MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p."

Transcription

1 MATHÉMATIQUES I Objectifs O se roose, das ce qui suit, de détermier l esemble des solutios d ue équatio différetielle liéaire à coefficiets costats lorsqu elle est homogèe, uis lorsque celle-ci admet u «secod membre» d u tye articulier La artie I vise à établir des résultats utiles das les suivates Notatios Pour tout coule ( m, ) IN 2 : * si m l esemble { k IN, m k } est oté [[ m, ; * δ m, vaut 1 si m =, 0 sio Si ( q, ) IN 2, o ote IC q [ X l esemble costitué des élémets de IC [ X de degré iférieur ou égal à q et IC q, [ X celui costitué des élémets de IC q [ X divisibles ar X Si u est ue alicatio liéaire, Ker( u) et Im( u) désiget resectivemet so oyau et so image Si u est u edomorhisme, ar covetio, u 0 est l alicatio idetité, et our tout etier aturel, o ose u 1 = u o u O cosidère u itervalle I de IR coteat au mois deux élémets O dira que l itervalle I est u voisiage de 0 s il existe u réel α > 0 tel que [ αα, I O ote E le IC- esace vectoriel des alicatios de classe C de I das IC, 0 E so élémet ul, id E l alicatio idetité de E et D l edomorhisme «dérivatio» de E, c est-à-dire tel que : f E, D( f) = f Pour tout y de E, et our tout k etier strictemet ositif, y k) désige la dérivée k ième de y Par covetio y 0) = y Si P IC [ X et z IC, o ote deg( P) le degré de P et P z l alicatio de das IC défiie ar : t I, P z () t = Pt ()e zt I Cocours Cetrale-Suélec /6

2 Partie I - Soiet z IC et ( q, ) IN 2 tel que q IA - Motrer que IC q, [ X est u IC- esace vectoriel de dimesio fiie et réciser sa dimesio IB - Motrer qu o eut défiir ue alicatio ϕ z de IC [ X das E défiie ar : P IC [ X, ϕ z ( P) = P z Motrer que est liéaire et ijective IC - Déduire des questios récédetes que les images ar ϕ z de IC q [ X et IC q, [ X sot des sous-esaces vectoriels de E de dimesios fiies que l o récisera Partie II - O se roose, das cette artie, de détermier S H, l esemble des solutios de ( H) défiies sur I O admettra que dim( S H ) = IIA - Justifier que S H Ker α k D k = O ote le ombre de racies distictes du olyôme A = α k X k de IC [ X ; o ote r 1, r 2 r ses racies et m 1, m 2 m leurs ordres de multilicité resectifs ϕ z Das la suite de ce roblème, est u etier aturel o ul, α = ( α 0, α ) u élémet de IC 1 tel que α est as ul, et o ote ( H) l équatio différetielle, d icoue y élémet de E : ( H) α k y k) = 0 E Cocours Cetrale-Suélec /6

3 IIB - Vérifier que cotiet le sous-esace vectoriel de E : S H Ker ( D r j id E ) m j ( ) j = 1 O admettra que cette somme est directe IIC - Das cette questio, r IC et m IN * a) Soit P u élémet o ul de IC [ X Justifier l existece d u élémet Q de IC [ X tel que d Q< d P et ( D r id E )( P r ) = Q r b) E déduire ar récurrece la roriété suivate our tout etier k de [[ 1, m : si P IC k 1 [ X, alors P r Ker( ( D r id E ) k ) c) E coclure que Ker( ( D r id E ) m ) est u sous-esace vectoriel de E de dimesio au mois m IID - Déduire de ce qui récède que, our tout élémet y de E, o a l équivalece suivate, y S H si et seulemet si il existe ue famille ( P j ) j [[ 1, d élémets de IC [ X telle que : j [[ 1,, deg( P j ) < m j et t I, yt () P j ()e t r j = t IIE - Das le cas où I est u voisiage de 0, rouver que our tout réel α strictemet ositif tel que αα, [ I, les solutios de ( H) sot déveloables e série etière sur αα, [ Partie III - Das cette artie, o cosidère u olyôme B de IC [ X, o ul O ote d le degré du olyôme B O choisit u ombre comlexe z et o ote m l ordre de multilicité (évetuellemet ul) de z e tat que racie du olyôme A = α k X k de IC [ X O se roose de résoudre l équatio différetielle, d icoue y élémet de E, otée ( L) : ( L) α k y k) = B z j = 1 Cocours Cetrale-Suélec /6

4 IIIA - Vérifier qu o eut défiir ue alicatio ψ, de IC m+ d, m [ X das E, défiie ar P IC m+ d, m [ X, ψ( P) = α k D k uis motrer que celle-ci est liéaire IIIB - Prouver que ψ est ijective et que Im( ψ) ϕ z ( IC d [ X ) IIIC - Démotrer qu il existe u uique élémet Π de IC m+ d, m [ X tel que Π z soit solutio de ( L), défiie sur I, uis réciser, e foctio de Π, l esemble des solutios de ( L) sur I IIID - Das le cas où l itervalle I est u voisiage de 0, les solutios de ( L) sot-elles déveloables e série etière sur tout itervalle αα, [ ( α > 0) tel que αα, [ I? Partie IV - O suose, das cette derière artie, que α 0 vaut 1 et que : M = max k [[ 0, O cosidère égalemet u élémet b de E et o ote ( L b ) l équatio différetielle, d icoue y élémet de E : IVA - Soit α IR + * tel que αα, [ I et que ( L b ) admette ue solutio déveloable e série etière sur l itervalle αα, [ Motrer que b est égalemet déveloable e série etière sur l itervalle αα, [ Qu e est-il alors des autres solutios de ( L b )? IVB - Motrer que, si IN, alors il existe u uique élémet Π de IC [ X tel que : α k ( L b ) α k y ( k) = b ( P z ) ( k) X α k Π = ! Prouver qu il existe u uique élémet ( π, j ) j [[ 0, de IC + 1 tel que : X j Π = π, j j! j = 0 Cocours Cetrale-Suélec /6

5 IVC - Prouver que : ( q, ) IN 2 mi{, q} q ( α k π q, + k ) = δ q, IVD - Lorsque est u etier strictemet ositif, traduire sous forme matricielle le système liéaire récédet d icoue ( π, j ) j [[ 0,, élémet de IC + 1, uis écrire ue rocédure qui, e foctio de et du système α, détermie l uique solutio de celui-ci IVE - a) Vérifier que : IN, j [[ 0,, π, j ( 2M) j b) E déduire que, our tout t IR et our tout etier q, alors : Π q () t ( 2M+ t ) q O suose doréavat que b est ue alicatio de I das IC déveloable e série etière sur u itervalle αα, [ ( α > 0 ) iclus das I O ote r le rayo de covergece de la série etière b ( ) ( 0 ) z et o suose que r > 2M IVF - a) Motrer qu il existe β élémet de 0, α[ tel que la suite de foctios ( f ) IN défiie ar : IN t I, f () t = b ( q) ( 0)Π q () t q = 0 coverge sur ββ, [ O ote f la limite de cette suite de foctios, défiie sur ββ, [ b) Prouver que f est de classe C sur ββ, [ IVG - Justifier que f est ue solutio de ( ) défiie sur l itervalle sur ββ, [ L b IVH - Prouver que f est de classe C sur ββ, [ et que our tout etier k > 0, o a : t ββ, [, f k) () t = lim ( k) f () t + IVI - Si t IR +, o ote Et () sa artie etière Cocours Cetrale-Suélec /6

6 O se roose, das cette questio, de démotrer que f est déveloable e série etière sur ββ, [ À cet effet, o itroduit u élémet x de ββ, [ uis, our tout etier de IN, l alicatio e de IR + das IC défiie ar : ( Et ()) Et () IN, t IR + f, e ( t) ( 0) x = [ Et ()! a) Motrer que, si IN, e est itégrable sur IR + et réciser la valeur de so itégrale sur IR + b) Exhiber ue alicatio e e escalier de IR + das IR itégrable telle que : IN, t IR +, e () t et () c) Coclure IVJ - a) Qu e déduit-o our les solutios de ( L b ) sur l itervalle ββ, [? b) Les résultats récédets sot-ils ecore valables si α 0 est as égal à 1? FIN Cocours Cetrale-Suélec /6

Partie I - Préliminaires

Partie I - Préliminaires SESSION 25 Cocours commu Cetrale MATHÉMATIQUES. FILIERE PC Partie I - Prélimiaires I.A - I.A. Soit N. Pour N, Puisque la série de terme gééral +... + + 2. coverge, il e est de même de la série de terme

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 25 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la lus grade imortace à la clarté, à la récisio et à la cocisio de

Plus en détail

Mardi 10 janvier h-13h

Mardi 10 janvier h-13h Mardi javier 27 8h-3h Il sera teu compte de faco importate de la qualité de la rédactio et de l argumetatio. E particulier, répodre juste à ue questio est valorisé, répodre faux est péalisé et e pas répodre

Plus en détail

CENTRALE PC 2009 Math 1

CENTRALE PC 2009 Math 1 CETRALE PC 29 Math Partie I : rélimiaires I.A.) Pour tous 2 et 2, u(; ) est dé i et ositif. De lus u(; ) >+. et comme + > + La série X u(; ) coverge I.A.2) O sait déjà que la série coverge. De lus la suite

Plus en détail

APPLICATIONS LINEAIRES Exercices

APPLICATIONS LINEAIRES Exercices EXERCICE : APPLICATIONS LINEAIRES Exercices ) Motrer que l applicatio f : f : est liéaire x, y, z x z, y z ) Soit ue matrice AM et soit f l applicatio qui à toute matrice X M associe la matrice Y défiie

Plus en détail

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices EXERCICE 1 : Soit E u espace vectoriel et u L(E) tel que u u +u = 0 Motrer que Sp (u) {0, 1, } EXERCICE : 1) Soit A ue matrice carrée telle que A

Plus en détail

ESPACES VECTORIELS APPLICATIONS LINEAIRES

ESPACES VECTORIELS APPLICATIONS LINEAIRES SPACS VCTORILS APPLICATIONS LINAIRS xercices Les exercices précédés de ce symbole e serot pas traités e classe (U corrigé sera mis sur le site) XRCIC : O ote M3 l espace vectoriel des matrices carrées

Plus en détail

Feuille d exercices: Calcul matriciel.

Feuille d exercices: Calcul matriciel. Feuille d exercices : Calcul matriciel : Exercice 2 3 ) Soit A = 0 0, motrer que A est la matrice das la 2 6 base caoique de R 3 d ue projectio dot o precisera le oyau et l image 2) Doer la matrice das

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 006 EPREUVE SPECIIQUE ILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot autorisées * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

MATHEMATIQUES 2. Fonctions de matrices

MATHEMATIQUES 2. Fonctions de matrices SESSION 2004 EPREUVE SPECIFIQUE FILIERE MP MTHEMTIQUES 2 Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

Compléments sur les suites Suites adjacentes

Compléments sur les suites Suites adjacentes DERNIÈRE IMPRESSION LE 7 février 07 à 6:3 Complémets sur les suites Suites adjacetes I Ecadremet d ue suite EXERCICE ) Motrer que pour tout k N et pour tout x [k ; k+], o a : k+ k+ k x dx k ) O pose u

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Sommaire. Chapitre 1. Notions de base Chapitre 2. Nombres complexes Polynômes... 33

Sommaire. Chapitre 1. Notions de base Chapitre 2. Nombres complexes Polynômes... 33 Sommaire Chapitre. Notios de base.................... 7 A. Démostratio par récurrece..................... 8 B. Esembles............................. 9 C. Applicatios............................ 2 D. Calcul

Plus en détail

Épreuve écrite d analyse et probabilités

Épreuve écrite d analyse et probabilités Épreuve écrite d aalyse et probabilités Notatios et défiitios Le problème traite de certaies propriétés cocerat les racies de polyômes dot les coefficiets sot aléatoires. Das tout le problème, l espace

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

Composition de Mathématiques D (U)

Composition de Mathématiques D (U) École Normale Supérieure Cocours d admissio 205 Filière MP Compositio de Mathématiques D (U) (Durée : 6 heures) L utilisatio des calculatrices est iterdite Sujet saisi par Michel Quercia (michel.quercia@prepas.org)

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

Construire des polygones connaissant les milieux des côtés.

Construire des polygones connaissant les milieux des côtés. Costruire des olygoes coaissat les milieux des côtés Costruire u triagle ABC dot les milieux des côtés soiet trois oits doés I J K deux à deux disticts Aalyse : La symétrie cetrale de cetre le milieu d

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

Sommaire. 2. Séries réelles ou complexes. Méthodes : L essentiel ; mise en œuvre

Sommaire. 2. Séries réelles ou complexes. Méthodes : L essentiel ; mise en œuvre 1. Espaces vectoriels ormés A. Normes et distaces............. 8 B. Étude locale des applicatios Cotiuité..... 19 C. Cotiuité des applicatios liéaires....... 25 D. Espaces vectoriels ormés de dimesio fiie...

Plus en détail

Séries d exercices Aritmetiques

Séries d exercices Aritmetiques Séries d exercices Aritmetiques ème Maths Maths au lycee Ali AKIR Site Web : http://maths-akirmidiblogscom/ EXERCICE N )Quel est le reste de la divisio par 7 du ombre ) Quel est le reste de la divisio

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Théorème de Rolle dans le cas complexe.

Théorème de Rolle dans le cas complexe. Théorème de Rolle das le cas complexe. Das ce problème o se propose de prouver l aalogue complexe suivat du théorème de Rolle : Théorème. Soiet a et b deux ombres complexes disticts et u etier. Soit P

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Produit scalaire. Exercices

Produit scalaire. Exercices Produit scalaire Exercices 3-4 Les idisesables Formes biliéaires symétriques Soit ϕ l alicatio de 3 3 das telle que : ϕ(u,u ) = xx + xy + x y + yy + xz + x z + 3zz a Motrer que ϕ est ue forme biliéaire

Plus en détail

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Les ratioels, les réels Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Devoir de synthèse n 1

Devoir de synthèse n 1 Mathématiques Lycée IBN KHALDOUN - RADES Devoir de sythèse 4 e Maths Mardi 06--0 Durée : heures Prof : ABIDI Farid Exercice :(pts) Répodre par Vrai à Faux et avec justificatio à chacue des trois propositios

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

x k, 2 : x k 1 n x x 1

x k, 2 : x k 1 n x x 1 SMIA/S3 ANALYSE 3 AALAMI IDRISSI et EZEROUALI Chapitre 5 FONCTIONS DE IR DANS IR p I) NOTIONS DE TOPOLOGIE SUR IR 1) Normes sur IR : a) Défiitio: O appelle orme sur toute applicatio x x de das telle que

Plus en détail

COUPLES VARIABLES ALEATOIRES DISCRETES

COUPLES VARIABLES ALEATOIRES DISCRETES COUPLES VARIABLES ALEATOIRES DISCRETES EERCICE : U sac cotiet six jetos, u ortat le uméro, deux ortet le uméro et trois ortet le uméro Ces jetos sot idiscerables au toucher. Deux jetos sot rélevés de ce

Plus en détail

Feuille d exercices 11

Feuille d exercices 11 Mathématiques Aalyse I M. Samy Modeliar Feuille d eercices Itégratio Correctio Eercice Détermier, si elle eiste, la ite e + de la suite de terme gééral si ( π + ) d + Correctio. Pour tout etier, la foctio

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

Examen du 12 juin durée : 3h

Examen du 12 juin durée : 3h Master de Mathématiques Aalyse Foctioelle Exame du 1 jui 13 1 - durée : 3h Le seul documet autorisé est u résumé mauscrit du cours de trois pages maximum. Les téléphoes portables et les calculatrices e

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Les symboles somme et produit

Les symboles somme et produit DERNIÈRE IMPRESSION LE 7 février 07 à 5:4 Les symboles somme et roduit Table des matières Le symbole somme Σ Défiitio Liéarité et chagemet d idice 3 3 Sommes télescoiques 4 4 Sommes à coaître 5 5 Sommes

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Produit scalaire. Exercices

Produit scalaire. Exercices Produit scalaire Eercices 4-5 Les idisesables Eercices géérau sur le roduit scalaire Soit E u esace vectoriel mui d u roduit scalaire réel a Motrer que toute famille orthoormale est libre b Est-ce ecore

Plus en détail

CENTRALE 2008 PC Math 2. Préliminaire

CENTRALE 2008 PC Math 2. Préliminaire CENTRLE 8 PC Math Comme o a des suites de matrices X, j utilise la otatio Maple X [i] pour oter le coe ciet de la lige i de X. Prélimiaire O véri e sas problème que : a b c d d b c a ad bc ad bc La matrice

Plus en détail

Concours PT2004 Maths I-B. partie A

Concours PT2004 Maths I-B. partie A ocours PT2 Maths I-B Même si le suet e l a pas posé o utilisera : 8 2 M r (R) = I r partie a b x y ax + bz. Si = 2 S c d 2 et B = 2 S z t 2 o a B = cx + dz ay + bt cy + dt Les coe ciets de B sot sommes

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Licence 1 Mathématiques

Licence 1 Mathématiques Licece Mathématiques 204 205 Algèbre et Arithmétique Feuille o 3 : combiatoire. Exercices à savoir faire.. Réuio, itersectio, artitio. Exercice Au mois de javier, Aatole a ris ses reas de midi au Restau

Plus en détail

Cours I : SUITES NUMERIQUES. I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels Agrocampus Ouest ENIHP ère aée p. Cours I : SUITES NUMERIQUES / Défiitio I Quelques rappels Défiitio : Ue suite u est ue applicatio de l esemble N ou ue partie de N das R qui à chaque élémet de N associe

Plus en détail

EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICE 01 : EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Techique Bamako 1) Démotrer par récurrece que : a) ε N*: 1+ + 3+ + = ( + 1) b) ε N*: 1+ 3+ 5+ + ( 1) = c) ε N*: 1 + 3+ 5 + +

Plus en détail

Groupes monogènes, groupes cycliques. Exemples

Groupes monogènes, groupes cycliques. Exemples 2 Groupes moogèes, groupes cycliques. Exemples Les otios de base sur les groupes sot supposées coues. E particulier, les esembles et groupes quotiets sot supposés cous. Pour des rappels, o pourra cosulter

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

Calcul de rayon de convergence concret

Calcul de rayon de convergence concret [http://mp.cpgedupuydelome.fr] édité le 7 août 207 Eocés Calcul de rayo de covergece cocret Exercice [ 0097 ] [Correctio] Détermier le rayo de covergece des séries etières : (a 0 2 + 3 z (b 0 e 2 z Exercice

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques Cocours commu Mies-Pots Corrigé de la secode épreuve de mathématiques a Nous pouvos appliquer le critère de d Alembert : doc le rayo R est égal à /4 C+ + + + C = + 4, + b O sait que h est de classe C avec

Plus en détail

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI Ξ 2 Suites umériques 2016-2017 Résumé du cours de MPSI I/ Défiitio, propriétés globales 1/ Défiitio Ue suite de complexes u est ue applicatio de N das C Notatios : L'image d'u etier par u se ote u( ou

Plus en détail

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications.

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications. Leço 3 : Coefficiets biomiaux, déombremet des combiaisos, formule du biome. Alicatios. Prérequis : Nombres de listes, arragemets. Pricies de la somme et de la multilicatio. Cadre : O cosidèrera das la

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

CAPES épreuve 1 session 2014

CAPES épreuve 1 session 2014 ... CAPES épreuve 1 sessio 214 A. P. M. E. P. Problème 1 : sommes de Riem Ds ce problème, o suppose itroduite à l ide des foctios e esclier l otio d itégrle u ses de Riem d ue foctio. Prtie A : covergece

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1 SESSION 2005 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES PREMIER EXERCICE a. T (x + y dxdy = = ( y= (x + y dy y= x dx = ((x + 2 ( x2 + x2 2 dx = T (x + y dxdy = 4 3. [xy +

Plus en détail

1 Séries trigonométriques

1 Séries trigonométriques Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, / ANALYSE Fiche de Mathématiques 9 - Séries de Fourier Séries trigoométriques Défiitio O appelle série trigoométrique toute série dot le

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

1 Présentation du jeu.

1 Présentation du jeu. Présetatio du jeu.. Les règles du jeu. Le touroi est u jeu comportat ue suite de maches (appelées duels ) opposat deux joueurs, jamais plus. Les joueurs vot etrer e jeu successivemet, tat qu aucu d etre

Plus en détail

Fiche Diagonalisation des Matrices 2x2

Fiche Diagonalisation des Matrices 2x2 Fiche Diagoalisatio des Matrices x MOSE 1003 4 Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

MPSI Nombres complexes

MPSI Nombres complexes MPSI Nombres complexes Exercice 1: Résoudre das C l équatio 4 + 6 3 + 9 2 + 100 = 0 Exercice 2: 1 Motrer que si π 5 = 5 5 2 Détermier l esemble des poits M d affixe tels que = 2 i Exercice 3: Soit ABC

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit M la matrice réelle 3 3 suivante :

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit M la matrice réelle 3 3 suivante : Eocés et correctios : Sadra Delauay Exo7 Sujets de l aée 24-25 1 Devoir à la maiso Exercice 1 Soit M la matrice réelle 3 3 suivate : 1 Détermier les valeurs propres de M 2 Motrer que M est diagoalisable

Plus en détail

Partie I - Suites et intégrales

Partie I - Suites et intégrales SESSION 16 Cocours commu Cetrale MATHÉMATIQUES. FILIERE MP I.A - Étude d ue itégrale à paramètres Partie I - Suites et itégrales I.A - 1 Soit φ : [, + [ ], + [ R de sorte que pour tout réel x, fx = Φx,t.

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

CONCOURS BLANC 1 SCI 2

CONCOURS BLANC 1 SCI 2 CONCOURS BLANC SCI Durée : 4 heures Aucu istrumet de calcul est autorisé Aucu documet est autorisé Les étudiats sot ivités à soiger la présetatio de leur copie EXERCICE : CCP 05 CCP : cocours commus polytechiques

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Corrigé feuille d exercices 4

Corrigé feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 008/009 MIME LM5-Suites et Itégrales Groupes Corrigé feuille d exercices Suites Covergece de suites Exercice Ue suite u N est pas croissate, si o N, u + u est vérifiée

Plus en détail

1. Limite d'une suite... p2. Suites convergentes

1. Limite d'une suite... p2. Suites convergentes Suites covergetes 1.... p2 4. Cas particuliers... p9 2. Limites et comparaiso... p6 5. Suites mootoes... p11. Opératios sur les limites... p7 1. Limite d'ue suite 1.1. Limite ifiie a) Défiitios O dit que

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Comparaiso des suites Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Frace métropolitaie 202 Eseigemet spécifique EXERCICE 3 (6 poits (commu à tous les cadidats Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie

Plus en détail

Feuille d Exercices : Suites, suite!

Feuille d Exercices : Suites, suite! ECS 1 Dupuy de Lôme Semaie du 6 décembre 004 Feuille d Exercices : Suites, suite! Exercice 1 : Pour tout etier, o défiit u = 1. Motrez que u est mootoe.. Motrez que v est géométrique. k= 3. E déduire l

Plus en détail

CCP Math 2 PC

CCP Math 2 PC CCP 23 - Math 2 PC Titre : Produits iiis et octio Gamma PARTIE I Pour tout ombre réel u ], [, o déiit la octio ϕ u de la variable réelle t ar : -Pour tout t [, [, ϕ u t) = cos ut, -La octio ϕ u est ériodique

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h.

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h. Coceptio : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES mai 07, de 8 h à h La présetatio, la lisibilité, l orthographe, la qualité de la rédactio, la clarté et la précisio des raisoemets etrerot pour ue part

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EXAMEN PROBATOIRE D ADMISSION DES ETRANGERS DANS LES ECOLES DE FORMATION D OFFICIERS EPREUVE DE MATHEMATIQUES DUREE DE L EPREUVE : 4 Heures Matériel autorisé : Calculatrice Circulaire 9986 du 6 ovembre

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

ème aée Maths Problème de révisio Décembre 009 A. LAATAOUI I- Soit la octio déiie sur par : ( ) ta - a) Motrer que est cotiue sur et dérivable sur. b) Calculer '( ) pour élémet de et motrer que est pas

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

Mathématiques. Devoir de Synthèse N 3. Exercice N 1 : 4,5. Enseignant : Ghadhab Lassad. Le sujet comporte 3 pages

Mathématiques. Devoir de Synthèse N 3. Exercice N 1 : 4,5. Enseignant : Ghadhab Lassad. Le sujet comporte 3 pages Devoir de Sthèse ème Maths : M Date : le 0 / 0 / 00 Durée : heures oefficiet : Eseigat : hadhab Lassad Le sujet comorte ages Eercice : oits L esace est mui d u reère orthoormé de ses direct ( A i j k)

Plus en détail

I - Caractérisation des matrices symétriques définies positives

I - Caractérisation des matrices symétriques définies positives SESSION Cocours commu Cetrale MATHÉMATIQUES FILIERE MP IA - I - Caractérisatio des matrices symétriques défiies positives IA Soiet N et A S (R O sait que toutes les valeurs propres de A sot réelles Supposos

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. 2) (**) n + 2 n. 1 pn

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. 2) (**) n + 2 n. 1 pn Exo7 Séries Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice Nature

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Ch.3 RAPPELS DÉRIVATION CONTINUITÉ D'UNE FONCTION ( + ) ( ) I. Rappels sur la dérivation ( + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Terminale S

Ch.3 RAPPELS DÉRIVATION CONTINUITÉ D'UNE FONCTION ( + ) ( ) I. Rappels sur la dérivation ( + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Terminale S Termiale S / LFA Mme MAINGUY Termiale S C3 RAPPELS DÉRIVATION CONTINUITÉ D'UNE FONCTION f est ue foctio défiie sur u itervalle I I Rappels sur la dérivatio défiitio a et a+ ( ) désiget deu ombres réels

Plus en détail

Exercices corrigés sur les séries entières

Exercices corrigés sur les séries entières Exercices corrigés sur les séries etières Eocés Exercice Détermier le rayo de covergece des séries etières a z suivates : a l, a l, a, a e /3, a +!, a arcsi + π 4. Exercice Détermier le rayo de covergece

Plus en détail

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes Jeudi 20 javier 2011 DEVOIR COMMUN Termiales S Mathématiques Cadidats o spécialistes Le sujet comporte 4 exercices. Ue feuille aexe est à redre complétée avec les copies. L'usage du téléphoe portable 'est

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

Feuille d exercices 4

Feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 2009/200 MIME 22 LM5-Suites et Itégrales Groupe 22 Feuille d exercices Suites Covergece de suites Exercice Ecrire l éocé qui traduit : (u ) N est pas croissate Cet

Plus en détail

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ).

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ). Colle PC Semaie 3 0-03 Séries Etières Voir : http://www.mimaths.et/img/pdf/s5.pdf http://www.mimaths.et/img/pdf/sem5.pdf EXERCICE :. Doer u exemple de série etière de rayo de covergece π.. Détermier le

Plus en détail

CONCOURS D ADMISSION Filière MP (Durée de l épreuve : 3 heures) (L usage d ordinateur ou de calculette est interdit).

CONCOURS D ADMISSION Filière MP (Durée de l épreuve : 3 heures) (L usage d ordinateur ou de calculette est interdit). A 2003 Math MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES. ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail