Dénombrement. 1 Dénombrer des listes Permutation Arrangement p-liste... 4

Dimension: px
Commencer à balayer dès la page:

Download "Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4"

Transcription

1 1 Déombremet Table des matières 1 Déombrer des listes Permutatio Arragemet liste Combiaiso Défiitio Nombre de combiaisos U exemle : le jeu de cartes Résumé des situatios Critères à reteir Exemles Combiaisos Formules Formules relatives aux combiaisos Triagle de Pascal Le biôme de Newto

2 2 1 DÉNOMBRER DES LISTES 1 Déombrer des listes Défiitio 1 : Ue liste est ue suite d élémets ordoés d u esemble E. Ue liste iduit doc ue otio d ordre. 1.1 Permutatio Défiitio 2 : Ue ermutatio de élémets d u esemble E est ue liste de élémets de cet esemble E. Remarque : Toutes les ermutatios d u esemble E rerésete toutes les ossibilités d éumérer les élémets de cet esemble E. Exemles : 1) Trouver tous les classemets ossibles d ue éreuve sortive qui comorte 10 athlètes. 2) Trouver tous les aagrammes du mot «ACHILE». 3) Trouver tous les ombres de 4 chiffres que l o eut former avec les chiffres de Théorème 1 : Le ombre de ermutatios d u esemblee de élémets est égal à : ( 1) ( 2) 2 1!! est aelé «factorielle». Par covetio, o ose 0! 1. Exemles : 1) Le ombre de classemets ossibles d ue cométitio avec 10 athlètes est : 10! ) Le ombre d aagrammes que l o eut former avec le mot «ACHILE» (6 lettres distictes) est : 6! Par cotre le ombre d aagrammes avec le mot «ENSEMBLE» (8 lettres o distictes) est as 8!, car les 3 «E» e sot as discerables. Les ermutatios ossibles des 3 «E» sot de 3! 6. O a doc comté avec 8!, 6 fois lus d aagrammes. Le ombre d aagramme du mot «ENSEMBLE» est doc de : 8! 3!

3 1.2 ARRANGEMENT 3 3) Le ombre de ombres de 4 chiffres que l o eut former à artir des chiffres de est égal à : 4! Il est imortat de se familiariser avec la otatio factorielle. Voici quelques exemles de simlificatio sas l aide de la calculatrice. 21! 20! 21 20! 20! 6! 5! 5! 6 4! 5! 21 5!(6 1) 5! 6 4! 5 4! ! 5! 4! ! 5! (+1)! ( 1)! ( 1) ( 1)! ( 1)! 1! 1 (+1)! (+1) 1 (+1)! ! 3! 4! (+1)(+2) (+2)! ( 1)! 126 ( 1) (+1)! 1.2 Arragemet Défiitio 3 : U arragemet de élémets d u esemble E de élémets ( ) est ue liste comosée de élémets disticts 2 à 2 de l esemble E Remarque : Ue ermutatio de l esemble E est u arragemet des élémets de E. U arragemet eut être associé à tirages successifs sas remise das ue ure qui cotiet élémets. Exemles : 1) Trouver tous les tiercés, das l ordre, ossibles avec 20 chevaux au déart. 2) Trouver tous les bureaux (résidet, vice-résidet, trésorier et secrétaire) que l o eut élire das ue associatio de 30 membres. 3) Trouver le ombre de tirages successifs, sas remise, ossibles de 3 boules das ue ure qui comorte 9 boules umérotées de 1 à 9.

4 4 1 DÉNOMBRER DES LISTES Théorème 2 : Le ombre d arragemet de élémets d u esemble de élémets est égal à : A ( 1) ( +1) Par covetio, o a : A 0 1! ( )! Exemles : 1) Le ombre de tiercés das l ordre avec 20 chevaux au déart est de : A ) Le ombre de bureaux éligibles de 4 ersoes d ue associatio de 30 membres est de : A ) Le ombre de tirages successifs, sas remise, de 3 boules das ue ure comortat 9 boules umérotées de 1 à 9 est de : A liste Défiitio 4 : Ue -liste est ue liste de élémets disticts ou o d u esemble E de élémets. Remarque : Ue -liste eut être associée à tirages successifs avec remise das ue ure qui cotiet élémets. Exemles : 1. Trouver le ombre de codes ossibles à 4 chiffres our ue carte bacaire. 2. Trouver le ombre de uméros de téléhoe ortable ossible (uméro commaçat ar 06). 3. Trouver le ombre de résultats ossibles lorsque l o lace u dé à jouer trois fois de suite. 4. Trouver le ombre de choix ossibles our rager 5 aires de chaussettes das trois tiroirs. Théorème 3 : Le ombre de -liste das u esemble E à élémets est égal à : Exemles : 1) Le ombre de code à 4 chiffres our ue carte bacaire est de :

5 5 2) Le ombre de uméros de téléhoe ortable ossibles (06 lus 8 chiffres) est de : ) Le ombre de résultats ossibles lorsque l o lace u dé à jouer 3 fois de suite est de : ) Le ombre de ragemets ossibles de 5 aires de chaussetes das trois tiroirs (il eut y avoir u ou 2 tiroir(s) vide(s)) est de : Combiaiso 2.1 Défiitio Défiitio 5 : Soit E u esemble de élémets et u etier tel que 0. Ue combiaiso de élémets de E est u sous esemble de E à élémets. Remarque : Das ue combiaiso, cotrairemet à ue liste l ordre iterviet as. O eut alors associer ue combiaiso à u tirage simultaée de élémets das ue ure qui e cotiet. Exemles : 1) Soit u esemble E {a, b, c, d}. Les combiaisos de 2 élémets de E sot : {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d} 2) Trouver le ombre de délégatios de 4 ersoes que l o eut désiger das u groue de 15 ersoes. 3) Trouver le ombre de mais de 5 cartes ossibles avec u jeu de 32 cartes. 4) Trouver le ombre de oigées de mai échagées si toutes les ersoes d u groue de 18 se saluet de cette faço. 2.2 Nombre de combiaisos Théorème 4 : Le ombre de combiaisos de élémets das u esemble E de élémets (0 ) est égal à : ( 1) ( +1)! O rooce : «C».!!( )! Exemles : 1) Le ombre de délégatios de 4 ersoes que l o eut désiger das u groue de 15 ersoes est : ( )

6 6 2 COMBINAISON 2) Le ombre de mais de 5 cartes ossibles avec u jeu de 32 cartes est de (avec la calculatrice) : ( ) ) le ombre de oigées de mais échagées das u groue de 18 ersoes est de : ( ) Il est bo de se familiariser avec cette formule das u remier tems ( ) ( ) ! 8!(12 8)! (7 5 ) ( 9 6 ) 7! 5!2! 6!3! 9! 7!6!3! 5!2!9! 7! 6 5! 3 2 5! 2 7! ( ) ( ) Trouver our que : O obtiet alors : 3 ( 1)( 2)( 3) 4! ( 2)( 3) ( 1) 2 O calcule , o trouve alors la solutio U exemle : le jeu de cartes O tire ciq cartes d u jeu de 32 cartes (du 7 à l as). Combie y-a-t-il de mais coteat : 1) Le valet de trèfle? 2) Exactemet deux cœurs? 3) Exactemet u roi, ue dame et deux valet? 4) Ni le roi de trèfle, i u ique? 5) Au mois u roi? 6) L as de ique et au mois deux trèfles? 7) Exactemet u roi et deux carreaux?

7 2.3 UN EXEMPLE : LE JEU DE CARTES 7 Pour résoudre ce tye d exercice, il est imortat de réaliser ue artitio de ce jeu de 32 cartes. Défiitio 6 : O aelle artitio d u esemble E, u esemble de sous-esembles E i deux à deux disjoits dot l uio est cet esemble E E 1 E 2 E E et (i, j) E i E j 1) O réalise la artitio comosée du valet de trèfle et des 31 autres cartes. 1 Valet de trèfle 31 autres cartes O obtiet alors le ombre de combiaisos : ( )( ) ) O séare les cœurs des autres cartes. 8 cœurs 24 autres cartes O obtiet alors le ombre de combiaisos : ( )( ) ) O séare les rois, les dames, les valets des autres cartes. 4 rois 4 dames 4 valets 20 autres cartes O obtiet alors le ombre de combiaisos : ( )( )( )( ) ) O séare le roi de trèfle et les iques des autres cartes. 1 roi de trèfle 8 iques 23 autres cartes O obtiet alors le ombre de combiaisos : ( )( )( ) ) Ici, ue astuce cosiste à asser ar la combiaiso cotraire «aucu roi». O soustrait esuite le ombre totale de mais ossibles avec le ombre de combiaisos cotraires 4 rois 28 autres cartes

8 8 3 RÉSUMÉ DES SITUATIONS O obtiet alors le ombre de combiaisos : ( ) ( )( ) ) O doit ici sommer les différetes ossibilités : avoir l as de ique avec 2 trèfles, l as de ique avec 3 trèfles et l as de ique avec 4 trèfles : 1 as de ique 8 trèfles 23 autres cartes O obtiet alors le ombre de combiaisos : ( )[( )( ) ( )( ) ( )( )] ) Ici deux choix se résetet : soit o a le roi de carreau et 1 carreau sulémetaire soit o a u roi (o de carreau) et deux carreaux. 1 roi de carreau 3 autres rois 7 autres carreaux 21 autres cartes O obtiet alors le ombre de combiaisos : ( )( )( )( ) ( )( )( )( ) Résumé des situatios 3.1 Critères à reteir Les critères sot : les élémets euvet-ils être réétés? L ordre des élémets est-il à redre e comte? O eut résumer les différetes réoses ar le tableau suivat : Critères O tiet comte de l ordre O e tiet as comte de l ordre Les élémets euvet être réétés Utiliser des -listes Hors rogramme! Les élémets sot disticts Utiliser des arragemets Utiliser des combiaisos 3.2 Exemles 1) Le loto : o tire, au hasard, 6 boules armi 49. Combie de tirages ossibles? (O e tiet as comte du uméro comlémetaire) Peut-o obteir lusieurs fois le même uméro lors d u tirage? No! Doc les élémets sot disticts.

9 3.3 COMBINAISONS 9 L ordre d aaritio des différets uméros a-t-il de l imortace? No! O cosidère les six uméros globalemet! Doc l ordre a as d imortace. Nous devos doc utiliser les combiaisos! 2) La course et le odium : das ue course de 100m, il y a huit artats umérotés de 1 à 8. Sur le odium, il y aura les trois médaillés (or - arget - broze). Combie y a-t-il de odiums ossibles? Peut-o obteir lusieurs fois le même uméro sur u odium? No! U même coureur e eut as être à la fois médaillé d or et d arget! Doc les élémets sot disticts. L ordre d aaritio des différets uméros sur le odium a-t-il de l imortace? Oui! Car les médailles sot différetes. Autremet dit l ordre est ici détermiat. Nous devos doc utiliser les arragemets! 3.3 Combiaisos Quad o utilise lusieurs combiaisos, faut-il additioer ou multilier? Cela déed de la situatio! Cocrètemet : Si les différetes étaes sot reliées ar u "et", o multilie. Si les différets cas sot reliés ar u "ou", o additioe. 4 Formules 4.1 Formules relatives aux combiaisos Théorème 5 : Pour tous et, tels que 0, o a : ( ) 1) 1 0 ( ) ( ) 2) 1 1 ( ) ( ) 3) ( ) ( ) ( ) 1 1 4) + 1 Démostratio : Les 2 remières formules sot immédiate. Formule 3 : Choisir élémets das u esemble E qui e comte reviet à e as choisir ( ) élemets das E (le comlémetaire). Leur ombre est doc idetique. Formule 4 : Peut se démotrer de deux faço différete : soit à l aide de la formule des combiaisos, soit à l aide de la artitio de l esemble E

10 10 4 FORMULES 1) A l aide de la formule des combiaisos : ( ) ( ) O met au même déomiateur ( 1)! ( 1)!( )! + ( 1)!!( 1 )! ( 1)! +( 1)! ( )!( )! ( 1)!( )!( )!!!( )! 2) O cosidère u esemble E de élémets. Soit a u élémet de E. Cosidéros les sous esembles de E à élémets. Il y e a doc : Parmi ces sous-esembles, ceux qui cotieet a sot au ombre de : ( )( ) Parmi ces sous-esembles, ceux qui e cotieet as a sot au ombre de : ( )( ) ( ) O a doc bie : ( ) 7 Exemle : Calculer. 5 D arès la série (1), o a : Exemle : Calculer ( ) ( ) ( ) D arès la série (2), o a : ( ) ( ) 7. 2 ( ) 7 2 ( ) ( )

11 4.2 TRIANGLE DE PASCAL Triagle de Pascal Grâce à la derière série de formules, o eut remlir le tableau suivat, aelé triagle de Pascal \ O a our les cases rouges : ( ) ( ) ( ) ce qui doe Le biôme de Newto Théorème 6 : Pour tout etier aturel, o a : (a+b) a + 0 a 1 b+ + 1 a b + + b Soit ecore : (a+b) 0 a b Exemle : Develoer (x 1) 7 et (i+1) 6. D arès le biôme de Newto et le triagle de Pascal ci-dessus, o a : (x 1) 7 x 7 + 7x x x x x 2 + 7x+1 (i+1) 6 i 6 + 6i i i i 2 + 6i+1 1+6i+15 20i 15+6i+1 8i

12 12 4 FORMULES Démostratio : Par récurrece : Iitialisatio : our 1, o a : our 2, o a : ( ) 1 a+ 0 ( ) 2 a ( ) 1 b a+b (a+b) 1 1 ( ) 2 ab+ 1 ( ) 2 b 2 a 2 + 2ab+b 2 (a+b) 2 2 O retrouve bie la formule aux rags 1 et 2 Hérédité : O admet que l o a : (a+b) 0 a b (our 0 immédiat) O a : Motros que : (a+b) (a+b) +1 (a+b) (a+b) a a b + b 0 a +1 b + a ( a +1 b + ) a +1 b a b a b a b +1 + b +1 Das la deuxième somme, o chage +1, o obtiet alors a +1 + a +1 + a a +1 b + a ( 1) b + b a +1 b + a +1 b + b [( ) ( )] + a +1 b + b +1 1 D arès la formule sur les combiaisos, o obtiet : +1 a ( ) a +1 b +1 a +1 b + +1 b +1 +1

13 4.3 LE BINÔME DE NEWTON 13 D arès l iitialisatio et l hérédité, o a bie : N (a+b) 0 a b Alicatio : Nombre de sous-esemble d u esemble E. Soit u esemble E qui cotiet élémets. Nous avos vu que le ombre de sous-esemble à élémets est égal à : Le ombre de sous-esemble - c est à dire de 0 à élémets - est doc de : or si l o calcule : 2 (1+1) Théorème 7 : Le ombre de sous-esembles que l o eut former à artir d u esemble E à élémets est égal à : 2

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011 Déombremet ECE Lycée Carot 0 ovembre 2011 Itroductio La combiatoire, sciece du déombremet, sert comme so om l idique à comter Il e s agit bie etedu as de reveir au stade du CP et d aredre à comter sur

Plus en détail

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants DERNIÈRE IMPRESSION LE 7 février 07 à 6:47 Déombremet Calcul sur les factorielles EXERCICE Simlifier les écritures sas utiliser la calculette. )! 0! ) 7! 5! 3) 6! 5! 5! 4) 6 4! 5! 5) 7! 5! 0! 6) 7) 8)

Plus en détail

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants Exercices Déombremet Exercice Calcul sur les factorielles ) Simlifier les écritures sas utiliser la calculette. a)! 0! b) 7! 5! c) 6! 5! 5! d) 6 4! 5! e) 7! 5! 0! f) 5! 4 7! g) 6! 3! 3! h) 9! 5! 4! i)

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition :

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition : Probabilités : coditioemet et idéedace Termiale S Déombremet. Pricie O raelle que le cardial d u esemble fii E, oté Card(E), rerésete so ombre d élémets. Si E 0,0 alors Card(E). Notre but est de détermier

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

LEÇON N 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binôme. Applications.

LEÇON N 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binôme. Applications. LEÇON N : Coefficiets biomiaux, déombremet des combiaisos, formule du biôme Alicatios Pré-requis : Cardial d u esemble fii, arragemets ; Raisoemet ar récurrece 1 Défiitios et roriétés Défiitio 1 : Soit

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications.

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications. Leço 3 : Coefficiets biomiaux, déombremet des combiaisos, formule du biome. Alicatios. Prérequis : Nombres de listes, arragemets. Pricies de la somme et de la multilicatio. Cadre : O cosidèrera das la

Plus en détail

Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1

Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1 Statistiques de Base haitre. Aalyse combiatoire e cours est basé sur les otes de cours de D. Mouchiroud Lyo Itroductio L aalyse combiatoire est ue brache des mathématiques qui étudie commet comter les

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

Analyse combinatoire

Analyse combinatoire Mathématiques : Outils our la Biologie Deug SV1 UCBL D. Mouchiroud (10/10/2002) Chaitre 1 Aalyse combiatoire Sommaire 1. Itroductio 2 2. Arragemets..2 2.1. Itroductio..2 2.2. Arragemets avec réétitios

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

Licence 1 Mathématiques

Licence 1 Mathématiques Licece Mathématiques 204 205 Algèbre et Arithmétique Feuille o 3 : combiatoire. Exercices à savoir faire.. Réuio, itersectio, artitio. Exercice Au mois de javier, Aatole a ris ses reas de midi au Restau

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

I - ENSEMBLES FINIS ET CARDINAL

I - ENSEMBLES FINIS ET CARDINAL Séciales PSI LYCÉE BUFFON COURS Probabilités 1 Déombremet I - ENSEMBLES FINIS ET CARDINAL 1 DÉFINITION DÉFINITION 1 U esemble E o vide est dit fii s il existe u etier aturel o ul et ue bijectio de 1, sur

Plus en détail

L hebdo Finance de la MACS

L hebdo Finance de la MACS - DU 2 AU 9 OCTOBRE 2006 - Numéro DÉFINITION DE LA SEMAINE : Stock otio Idice boursier DOSSIER DE LA SEMAINE : Simulatio d u rêt immobilier 2 LES COURS DU JOUR Le jeudi 2 octobre 7 L hebdo Fiace de la

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Dénombrement - Analyse combinatoire

Dénombrement - Analyse combinatoire S4 Maths 2011-2012 Probabilités 1 Déombremet - Aalyse combiatoire Uiversité de Picardie Jules Vere 2011-2012 UFR des Scieces Licece metio Mathématiques - Semestre 4 Probabilités 1 Déombremet - Aalyse combiatoire

Plus en détail

Moulay El Mehdi Falloul. Théorie des probabilités et de la statistique

Moulay El Mehdi Falloul. Théorie des probabilités et de la statistique Moulay El Mehdi Falloul Théorie des robabilités et de la statistique Itroductio La Probabilité et les statistiques sot deux discilies des mathématiques associées et idéedats à la fois. L aalyse statistique

Plus en détail

Chapitre 1. Dénombrement

Chapitre 1. Dénombrement Chapitre Déombremet Itroductio Lorsque l o compte les objets d ue collectio, o attribue à la collectio so cardial, c est à dire le ombre d objets qu elle cotiet. Par exemple u Picasso, u Rembrat et u Degas

Plus en détail

L2-S4 : 2014-2015. Support de cours. Statistique & Probabilités Chapitre 1 : Analyse combinatoire

L2-S4 : 2014-2015. Support de cours. Statistique & Probabilités Chapitre 1 : Analyse combinatoire L2-S4 : 2014-2015 Suort de cours Statistique & Probabilités Chaitre 1 : Analyse combinatoire R. Abdesselam UFR de Sciences Economiques et de Gestion Université Lumière Lyon 2, Camus Berges du Rhône Rafik.abdesselam@univ-lyon2.fr

Plus en détail

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème sciences

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web :  3 ème sciences Séries d exercices Deomremet 3 ème scieces Maths au lycee *** Ali AKIR Site We : htt://maths-akir.midilogs.com/ EXERCICE N Soit E l esemle des etiers tels que. Pour tout etier, o ote ar M ( ) l esemle

Plus en détail

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS Ozième Aveture DÉNOMBREMENTS A - PERMUTATIONS Le Père Noël a offert à ma etite cousie Josette u jeu de cubes où sot iscrits les lettres de l alhabet. Très édagogue, je lui doe d abord les trois cubes A,

Plus en détail

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème Maths

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web :  3 ème Maths Séries d exercices Deomremet 3 ème Maths Maths au lycee *** Ali AKIR Site We : htt://maths-akir.midilogs.com/ EXERCICE N Soit E l esemle des etiers tels ue. Pour tout etier, o ote ar M ( ) l esemle M(

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

2. Espace de probabilité fini équilibré

2. Espace de probabilité fini équilibré 36 2. Esace de robabilité fii équilibré Esace de robabilités fii équilibré (résumé)...37 Esace de robabilités fii équilibré (défiitio)...38 Le modèle de Maxwell-Boltzma...39 Les ragemets de objets discerables

Plus en détail

Dénombrement et probabilités ( révisions de 6 ème) Combien de nombres à 5 chiffres peut-on écrire à l aide des trois chiffres 1,2,3?

Dénombrement et probabilités ( révisions de 6 ème) Combien de nombres à 5 chiffres peut-on écrire à l aide des trois chiffres 1,2,3? I. Déombremet :. Exemles : Exemle : Déombremet et robabilités ( révisios de 6 ème) ombie de ombres à 5 chiffres eut-o écrire à l aide des trois chiffres,,? Ecrire u ombre à 5 chiffres à l aide des trois

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Corrigé du Devoir Libre n 2

Corrigé du Devoir Libre n 2 Corrigé du Devoir Libre Exercice 1 : Aagrammes 1. Combie les mots suivats ossèdet-ils d aagramme : a. BRETON U aagramme du mot BRETON est u réarragemet des lettres qui comoset ce mot. Par exemle NORBET

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Exercices de dénombrement

Exercices de dénombrement DOMAINE : Combiatoire AUTEUR : Atoie TAVENEAUX NIVEAU : Itermédiaire STAGE : Grésillo 0 CONTENU : Exercices Exercices de déombremet Exercice Combie y a-t-il de sous-esembles d u esemble de cardial? Exercice

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

XIV. Analyse combinatoire Binôme de Newton

XIV. Analyse combinatoire Binôme de Newton . Itroductio. XIV. Aalyse combiatoire Biôme de Newto But : déombrer des esembles fiis das des cas élémetaires. Quelques situatios de déombremet :. De combie de maières eut-o remlir u bulleti de tiercé

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence Chapitre 1 Déombremet Objectifs du chapitre 1. A travers l axiomatisatio de Peao de N, rappeller les pricipes de récurrece forte et faible. 2. Défiir la otio de cardial et les opératios sur les cardiaux.

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /05/2015

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /05/2015 IUT de Sait-Etiee - déartemet Techiques de Commercialisatio M. Ferraris Promotio 2014-2016 28/05/2015 Semestre 2 - MATHEMATIQUES DEVOIR 2 durée : 2 heures coefficiet 2/3 La calculatrice grahique est autorisée.

Plus en détail

Sujet 1. Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé?

Sujet 1. Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé? Sujet 1 Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé? Il faut choisir 3 chevaux parmi 10, et l ordre compte. Il y a 10 possibilités

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

est une famille de parties de [1,+ [, indexée par N. n n N A i i I / x A i A i : A i i I, x A i = {1}. n

est une famille de parties de [1,+ [, indexée par N. n n N A i i I / x A i A i : A i i I, x A i = {1}. n 22 CHAPITRE 1. LOGIQUE - THÉORIE DES ENSEMBLES Exemple : ([ 1,1+ 1 ]) est ue famille de parties de [1,+ [, idexée par N. N Ò Ø ÓÒ ½º¾ Si (A i ) est ue famille de parties de E, o défiit l uio des A i pour

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Chapitre 14 : Ensembles-Dénombrement

Chapitre 14 : Ensembles-Dénombrement PCSI Préaratio des Khôlles 0-04 Chaitre 4 : Esembles-Déombremet Exercice tye SoitE u esemble, eta,b deux arties dee, o désire motrer que sia BA B alorsab. Le rouver avec les foctios idicatrices. Le rouver

Plus en détail

est la probabilité cherchée est donc :

est la probabilité cherchée est donc : Lycée Secodaire Ali Zouaoui Probabilités 4 Sc-T Loi iomiale: Ue ure cotiet des boules blaches et des boules oires.la - robabilité de tirer ue boule blache au hasard est égale à ; q Aée Scolaire 007/008

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions.

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions. Probabilités, MATH 44 Feuille de travaux dirigés. Solutios. 1 Exercices Exercice 1. O jette trois dés o pipés. 1. Calculer la probabilité d obteir au mois u 1.. Que vaut la probabilité d obteir au mois

Plus en détail

Loi binomiale-cours. La loi binomiale

Loi binomiale-cours. La loi binomiale 1 La loi binomiale Les robabilités en général - et la loi binomiale en articulier - doivent beaucou à la famille Bernoulli. Cette dynastie de scientifiques comte, entre autres, dans ses rangs, Jacob (165-175)

Plus en détail

Construire des polygones connaissant les milieux des côtés.

Construire des polygones connaissant les milieux des côtés. Costruire des olygoes coaissat les milieux des côtés Costruire u triagle ABC dot les milieux des côtés soiet trois oits doés I J K deux à deux disticts Aalyse : La symétrie cetrale de cetre le milieu d

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

dénombrement, loi binomiale

dénombrement, loi binomiale dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................

Plus en détail

Théorie des ensembles et combinatoire

Théorie des ensembles et combinatoire Théorie des ensembles et combinatoire Valentin Vinoles 24 janvier 2012 Table des matières 1 Introduction 2 2 Théorie des ensembles 3 2.1 Définition............................................ 3 2.2 Aartenance

Plus en détail

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008 Prépa HEC Sait-Jea de Douai Probabilités Poly des exercices ECS1 2007-2008 Christia Skiada 4 septembre 2008 Spriger-Verlag Berli Heidelberg NewYork Lodo Paris Tokyo Hog Kog Barceloa Budapest Préface Voici

Plus en détail

I. Séries de données et représentation graphique

I. Séries de données et représentation graphique Chaitre Statistiques : I. Séries de doées et rerésetatio grahique. Vocabulaire Ue série statistique traite de doées de différets tyes : effectifs, ourcetages, idices, Le caractère quatitatif étudié eut

Plus en détail

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières Chapitre A1 - Nombres - récurreces - Sommes Table des matières 1 Esembles de ombres 2 1.1 Déitios................................................... 2 1.2 Itervalles d'etiers..............................................

Plus en détail

ENSEMBLE DE NOMBRES TD N 1 - CORRIGE

ENSEMBLE DE NOMBRES TD N 1 - CORRIGE ENSEMBLE DE NOMBRES TD N - CORRIGE Exercice A 8 7 B 7 7 - C 0 7 0 0 0 - Exercice ) ³ 8 ) 7 0 88 7 0 ) ) 00 00 0 7 77 7 x Exercice Le déomiateur commu est x 7 x 9 8 8 7 98 ; ; ; ; 7 9 9 L ordre croissat

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Les symboles Σ et Π. Le binôme de Newton

Les symboles Σ et Π. Le binôme de Newton Les symboles Σ et Π Le biôme de Newto Nous cosacros ici u log chaitre au symbole Σ et au symbole Π A terme, la maîtrise de ce symbole est ue cométece essetielle à acquérir et ous esos qu il faut y cosacrer

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

EXERCICES PROBABILITES

EXERCICES PROBABILITES EXERCICE : Calculer, pour EXERCICES PROBABILITES Soit,,3, 4,5,6, ( ) x, l itégrale I dx. 0 x ; détermier le réel pour que l o défiisse ue probabilité p sur * e posat, pour tout etier,6 p I Quelle est la

Plus en détail

Chapitre 1. Arithmétique. Partie 5 : PGCD

Chapitre 1. Arithmétique. Partie 5 : PGCD Chapitre 1 Arithmétique Partie 5 : PGCD Propriété/Défiitio : (PGCD) O se doe deux etiers relatifs a et b o uls. L esemble des diviseurs positifs commus à a et b admet u plus grad élémet que l o PGCD a

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Synthèse de cours (Terminale S) Lois de probabilité

Synthèse de cours (Terminale S) Lois de probabilité Sythèse de cours (Termiale S) Lois de robabilité Elémets de déombremet Factorielle d u etier aturel Soit u etier aturel. Si est o ul, o aelle «factorielle» ou «factorielle de», l etier, oté!, égal au roduit

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

a) Après avoir fait deux pas, quelle est la probabilité qu elle soit : En A? En B? En C? En D?

a) Après avoir fait deux pas, quelle est la probabilité qu elle soit : En A? En B? En C? En D? ANTILLES-GUYANE Série S Setembre 2000 Exercice. Ue fourmi se délace sur les arêtes de la yramide ABCDS. Deuis u sommet quelcoque, elle se dirige au hasard (o suose qu il y a équirobabilité) vers u sommet

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

Cahier de Vacances: de la Tes à la ece1...

Cahier de Vacances: de la Tes à la ece1... Cahier de Vacances: de la Tes à la ece... Recommandations Vous venez de terminer votre terminale et d obtenir le Baccalauréat (bravo!) et vous avez choisi de oursuivre vos études ar la voie des classes

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Probabilité conditionnelle 4 ème Sciences Avril 2010

Probabilité conditionnelle 4 ème Sciences Avril 2010 Probabilité coditioelle 4 ème Scieces vril 200 LTOUI Raels { e e e } Ω=, 2,, est l uivers des ossibles (esemble des évetualités) associé à ue éreuve, exériece, u jeu, Exemles : Lacer d ue ièce de moaie

Plus en détail

3 Révisions : Dénombrement BCPST 2 - Lycée F1

3 Révisions : Dénombrement BCPST 2 - Lycée F1 FEUILLE 3 Révisios : Déombremet BCPST - Lycée F1 Modèles de base Exercice 1: [Idicatios] [Correctio] Soiet, p des etiers Quel est le cardial des esembles suivats : 1 1; p a A = {(i 1,, i p i 1; où les

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Contrôle du mercredi 20 janvier 2016 (50 minutes) TS2 spécialité. II. (4 points) n n sont premiers entre eux.

Contrôle du mercredi 20 janvier 2016 (50 minutes) TS2 spécialité. II. (4 points) n n sont premiers entre eux. TS spécialité Cotrôle du mercredi 0 javier 016 (50 miutes) II. (4 poits) Démotrer que pour tout etier relatif, 1 et 1 sot premiers etre eux. Préom : Nom : Note :. / 0 Écrire très lisiblemet, sas rature

Plus en détail

Par Marcel Mountsiesse

Par Marcel Mountsiesse Article 36 Démostratio directe du derier théorème de Fermat Par Marcel Moutsiesse Résumé : Das ce travail, ous ous roosos de rouver ar ue méthode élémetaire l imossibilité de l équatio de Fermat das *

Plus en détail

Correction du devoir Surveillé 6 : Probabilités

Correction du devoir Surveillé 6 : Probabilités S www.wicky-math.fr.f DS - Probabilités Correctio du devoir Surveillé : Probabilités Exercice. ROC Démotrer le théorème suivat : ( poits) Théorème : La probabilité de la réuio de deux évéemetsaetb est

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Partie I. Les données qualitatives

Partie I. Les données qualitatives Variables qualitatives : aalyse des corresodaces Jea-Marc Lasgouttes htt://www-rocqiriafr/~lasgoutt/aa-doees L aalyse factorielle des corresodaces But O cherche à décrire la liaiso etre deux variables

Plus en détail

DENOMBRER INTRODUCTION II L'UNIVERS III LE PRODUIT CARTESIEN 1 3 6 10 LES NOMBRES TRIANGULAIRES CONNUS DES BABYLONIENS 2000 ANS AVANT J.C.

DENOMBRER INTRODUCTION II L'UNIVERS III LE PRODUIT CARTESIEN 1 3 6 10 LES NOMBRES TRIANGULAIRES CONNUS DES BABYLONIENS 2000 ANS AVANT J.C. 1 3 6 10 LES NOMBRES TRIANGULAIRES CONNUS DES BABYLONIENS 2000 ANS AVANT J.C. I INTRODUCTION Les problèmes de déombremet semblet avoir été abordés vers les deriers siècles de l'atiquité. Dès le début de

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail