ES Liban juin 2010

Correction Bac ES Liban juin 2010 Correctio Bac ES Liba jui 2010 EXERCICE 1 (4 poits) Commu à tous les cadidats 1) A et B sot deux évéemets idépedats et o sait que p(a) = 0,5 et p(b) = 0,2. La probabilité de l évéemet A B est égale à :

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

BACCALAURÉAT GÉNÉRAL Session 2014 MATHÉMATIQUES. Série ES ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures.

BACCALAURÉAT GÉNÉRAL Session 2014 MATHÉMATIQUES. Série ES ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures. BACCALAURÉAT GÉNÉRAL Sessio 04 MATHÉMATIQUES Série ES ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : heures Coeiciet : 7 Les calculatrices électroiques de poche sot autorisées, coormémet à la réglemetatio

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Sessio 2016 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficiet : 4 Calculatrice autorisée coformémet

Plus en détail

Je choisis donc de situer ce dossier en Terminale ES, anciens et nouveaux programmes.

Je choisis donc de situer ce dossier en Terminale ES, anciens et nouveaux programmes. Dossier 9 : Exemples de traitemet d ue série statistique à deux variables umériques. Etude du uage de poits associé : poit moye, corrélatio liéaire, ajustemet affie, droite de régressio. Rédigé par Cécile

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

i-mathematiques.com 2016/2017

i-mathematiques.com 2016/2017 mr.mage@live.fr i-mathematiques.com 06/07 Les suites A redre le ludi 6 mars Dossier de la semaie. Exercice - Suites Marc postule pour u emploi das ue etreprise. La société ALLCAUR propose à compter du

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série.

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série. 1 ère S1 Cotrôle du vedredi 13 février 015 (30 mi) O ote M, Q 1, Q 3 respectivemet la médiae, le premier quartile et le troisième quartile de la série. M... Q1... Q3... Préom : Nom : Note :. / 0 I. (4

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

EXTRAITS SUJETS DE BAC 1 C. Liban Mai PARTIE A : On considère la suite u n définie par u 0 = 10 et pour tout entier n par u = 0.9u 1.

EXTRAITS SUJETS DE BAC 1 C. Liban Mai PARTIE A : On considère la suite u n définie par u 0 = 10 et pour tout entier n par u = 0.9u 1. Liba Mai 203 PARTIE A : O cosidère la suite u défiie par u 0 = 0 et pour tout etier par u = 0.9u. 2 + + ) O cosidère la suite u défiie par pour tout etier, o pose v = u 2 a) Démotrer que (v ) est ue suite

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

Proposés par Hugues SILA, professeur de mathématiques des lycées

Proposés par Hugues SILA, professeur de mathématiques des lycées Téléchargé gratuitemet sur le site http://sila.e-mosite.com tél : 00237 675 277 432 Travaux dirigés de mathématiques Classe : 1 ères C, D, TI aée Scolaire 2014/2015 Proposés par Hugues SILA, professeur

Plus en détail

Covariance et ajustement affine par la méthode des moindres carrés

Covariance et ajustement affine par la méthode des moindres carrés Uiversité de Poitiers - 205-206 A. Moreau Algèbre - Géométrie M MEEF Covariace et ajustemet affie par la méthode des moidres carrés Das tout le documet, la lettre désige u etier aturel o ul. Les deux parties

Plus en détail

Analyse mathématique II

Analyse mathématique II UNIVERSITÉ IBN ZOHR Faculté des Scieces Juridiques Écoomiques et Sociales Corrigés des QCM Aalyse mathématique II FILIÈRE SCIENCES ÉCONOMIQUES ET GESTION PREMIERE ANNÉE Sessio ormale 03/04 40 questios

Plus en détail

Décembre 2012 Durée : 3 heures BAC blanc N 1. La calculatrice est autorisée. Le sujet comporte un total de 5 exercices.

Décembre 2012 Durée : 3 heures BAC blanc N 1. La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. Lycée Féelo Saite-Marie Termiales ES Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas

Plus en détail

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points)

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points) ère S Cotrôle du vedredi 4-4-04 (30 miutes) Préom et om : Note : / 0 I ( poits) O cosidère la figure ci-cotre où ABC est u triagle isocèle e A O ote H le projeté orthogoal du poit C sur la droite (AB)

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EXAMEN PROBATOIRE D ADMISSION DES ETRANGERS DANS LES ECOLES DE FORMATION D OFFICIERS EPREUVE DE MATHEMATIQUES DUREE DE L EPREUVE : 4 Heures Matériel autorisé : Calculatrice Circulaire 9986 du 6 ovembre

Plus en détail

STATISTIQUES. En première les statistiques étudiées étaient à une seule variable ; en terminale l étude porte sur deux variables statistiques

STATISTIQUES. En première les statistiques étudiées étaient à une seule variable ; en terminale l étude porte sur deux variables statistiques Tle ES Statistiques H. Kereïs STATISTIQUES E première les statistiques étudiées étaiet à ue seule variable ; e termiale l étude porte sur deu variables statistiques 1. Nuage de poits, poit moe et covariace

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016 Correctio Baccalauréat STL biotechologies Polyésie 13 jui 2016 EXERCICE 1 4 poits Das cet exercice, o s itéresse au taux de cholestérol LDL de la populatio d adultes d u pays. O ote X la variable aléatoire

Plus en détail

TS Exercices sur les fonctions puissances et racines n-ièmes

TS Exercices sur les fonctions puissances et racines n-ièmes TS Eercices sur les octios puissaces et racies -ièmes Calculer sas utiliser la calculatrice e détaillat les étapes de calcul 4 4 A ; B 6 ; C 8 ) Développer et ) E déduire la valeur eacte de A 0 4 0 4 4

Plus en détail

ESSCA(Management - Finances)

ESSCA(Management - Finances) parteaire de PREPAVOGT Yaoudé, 3 mai 04 BP : 765 Yaoudé Tél : 0 63 7 / 96 6 46 86 E-mail : prepavogt@yahoofr wwwprepavogtorg ESSCA(Maagemet - Fiaces) CONCOURS D ADMISSION RAISONNEMENT LOGIQUE ET MATHEMATIQUE

Plus en détail

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe Termiale S mai 6 Cocours Fesic Calculatrice iterdite ; traiter eercices sur les 6 e h ; répodre par Vrai ou Fau sas justificatio + si boe répose, si mauvaise répose, si pas de répose, bous d poit pour

Plus en détail

Que de déchets!!!! Les trois parties de cet exercice sont indépendantes.

Que de déchets!!!! Les trois parties de cet exercice sont indépendantes. TES/L - Cotrôle 3 de mathématiques Que de déchets!!!! Les trois parties de cet exercice sot idépedates. Partie A Chaque aée, ous jetos des appareils électroiques: vieux téléphoes, mobiles, télévisios,

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

A LA DÉCOUVERTE DES DIFFÉRENTES MOYENNES

A LA DÉCOUVERTE DES DIFFÉRENTES MOYENNES A LA DÉCOUVERTE DES DIFFÉRENTES MOYENNES Les 5 activités ci-dessous coceret les différetes moyees (arithmétique, géométrique, harmoique et quadratique) utilisées, certaies fois sas le savoir, das la vie

Plus en détail

Lycée de Souassi DEVOIR DE SYNTHESE N 3 08/05/2009 SECTIONS : 4 éme Scieces Expérimetales EPREUVE : Mathématiques DUREE : 3 heures PROFESSEUR : Mr FLIGENE Wissem EXERCICE N : (3 poits) Pour chacue des

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

Bienvenue! Statistiques à 2 variables et calculatrice graphique. Congrès SBPMef 2015

Bienvenue! Statistiques à 2 variables et calculatrice graphique. Congrès SBPMef 2015 Statistiques à 2 variables et calculatrice graphique Bieveue! Cogrès SBPMef 2015 Equipe Fraçoise Delpérée fdelperee@hotmail.com Virgiie Loward virgiie.loward@skyet.be 1 Statistiques à 2 variables & calculatrice

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique.

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique. Suites 6 AU CŒUR DE LA TOILE Objectif Notios utilisées Traduire, à l aide d ue suite, u processus géométrique itératif et redre compte de so évolutio. Mettre e place les premiers pricipes d étude d ue

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c.

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c. NOUVELLE CALEDONIE NOVEMBRE 2007 Exercice 4 poits Commu à tous les cadidats Pour chaque questio, ue seule des trois propositios est exacte. Le cadidat idiquera sur la copie le uméro de la questio et la

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

MOYENNES. Moyenne arithmétique simple x de n éléments n

MOYENNES. Moyenne arithmétique simple x de n éléments n MOYENNES. Moyees : premières formules Moyee arithmétique simple de élémets + +... + +,,...,, Moyee arithmétique podérée de élémets,,...,, muis des coefficiets p, p,..., p, p p + p +... + p + p p+ p+...

Plus en détail

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9.

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9. Liba 13 v 0 = 1 O cosidère la suite umérique ( v ) défiie pour tout etier aturel par 9 v +1 = 6 v Partie A 1 O souhaite écrire u algorithme affichat, pour u etier aturel doé, tous les termes de la suite,

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9

SERIE S EPREUVE DE MATHEMATIQUES. Durée : 4h Coefficient : 7 ou 9 BACCALAUREAT BLANC 2014 LYCEE DES ILES SOUS LE VENT SERIE S EPREUVE DE MATHEMATIQUES Durée : 4h Coefficiet : 7 ou 9 La calculatrice est autorisée, mais est pas échageable de cadidat e cadidat. La qualité

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Cours Termiale S La foctio logarithme épérie O a vu das u chapitre précédet que la foctio epoetielle est cotiue et strictemet croissate sur R et que l image de R par cette

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Partie commune (3 heures)

Partie commune (3 heures) TS Cotrôle du ludi 5 février 06 (4 heures) Partie commue ( heures) Le barème est doé sur 40 I (7 poits : ) poits ; ) poits ; ) poits + poit) Ue chaîe de magasis souhaite fidéliser ses cliets e offrat des

Plus en détail

Chapitre 8 wicky-math.fr.nf Suites. Exercices : Suites. 4.u n = n u n = cos n π ) 6.u n =n 2 n + 1. u n+1 = u n 1.

Chapitre 8 wicky-math.fr.nf Suites. Exercices : Suites. 4.u n = n u n = cos n π ) 6.u n =n 2 n + 1. u n+1 = u n 1. 1 Défiir ue suite Exercices : Suites Exercice 1. Pour chacue des suites suivates, trouver la foctio f à valeurs réelles telle que, pour tout, u =f), puis calculer les termes deu 0 àu 5 1.u = + 5.u = 1

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007 Durée : 4 heures Correctio du baccalauréat S Nouvelle-Calédoie ovembre 007 EXERCICE 1 Commu à tous les cadidats 4 poits 1 Avec z = x+ iy, z+ z = 9+i x+ iy+ x iy = 9+i x+ iy = 9+i et par ideticatio x =,

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Calculer la raison d une suite arithmétique dont la somme des trois premiers termes est 18 et e septiemme terme est 19

Calculer la raison d une suite arithmétique dont la somme des trois premiers termes est 18 et e septiemme terme est 19 Suites EXERCICE N 1 O cosidère la suite ( u ) défiie par : Pour tout etier aturel : u = 2-2 a) Calculer u 1,u 2,u 3 et u 4 b) Calculer pour tout etier aturel u +1, u +1, (u ) 2, u 2, u 2+3,u 2 +3 EXERCICE

Plus en détail

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite.

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite. ECG JP A 00-00 F. FRANZOSI & A. WENGER http://math.aki.ch 5. Défiitio et gééralités Défiitio : Ue suite réelle est ue applicatio de * N das R, doc si U est ue telle suite, o aura : U : N * R U ( ) U U

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

Calculs de limites, développements limités, développements asymptotiques

Calculs de limites, développements limités, développements asymptotiques Eo7 Calculs de limites, développemets limités, développemets asymptotiques Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

Présentation du programme et des épreuves 6

Présentation du programme et des épreuves 6 SOMMAIRE Présetatio du programme et des épreuves 6 Algos à foiso 8 2 Le raisoemet par récurrece 3 Les suites géométriques 2 4 Ce qui est importat pour ue suite 4 5 Ce qu est la limite d ue suite 6 6 Détermier

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Corrigé du baccalauréat S Pondichéry du 26 avril points

Corrigé du baccalauréat S Pondichéry du 26 avril points EXERCICE 1 5 poits Comm a tous les cadidats Les parties A, B et C peuvet être traitées de faço idépedate Das tout l exercice, les résultats serot arrodis, si écessaire, au millième La chocolaterie «Choc

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

A RETENIR TERMINALE ES

A RETENIR TERMINALE ES A RETENIR TERMINALE ES Ce documet est destié à "résumer" le cours de termiale. Il e préted pas coteir tout ce que vous devez savoir pour réussir l épreuve. Il est coçu pour que vous puissiez l utiliser

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

2 Mathématiques financières

2 Mathématiques financières 2 Mathématiques fiacières 2.1 Cours et TD Les créaciers prêtet des capitaux cotre ue rémuératio : les itérêts, ce que l o rembourse e plus du capital empruté. Nous percevos égalemet des itérêts lorsque

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Leçon 9 Les suites réelles

Leçon 9 Les suites réelles Leço 9 Les suites réelles C est ue leço importate qui se prologera e termiale et souvet, il y a u exercice à faire au BAC sur les suites. Il est très importat de bie compredre au début les otatios., 5,8

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Exercices corrigés. Terminale S QCM Répondez par VRAI ou FAUX en JUSTIFIANT (sauf la question f. où il «suffit» de prouver).

Exercices corrigés. Terminale S QCM Répondez par VRAI ou FAUX en JUSTIFIANT (sauf la question f. où il «suffit» de prouver). Termiale S Suites Exercices corrigés QCM Fesic 00 Exercice 0 Fesic 004 Exercice 9 4 Fesic 004 Exercice 0 5 Fesic 004 Exercice 6 Fesic 004 Exercice 4 7 QCM divers 5 8 ROC+exemples, Frace 005 6 9 Récurrece,

Plus en détail

FRLT Page 1 15/08/2014

FRLT Page 1 15/08/2014 Algorithmes à aalyser O cosidère l algorithme : - u est du type ombre - q est du type ombre - p est du type ombre - S est du type ombre - Lire u - Lire q - Lire p - S pred la valeur de u - Tat que (u >

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 006 EPREUVE SPECIIQUE ILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot autorisées * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

I ECRITURE FRACTIONNAIRE

I ECRITURE FRACTIONNAIRE LES FRACTIONS OBJECTIFS : Compredre l écriture fractioaire Simplifier les fractios Additioer des fractios Soustraire des fractios 5 Multiplier des fractios 6Diviser des fractios I ECRITURE FRACTIONNAIRE

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail