Corrigé du DS n 1. Exercice 1 (6 points)
|
|
|
- Bruno Latour
- il y a 8 ans
- Total affichages :
Transcription
1 Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves de classes de termiale, o appred que 60% des élèves sot des filles. De plus 40% des filles et 0% des garços fumet. 1. O choisit u élève au hasard. O ote A l évéemet : «L élève choisi fume», et P(A) la probabilité de cet évéemet. O ote F l évéemet : «L élève choisi est ue fille». Quelle est la probabilité que : a) Cet élève soit u garço? P(F ) = 1 P(F) et P(F) = b) Cet élève soit ue fille qui fume? = 0,6 doc P(F ) = 1 0,6 = 0,4. O cherche P(F A) : P(F A) = P F (A) P(F) et P F (A) = = 0,4 doc P(F A) = 0,4 0,6 = 0,4 c) Cet élève soit u garço qui fume? O cherche P(F A) : P(F A) = P F (A) P(F ) et P F (A) = = 0, doc P(F A) = 0, 0,4 = 0,1. Déduire des questios précédetes, e le justifiat, que P(A) = 0,6. P(A) = P(A F) + P(A F ) = 0,4 + 0,1 = 0,6. L equête permet de savoir que : Parmi les élèves fumeurs, la moitié ot des parets qui fumet ; Parmi les élèves o fumeurs, 65% ot des parets o fumeurs. O ote B l évéemet : «L élève choisi a des parets fumeurs». O otera PD C la probabilité de l évéemet C sachat l évéemet D. Das cette questio, o pourra s aider d u arbre podéré. a) Calculer les probabilités P A B et P A B. E déduire P(B). P(A B) = 0,5 0,6 = 0,18 et P(A B) = 0,64 0,5 = 0,4. Alors P(B) = P(A B) + P(A B) = 0,18 + 0,4 = 0,404. Page 1 sur 7
2 b) Calculer PB Calculer P B A, probabilité qu u élève fume sachat qu il a des parets fumeurs. A, probabilité qu u élève fume sachat qu il a des parets o fumeurs. Quelle remarque amèe la comparaiso de ces deux résultats? P(A B) P B (A)= = 0,18 P(B) 0,404 0,446. P B (A) = P(A B ) P( B ) et P(B ) = 1 P(B) = 0,596 de plus P(A B ) = 0,6 0,5 = 0,18. Doc P B (A)= 0,18 0,596 0,0. U élève qui a des parets fumeurs a doc plus de chace de se mettre à fumer qu u élève qui a des parets o-fumeurs. 4. O rappelle que, pour chaque élève choisi, la probabilité qu il soit fumeur est égale à 0,6. O choisit 10 élèves de termiale au hasard. O admettra que la populatio d élèves de termiale est suffisammet grade pour que le choix d élèves au hasard soit assimilé à u tirage avec remise. a) Quelle loi de probabilité semble-t-il judicieux d utiliser. Justifier. La loi biomiale de paramètres = 10 et p = 0,6 semble la plus adaptée das cette situatio. E effet, le tirage avec remise iduit la répétitio de maière idépedate d u schéma de Beroulli ou le succès est «l élève est fumeur» avec ue probabilité égale à 0,6. La variable aléatoire X correspodat au ombre d élèves fumeur au sei de ce groupe de 10 élèves. O a alors P(X = k) = ( 10 k ) 0,6k 0,64 10 k. b) Calculer la probabilité qu aucu de ces dix élèves e soit fumeur. P(X = 0) = 0, ,01 La probabilité qu aucu de ces dix élèves e soit fumeur est égal à 0,01 à c) Calculer la probabilité qu il y est au mois u élève fumeur. P(X 1) = 1 P(X = 0) = 1 0,01 = 0,988. La probabilité qu il y est au mois u élève fumeur est égale à 0,988 à d) Calculer la probabilité que le ombre d élèves fumeurs soit compris etre et 7. O cherche P( X 7). Comme P( X 7) = P(X 7) P(X < ) = P(X 7) P(X ) o a, à l aide de la calculatrice : P( X 7) = P(X 7) P(X ) 0,994 0,40 = 0,754. La probabilité que le ombre d élèves fumeurs soit compris etre et 7 est égale à 0,7 à Page sur 7
3 Exercice (6 poits) Partie A 1. Restitutio Orgaisée de coaissaces Posos, z = x + iy et z = x + iy où x, y, x, y sot des réels. a. Motrer que pour tout complexe z et z : z z z z. z z = (x + iy) (x + iy ) = (xx yy ) + i(xy + x y) = (xx yy ) i(xy + x y) z z = (x ) + iy (x ) + iy = (x iy) (x iy ) = (xx yy ) i(xy + x y) O a bie z z z z. 1 1 z' z' b. Motrer que pour tout complexe z o ul puis e déduire que. z z 1 = 1 = ( z ) 1 z = (z ) 1 z = z ( ) 1 z or 1 = z ( ) 1 z z ( z ) 1 z = (z ) z = z 1 ( ) z = z 1 = z z z Partie B = ( 1 ) z z Le pla complexe est rapporté à u repère orthoormé ( O ; u, v ). À tout poit M d affixe z du pla, o associe le poit M d affixe z défiie par : z = z + 4z +. P z z i z 1i z i. 1. Soit a. Calculer P(i). P(i) = i + ( i) i + (1 i) i i = i + i + i + i = 0 Doc P(i) = 0 b. Détermier a, b et c tels que P z z iaz bz c. (z i)(az + bz + c) = az + (b ai)z + (c bi)z ic aisi P(z) = (z i)(az + bz + c) si et a = 1 b ai = i seulemet si :{ c bi = i ic = i a = 1 { b = c = et par coséquet, P(z) = (z i)(z + z + ). c. Détermier toutes les solutios de l équatios P(z) = 0. P(z) = 0 (z i)(z + z + ) = 0 (z = i ou z + z + = 0) Résolutio de z + z + = 0. C est u polyôme du secod degré das C a coefficiets réels. Δ = 9 4 = < 0 doc le polyôme admet deux solutios complexes cojuguées qui sot : z = +i = + i et z = i. Fialemet, l équatio admet trois solutios : i, + i et i.. U poit M est dit ivariat lorsqu il est cofodu avec le poit M associé. Démotrer qu il existe deux poits ivariats. Doer l affixe de chacu de ces poits sous forme algébrique. M = M z = z z = z + 4z + z + z + = 0. Les solutios de cette derière équatio ot été détermiées à la questio précédete. Il y a doc bie deux poits ivariats, l u d affixe + i et l autre d affixe i. z Page sur 7
4 i i. Soit A le poit d affixe et B le poit d affixe. a. Placer les poits A et B das le repère orthoormé ( O ; u, v) d uité graphique cm. b. Motrer que OAB est u triagle équilatéral. Calculos les trois logueurs OA, OB et AB. Le poit A ayat pour affixe i, ses coordoées sot doc A( ; ) et B( ; ). OA = (x A x O ) + (y A y O ) = ( ) + ( ) = 9 + = 1 = OB = ( ) + ( ) = 9 + = 1 = AB² = ( ) + ( ) = ( ) = Les trois distaces sot égales doc le triagle OAB est équilatéral. 4. Soit z = x + iy, l affixe de M. (O rappelle que x et y sot réels.) a. Détermier Re(z ) et Im(z ) e foctio de x et y. z = z + 4z + = (x + iy) + 4(x + iy) + = (x y + 4x + ) + i(xy + 4y) Aisi Re(z ) = x y + 4x + et Im(z ) = xy + 4y. b. Détermier l esemble (E) des poits M tels que le poit M associé soit sur l axe des réels. M est sur l axe des réels si et seulemet si so affixe z est u réel c est-à-dire si Im(z ) = 0. y = 0 Im(z ) = 0 xy + 4y = 0 y(x + ) = 0 { ou. x = Coclusio : l esemble E est costitué des poits d ordoée ulle doc de l axe des abscisses et des poits de la droite verticale dot ue équatio est x = (droites e bleu). c. Représeter l esemble (E) das le repère ( O ; u, v ). Page 4 sur 7
5 Exercice ( poits) Les trois questios sot idépedates. Pour chaque questio, ue affirmatio est proposée. Idiquer si elle est vraie ou si elle est fausse e justifiat la répose. U poit sera attribué pour chaque répose correctemet justifiée. Aucu poit e sera attribué à ue répose o justifiée. 1. Soit u etier aturel. O cosidère les deux etiers a et b défiis par : a = et b = +. Affirmatio : pour tout etier aturel, le quotiet et le reste de la divisio euclidiee de a par b sot respectivemet égaux à + et à = ( + )( + ) + ( + 17) Cette égalité est la divisio euclidiee de a par b si et seulemet si < + c est-à-dire si 15 < et o pour tout etier aturel. O aurait pu utiliser u cotre-exemple : si = 0 par exemple, o trouve a = 1 et b = L affirmatio est doc FAUSSE.. O cosidère l etier N = 01. Affirmatio : Le reste de la divisio euclidiee de N par 7 est égal à 6. = 7 = ( 1) 1 mod[7] or 01 = doc 01 = 670+ = ( ) 670 Par coséquet, 01 ( 1) 670 mod[7] mod[7] mod[7]. Comme 0 < 7, est le reste de la divisio euclidiee de N par 7. L affirmatio est doc FAUSSE.. O cosidère l etier M = Affirmatio : M est divisible par 5 quel que soit l etier aturel. 4 = 16 = mod[5] doc 4+1 = 4 1 mod[5] mod[5] 4 = 81 = mod[5] doc 4+1 = 4 1 mod[5] mod[5] Par coséquet : M = mod[5] 0 mod[5] ce qui sigifie que M est u multiple de 5. L affirmatio est doc VRAIE. Page 5 sur 7
6 Exercice 4 (5 poits) Partie A O cosidère l algorithme suivat : Variables k et p sot des etiers aturels u est u réel Etrée Demader la valeur de p Traitemet Affecter à u la valeur 5 Pour k variat de 1 à p Affecter à u la valeur 0,5u + 0,5(k 1) 1,5 Fi de pour Sortie Afficher u Faire foctioer cet algorithme pour p = e idiquat les valeurs des variables à chaque étape. Quel ombre obtiet-o e sortie? valeur de k 1 valeur de u 5 1 0, 5 O obtiet e sortie : 0,5. Partie B Soit u la suite défiie par so premier terme u0 = 5 et, pour tout etier aturel par : u 1 0,5u 0,5 1,5. 1. Modifier l algorithme de la première partie pour obteir e sortie toutes les valeurs de u pour variat de 1 à p. Variables : k et p sot des etiers aturels u est u réel Etrée : Demader la valeur de p Traitemet : Affecter à u la valeur 5 Pour k variat de 1 à p Affecter à u la valeur 0,5u 0,5( k1) 1,5 Afficher u Sortie: Fi de pour. À l aide de l algorithme modifié, après avoir saisi p = 4, o obtiet les résultats suivats : 1 4 u 1 0,5 0,75 0,75 Peut-o affirmer, à partir de ces résultats, que la suite ( u ) est décroissate? Justifier. Puisque 4 > u u la suite u est pas décroissate, du mois pas avat le rag 4. Page 6 sur 7
7 . Démotrer par récurrece que pour tout etier aturel supérieur ou égal à, u 1 u. Que peut-o e déduire quat au ses de variatio de la suite ( u )? Iitialisatio : o viet de voir que u4 > u : la relatio est vraie pour =. Hérédité : o suppose qu il existe u aturel p tel que u > 1 u p p. d où 0,5 up 1 > 0,5up ; d autre part : p 1 > p 0,5( p 1) > 0,5p d où par somme des ces deux derières iégalités : 0,5u 0,5( p 1) > 0,5u 0,5 p et e ajoutat 1,5 à chaque membre : p1 p 0,5u p 1 0,5( p 1) 1,5 > 0,5u p 0,5p 1,5 soit up > up 1 : la relatio est vraie au rag p 1. Coclusio : o a doc démotré que pour tout etier aturel supérieur ou égal à, u > 1 u ce qui motre que la suite u est croissate à partir du rag Soit v la suite défiie pour tout etier aturel par v 0,1u 0,1 0,5. Démotrer que la suite v est géométrique de raiso 0,5 et exprimer alors v e foctio de. Pour tout aturel, o a : v = 0,1u 0,1( 1) 0,5 1 1 = 0,1u 0,10,4 1 = 0,1 0,5u 0,5 1,5 0,1 0, 4 = 0,05u 0,05 0,15 0,1 0,4 = 0,05u 0,050,5 = 0,5 0,1u 0,10,5 = 0,5v La suite v est doc géométrique de raiso 0,5. Le premier terme est : v 0 = 0,1 5 0,1 0 0,5 =1 o a doc pour tout aturel, 1 v = 1 0,5 = 0,5 =. 5. E déduire que, pour tout etier aturel, u 100,5 5. O a v = 0,1u 0,1 0,5 0,5 = 0,1u 0,1 0,5 10 0,5 = u 5 u = 10 0, Détermier alors la limite de la suite ( u ). Comme 1 < 0,5 < 1, o a lim 0,5 = 0 et comme lim =, o a doc lim u =. La suite u e coverge pas. Page 7 sur 7
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =
[http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.
Séquence 5. La fonction logarithme népérien. Sommaire
Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI
FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue
CHAPITRE 2 SÉRIES ENTIÈRES
CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.
Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.
Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
Solutions particulières d une équation différentielle...
Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod
Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X
Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour
Etude de la fonction ζ de Riemann
Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :
Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +
Les Nombres Parfaits.
Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **
Dénombrement. Chapitre 1. 1.1 Enoncés des exercices
Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.
. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1
Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S
Suites et séries de fonctions
[http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de
II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009
M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted
Convergences 2/2 - le théorème du point fixe - Page 1 sur 9
Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Statistique descriptive bidimensionnelle
1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets
Terminale S. Terminale S 1 F. Laroche
Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM
Séries réelles ou complexes
6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.
Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la
55 - EXEMPLES D UTILISATION DU TABLEUR.
55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique
14 Chapitre 14. Théorème du point fixe
Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de
Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES
DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces
Processus et martingales en temps continu
Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de
STATISTIQUE : TESTS D HYPOTHESES
STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie
Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions
Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter
Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3
1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que
POLITIQUE ECONOMIQUE ET DEVELOPPEMENT
POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier
capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...
Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1
Formation d un ester à partir d un acide et d un alcool
CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester
Probabilités et statistique pour le CAPES
Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes
La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe
1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios
Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe
Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das
Échantillonnage et estimation
Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos
STATISTIQUE AVANCÉE : MÉTHODES
STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................
UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. [email protected] ) page 1
UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. [email protected] ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau
2 ième partie : MATHÉMATIQUES FINANCIÈRES
2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul
4 Approximation des fonctions
4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour
Exercices de mathématiques
MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris
UNIVERSITÉ DE SFAX École Supérieure de Commerce
UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première
Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME
Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par
UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4
UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»
Principes et Méthodes Statistiques
Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE
Cours de Statistiques inférentielles
Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios
Statistiques appliquées à la gestion Cours d analyse de donnés Master 1
Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques
MESURE DE L'INFORMATION
MESURE DE L'INFORMATION Marc URO TABLE DES MATIÈRES INTRODUCTION... 3 INCERTITUDE D'UN ÉVÉNEMENT (OU SELF-INFORMATION)... 7 INFORMATION MUTUELLE DE DEUX ÉVÉNEMENTS... 9 ENTROPIE D'UNE VARIABLE ALÉATOIRE
Comment les Canadiens classent-ils leur système de soins de santé?
Novembre Les sois de saté au Caada, c est capital bulleti o 4 Commet les Caadies classet-ils leur système de sois de saté? Résultats du sodage iteratioal du Fods du Commowealth sur les politiques de saté
Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot
Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars
Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014
Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,
PROMENADE ALÉATOIRE : Chaînes de Markov et martingales
PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées [email protected] Novembre 2013 2 Table des matières
Régulation analogique industrielle ESTF- G.Thermique
Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité
Des résultats d irrationalité pour deux fonctions particulières
Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: [email protected] Received
Chapitre 3 : Transistor bipolaire à jonction
Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats
Processus géométrique généralisé et applications en fiabilité
Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR
La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison
ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de
PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS
PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie
Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.
II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café
Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015
Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir
Chaînes de Markov. Arthur Charpentier
Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.
DETERMINANTS. a b et a'
2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio
RECHERCHE DE CLIENTS simplifiée
RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus
Sommaire Chapitre 1 - L interface de Windows 7 9
Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18
Options Services policiers à Moncton Rapport de discussion
Optios Services policiers à Mocto Rapport de discussio Le 22 ovembre 2010 Also available i Eglish TABLE DES MATIÈRES Chapitre 1.0 Sommaire 3 Chapitre 2.0 Problématique 4 Chapitre 3.0 Cotexte 5 Chapitre
Chap. 5 : Les intérêts (Les calculs financiers)
Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Compte Sélect Banque Manuvie Guide du débutant
GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de
Dares Analyses. Plus d un tiers des CDI sont rompus avant un an
Dares Aalyses javier 2015 N 005 publicatio de la directio de l'aimatio de la recherche, des études et des statistiques Plus d u tiers des CDI sot rompus avat u a Le cotrat de travail à durée idétermiée
16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.
16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme
Introduction : Mesures et espaces de probabilités
Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,
S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui.
S-PENSION Costituez-vous u capital retraite complémetaire pour demai tout e bééficiat d avatages fiscaux dès aujourd hui. Sommaire 1. Il est temps de predre l iitiative 4 2. Profitez dès aujourd hui des
TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )
RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires
Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?
Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres
RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION
RÈGLES ORDIALES : UE GÉÉRALISATIO DES RÈGLES D'ASSOCIATIO SYLVIE GUILLAUME ALI KHECHAF 2 RÉSUMÉ: La plupart des mesures des règles cocere les variables biaires et écessite pour les autres types de variables
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction
A ew adaptive operator of fusio par Fraçois DELMOTTE LAMIH, Uiversité de Valeciees et du Haiaut-Cambrésis, Le Mot Houy, BP 3, 5933 Valeciees CEDEX 9 [email protected] résumé et mots clés
n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :...
Nom:... Préom :... Chaque répose peut valoir : c) 2 poits si le choix est totalemet exact + poit si le choix est partiellemet exact + 0 poit si le choix est erroé + -i poit si le choix est u coeses Ue
Module 3 : Inversion de matrices
Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que
Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR
Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets
II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1
II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d
COMMENT ÇA MARCHE GUIDE DE L ENSEIGNANT 9 E ANNÉE
GUIDE DE L ENSEIGNANT 9 E ANNÉE TROUSSE PÉDAGOGIQUE 9 E ANNÉE Le préset Guide de l eseigat, qui accompage la trousse pédagogique COMMENT ÇA MARCHE : PRODUCTION D ÉLECTRICITÉ 9 e aée a été coçu à l itetio
Mécanismes de protection contre les vers
Mécaismes de protectio cotre les vers Itroductio Au cours de so évolutio, l Iteret a grademet progressé. Il est passé du réseau reliat quelques cetres de recherche aux États-Uis au réseau actuel reliat
La maladie rénale chronique
La maladie réale chroique Qu est-ce que cela veut dire pour moi? Natioal Kidey Disease Educatio Program La maladie réale chroique: l essetiel Vous avez été iformé(e) que vous êtes atteit(e) de la maladie
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Exponentielle exercices corrigés
Trmial S Foctio potill Ercics corrigés Fsic 996, rcic Fsic 996, rcic 3 3 Fsic 996, rcic 4 4 Fsic, rcic 6 3 5 Fsic, rcic 4 3 6 Baqu 4 4 7 Epo + air, Amériqu du Nord 5 5 8 Basiqu, N Calédoi, ov 4 7 9 Basiqus
3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.
3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios
