Corrigé du baccalauréat S Liban 3 juin 2010

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé du baccalauréat S Liban 3 juin 2010"

Transcription

1 Corrigé du baccalauréat S Liba 3 jui 1 Exercice 1. Partie A : Restitutio orgaisée de coaissaces 1) x R, o a d après le pré-requis e preat y x : e x e x e x+x e 1. Ceci état vrai pour tout x, e divisat e x e x par e x o obtiet bie le résultat : e x 1 e x. ) O démotre le résultat par le pricipe de récurrece. Soit P() la propositio suivate dépedat de, x R : P() : (e x ) e x Partie B : Iitialisatio. P() est vraie car (e x ) 1 et e x 1. Hypothèse de récurrece. O suppose que pour u certai N, P() est vraie. Hérédité. (e x ) +1 e x (e x ) e x+x e x(+1). Aisi P(+ 1) est vraie. Coclusio. Par récurrece, o a prouvé que pour tout etier de N : P() : (e x ) e x. 1) a. u + u 1 Par liéarité de l itégrale. b. O a : 1 1+e dx+ x e x dx 1+e x u 1 e x 1+e x dx 1+e x dx 1+e x dx 1 1 O remarque alors que c est de la forme u (x)/u(x) avec u(x)1+e x et s itègre e lu(x). Aisi, u 1 [l(1+e x )] 1 l(1+e 1 )+l(1+e )l() l(1+e 1 ) Comme u + u 1 1 u 1+l(1+e 1 ) l() ) Ici il est pas utile de faire ue récurrece sur car si o se souviet du cours, N, u est l itégrale d ue foctio cotiue et positive, doc elle est positive. E effet, 3) a. x R e x 1+e x > u +1 + u e x(+1) dx+ 1+e x e x(+1) + e x e x 1+e x dx 1+e x dx liéarité e x e x e x dx e surtout pas additioer les expoetielles! e x dx [ 1 e x] 1 1 e d où le résultat pour tout etier >. 1

2 b. O a : N u +1 1 e u et par récurrece u +1. O a écessairemet N u 1 e. 4) Le résultat est immédiat : d après ce qui précède N u 1 e d après le théorème d ecadremet (ou des gedarmes) u +.. Or e +, et 1/. Doc + Exercice. L espace est mui d u repère orthoormal (O; i, j, k). O ote (D) la droite passat par les poits A(1 ; ; 1) et B(3 ; 5 ; ). 1) La droite (D) a pour vecteur directeur AB(; 3; 1) et passe par le poit A. Doc ue représetatio paramétrique de la droite (D) est : x 1+t y 3t avec t R (1) z 1 t ) Soit (D ) : x k y 1+k z k avec k R () Il y a deux choses à motrer pour affirmer que (D) et (D ) e sot pas coplaaires : il faut qu elles e soiet i sécates i parallèles. Soit u u vecteur directeur de la droite (D ) de coordoées (-1 ; ; 1) (coefficiets devat k). O remarque que les deux vecteurs u et AB(; 3; 1) e sot pas coliéaires, et par coséquet les droites e peuvet pas être parallèles. O résout le système formé par les équatios (1) et () pour savoir si les droites sot sécates : 1+t k 3t 1+k 1 t k k 9 t 5 t+ k 1 Ce qui est impossible, doc ce système admet pas de solutio. Aisi les droites (D) et (D ) e sot pas sécates. O peut doc coclure que les droites e sot pas coplaaires. 3) O cosidère le pla (P) d équatio 4x + y + 5z + 3. a. b. 4 1+( )+5 ( 1)+3 et 4 3+( 5)+5 ( )+3 Doc les poits A et B appartieet au pla (P), et comme AB est u vecteur directeur de la droite (D), o e déduit que (D) (P) 4x+y+ 5z+ 3 M(x, y, z) (D x k ) (P) y 1+k z k k 4 x 6 y 7 z 4 Aisi la droite (D ) coupe le pla (P) e u poit C de coordoées (6; 7; 4). 4) O cosidère la droite ( ) passat par le poit C et de vecteur directeur w(1 ; 1 ; 1). 1

3 a. b. u. w ( 1) Doc les vecteurs u et w sot orthogoaux, ce qui prouve que (D ) et ( ) sot orthogoales. De plus, le poit C appartiet aux deux droites, doc celles ci sot sécates e C, ce qui prouve qu elles sot perpediculaires. w. AB 1 +1 ( 3) 1 ( 1) Doc les vecteurs w et AB sot orthogoaux, ce qui prouve que (D) et ( ) sot orthogoales. Pour motrer que les droites sot perpediculaires il faut détermier leur itersectio si elle existe. Il faut d abord paramétrer la droite ( ) : elle passe par le poit C et est dirigée par le vecteur w doc so équatio paramétrée est : x 6+k y 7+k avec k R z 4 k 6+k 1+t M(x, y, z) (D) ( ) 7+k 3t 4 k 1 t { k 1 t L itersectio existe (le système admet des solutios uiques), doc les droites sot perpediculaires et (D) ( )E a pour coordoées (5; 8; 3). Exercice 3. Eseigemet obligatoire Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse, et doer ue justificatio de la répose choisie. Ue répose o justifiée e rapporte aucu poit. Toutefois, toute trace de recherche, même icomplète, ou d iitiative, même ofructueuse, sera prise e compte das l évaluatio. 1. Ue ure cotiet ue boule blache et deux boules oires. O effectue 1 tirages successifs d ue boule avec remise (o tire ue boule au hasard, o ote sa couleur, o la remet das l ure et o recommece). Propositio 1 : «La probabilité de tirer exactemet 3 boules blaches est ( ) 1 3 ( ) 7 3.» FAUX 3 3 Il s agit d u schéma de Beroulli : o reouvelle 1 fois de maière idépedate ue expériece à deux issues cosistat à tirer u boule das ue ure coteat 3 boules dot ue blache. La probabilité de tirer ue blache est de 1/3. O appelle X la variable aléatoire doat le ombre de boules( blaches ) obteues à ( ) ( ) 7 l issue des 1 expérieces. X suit ue loi biomiale de paramètres (1;1/3). p(x 3) et ( ) Ue variable aléatoire X suit la loi expoetielle de paramètre λ(λ > ). O rappelle que pour tout réel a> : p(x a) a λe λt dt. Propositio : «Le réel a tel que p(x > a)p(x a) est égal à l λ.» 1

4 a Pour tout réel a> : p(x a) λe λt dt [e λt] a 1 e λa, p(x > a)1 p(x a)e λa. L équatio p(x > a) p(x a) est équivalete à : 1 e λa e λa e λa 1 l() λa l() a λ 3. Soit le ombre complexe z 1 i 3. Propositio 3 : «Si l etier aturel est u multiple de 3 alors z est u réel.» O utilise la forme expoetielle : z 1 i 3r e iθ où r 1+3 et θ est tel que cos(θ) 1 et si(θ) 3, θ π 3. Doc z e i π 3 et pour tout etier aturel, z π i e 3. Si est multiple de 3, il s écrit sous la forme 3k où k est u etier aturel. O obtiet alors z e ikπ ± R 4. O cosidère, das le pla complexe rapporté à u repère orthoormal direct (O; u, v), le poit A d affixe a i et le poit B d affixe b 1+i a. Propositio 4 : «Le triagle OAB est rectagle isocèle.» Soit Z a b, o sait que Ar g (Z )( BO, BA) et que Z BA b BO. b 1+i ( i) i, doc a b 1 3 ii( 1 i 3 i) ib. Z ib b i est de module 1 et d argumet π rectagle de sommet B.. Doc ( BO, BA) π et BABO. Le triagle ABO est doc isocèle 5. Das le pla complexe rapporté à u repère orthoormal direct (O; u, v), à tout poit M du pla d affixe z o ulle o associe le poit M d affixe z telle que z 1 où z désige le ombre cojugué de z. z Propositio 5 : «Il existe u poit M tel que O, M et M e sot pas aligés.» FAUX Pour tout poit M d affixe z o ulle, z 1 1z z zz. Or 1 est réel, doc les vecteurs OM et OM sot zz coliéaires et les poits O, M et M sot aligés. EXERCICE 3 Eseigemet de spécialité 5 poits Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse, et doer ue justificatio de la répose choisie. Ue répose o justifiée e rapporte aucu poit. Toutefois, toute trace de recherche, même icomplète, ou d iitiative même o fructueuse, sera prise e compte das l évaluatio. 1. O cosidère, das le pla complexe rapporté à u repère orthoormal direct (O; u, v), le poit A d affixe i et B l image de A par la rotatio de cetre O et d agle π. O ote I le milieu du segmet [AB]. Propositio 1 : «La similitude directe de cetre A qui trasforme I e O a pour écriture complexe z (1+ i)z 1 i.» Puisque B est l image de A par la rotatio de cetre O et d agle π, le triagle OAB est rectagle isocèle direct de sommet O. Or I est le milieu de l hypotéuse doc AO AI et ( AI, AO) π. La similitude de cetre A qui 4 trasforme I e O a pour rapport et pour agle π 4. So expressio complexe est z e iπ/4 (z z A )+z A (1+i)(z +i)+ i(1+i)z i+i 1+ i(1+i)z 1 i 1

5 . O appelle S l esemble des couples (x ; y) d etiers relatifs solutios de l équatio (e) : 3x 5y. Propositio : «L esemble S est l esemble des couples (5k 1 ; 3k 1) où k est u etier relatif.» Soit (x ; y) u couple d etiers vérifiat (e). Alors 3x 5y 3+5 doc (e ) : 3(x+ 1) 5(y+ 1). Le ombre 5 divise 3(x+ 1) et 5 est premier avec 3. Selo le théorème de Gauss, 5 divise x+ 1 et il existe u etier relatif k tel que x+ 15k doc x 1+5k puis e remplaçat das (e ), 5(y+ 1)15k doc y 3k 1. O e déduit que, si (x ; y) est solutio de (e) alors il existe u etier relatif k tel que (x ; y) ( 1 + 5k ; 1 + 3k). Réciproquemet, s il existe u etier relatif k tel que (x ; y) ( 1+5k ; 1+3k), le couple (x ; y) est u couple d etiers relatifs vérifiat (e). E effet, 3 ( 1+5k) 5 ( 1+3k). L esemble S est l esemble des couples (5k 1 ; 3k 1) où k est u etier relatif. 3. O cosidère l équatio (E) : x + y modulo 3, où (x ; y) est u couple d etiers relatifs. Propositio 3 : «Il existe des couples (x ; y) d etiers relatifs solutios de (E) qui e sot pas des couples de multiples de 3.» FAUX O costruit le tableau des cogrueces modulo 3 de x et de x : x 1 x Si x ou y est pas multiple de 3 alors x ou y est cogru à 1 modulo 3 et la somme x + y est cogrue à 1 ou modulo 3 et est jamais cogrue à modulo Soit u etier aturel supérieur ou égal à 3. Propositio 4 : «Pour tout etier aturel k ( k ), le ombre!+k est pas u ombre premier.» Pour tout etier aturel k tel que k o sait que k divise! doc, par divisibilité de la somme, k divise aussi!+k, k est doc u diviseur de!+k et k est différet de 1 (k ) et différet de k+! (car! est o ul), k est doc u diviseur propre de k+! qui est doc pas premier. 5. O cosidère l équatio (E ) : x 5x+ 48, où x est u etier aturel. Propositio 5 : «Il existe deux etiers aturels o uls dot le PGCD et le PPCM sot solutios de l équatio (E ).»FAUX Les solutios de cette équatio du secod degré sot 1 et 4. Il existe aucu couple d etiers aturels tels que le PGCD et le PPCM correspodet respectivemet à 1 et 4 - e effet le PGCD de deux ombres divise toujours le PPCM de ces deux ombres et 1 e divise pas 4. Exercice 4. Partie A : Soit u la foctio défiie sur ] ; + [ par u(x) x +l x. 1) La foctio u est dérivable sur comme somme de foctios dérivables sur ] ; + [. x ] ; + [ u (x)x+ 1/x. Pour x ] ; + [ u (x)>, doc la foctio u est strictemet croissate sur ] ; + [. O obtiet alors le tableau des variatios suivat : x α + u (x) + + u 1

6 ) a. La foctio u est dérivable doc cotiue sur ] ; + [, elle est strictemet croissate sur ] ; + [, elle est bijective de ] ; + [ vers ] ; + [ et efi ] ; + [. D après le théorème de la bijectio mootoe, il existe ue et ue seule solutio α ] ; + [ telle que u(α). Remarque importate : Attetio le théorème des valeurs itermédiaires est u théorème d existece (il existe au mois ue solutio telle que...) et o d uicité! Si vous l utilisez oubliez pas de précisez la stricte mootoie de la foctio. b. À l aide de la calculatrice (soit e résolvat ue équatio soit e zoomat avec le graphique), 3) D après le tableau précédet c est évidet : u(1,31),13 et u(1,3), 1,31< α < 1,3 Sur ] ; α[, u est égative Sur ]α ; + [, u est positive Pour x α, u est ulle 4) u(α) α +lα lα α. D où le résultat. Partie B : O cosidère la foctio f défiie et dérivable sur ] ; + [ par O ote f la foctio dérivée de f sur ] ; + [. f (x) x + ( l x). 1) O pose x ] ; + [ h(x) l x et x ] ; + [ h (x) 1/x. x ] ; + [ : f (x) x + h(x) f (x) f (x) x+ h (x)h(x) u(x) x ) x ] ; + [ f (x) déped est du même sige que u(x). O obtiet alors le tableau des variatios suivat : x α + f (x) f f (α) Partie C : Das le pla rapporté à u repère orthoormé (O; i, j ), o ote : Γ la courbe représetative de la foctio l (logarithme épérie) ; A le poit de coordoées ( ; ) ; 1

7 M le poit de Γ d abscisse x apparteat à ] ; + [. 1) M a pour coordoées (x; l x). AM AM AM AM (x M x A ) + (y M y A ) x + (l x ) x + ( l x) f (x) ) Soit g la foctio défiie sur ] ; + [ par g (x) f (x. a. La foctio g est dérivable sur ] ; + [ comme composée de foctios dérivables sur ] ; + [. x ] ; + [ : g (x) f (x) f (x) (3) Or x ] ; + [ f (x)>, doc le sige de g (x) est le même que celui de f (x). Aisi f et g ot les mêmes variatios pour tout x ] ; + [. b. O sait que d après ce qui précède, pour x α, f admet u miimum doc la distace AM est miimale e u poit de Γ, appelé P de coordoées (α ; lα). c. AP f (α) α + ( lα) α + α 4 car lα α α 1+α α 1+α car α> Or x ] ; + [ f (x)>, doc le sige de g (x) est le même que celui de f (x). Aisi f et g ot les mêmes variatios pour tout x ] ; + [. 3) O sait que le coefficiet directeur à la tagete à Γ e P est 1/α (o dérive la foctio l au poit α). Doc la tagete à Γ au poit P est dirigée par le vecteur v(1 ; 1/α). O sait aussi que le coefficiet directeur à la droite (AP) est α. So vecteur directeur v a doc pour coordoées (1 ; α). Or v. v, ce qui prouve que la droite (AP) est perpediculaire à la tagete à Γ au poit P. 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

Exponentielle exercices corrigés

Exponentielle exercices corrigés Trmial S Foctio potill Ercics corrigés Fsic 996, rcic Fsic 996, rcic 3 3 Fsic 996, rcic 4 4 Fsic, rcic 6 3 5 Fsic, rcic 4 3 6 Baqu 4 4 7 Epo + air, Amériqu du Nord 5 5 8 Basiqu, N Calédoi, ov 4 7 9 Basiqus

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Chaînes de Markov. Arthur Charpentier

Chaînes de Markov. Arthur Charpentier Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Principes et Méthodes Statistiques

Principes et Méthodes Statistiques Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

Régulation analogique industrielle ESTF- G.Thermique

Régulation analogique industrielle ESTF- G.Thermique Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

Statistique Numérique et Analyse des Données

Statistique Numérique et Analyse des Données Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015 Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir

Plus en détail

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1 UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. remy.garadel@utbm.fr ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Petit recueil d'énigmes

Petit recueil d'énigmes Petit recueil d'éigmes Patxi RITTER (*) facile (**) mois facile (***) pas facile (****) il faudra de l aide Solutios e rouge. 1) Cryptarithme (**) Trouvez la valeur de A, B et C satisfaisat l équatio suivate.

Plus en détail

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction A ew adaptive operator of fusio par Fraçois DELMOTTE LAMIH, Uiversité de Valeciees et du Haiaut-Cambrésis, Le Mot Houy, BP 3, 5933 Valeciees CEDEX 9 fdelmott@flore.uiv-valeciees.fr résumé et mots clés

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

RECHERCHE DE CLIENTS simplifiée

RECHERCHE DE CLIENTS simplifiée RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées

Plus en détail

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014 Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Sommaire Chapitre 1 - L interface de Windows 7 9

Sommaire Chapitre 1 - L interface de Windows 7 9 Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18

Plus en détail

RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *)

RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *) RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *) *) Uiversité de Blida Faculté des scieces Départemet de Mathématiques. BP 270, Route de Soumaa. Blida, Algérie. Tel &

Plus en détail

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de

Plus en détail

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2. Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE

Plus en détail

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Le chef d entreprise développe les services funéraires de l entreprise, en

Le chef d entreprise développe les services funéraires de l entreprise, en Le chef d etreprise développe les services fuéraires de l etreprise, e assurat lui-même tout ou partie des activités de vete et e ecadrat directemet le persoel techique et commercial et d exploitatio.

Plus en détail