Mardi 10 janvier h-13h

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Mardi 10 janvier h-13h"

Transcription

1 Mardi javier 27 8h-3h Il sera teu compte de faco importate de la qualité de la rédactio et de l argumetatio. E particulier, répodre juste à ue questio est valorisé, répodre faux est péalisé et e pas répodre est i valorisé i péalisé. Ce sujet est costitué d u exercice et d u problème. Il est extrait et adapté du CAPLP itere 27 et de la première épreuve du Capes agricole 2. page sur 8

2 EXERCICE O ote P le pla rapporté à u repère orthoormé direct (O, # u, # v ). O ote P le pla P privé de l origie O et C l esemble des ombres complexes o uls. À tout poit M du pla P de coordoées (x, y), o associe so affixe z = x + iy. O ote f l applicatio de C das C qui à tout ombre complexe z associe le complexe z défii par z = f (z) = k, où k est u ombre réel o ul. z O ote I l applicatio de P das P qui à tout poit M d affixe z associe le poit M = I(M) d affixe z = f (z) = k z. L applicatio I est appelée iversio de cetre O et de puissace k. U cercle (ou ue droite) passat par le poit O, mais privé(e) de O, sera par la suite égalemet déommé(e) cercle (respectivemet droite). I. Quelques gééralités. I.. Exprimer la logueur OM e foctio de la logueur OM. I.2. Motrer que les poits O, M et M sot aligés et que le produit scalaire OM # OM # est égal à k. I.3. I.4. Détermier, e foctio du ombre réel o ul k, la ature de l esemble des poits M de P ivariats par l applicatio I. Vérifier que l iversio I est ivolutive, c est-à-dire que I I = id, où id est l applicatio idetité du pla. I.5. Détermier l image par l applicatio I du cercle de cetre O et de rayo r >. II. Image par l iversio I d u cercle passat par le poit O. Soit C u cercle de cetre Ω (d affixe ω = ) et de rayo r >, passat par le poit O. O ote H le poit du cercle C diamétralemet opposé au poit O. O ote H l image du poit H par l iversio I et o ote D la droite passat par le poit H orthogoale à la droite (OH). Soit M u poit du cercle C différet du poit O et du poit H. Soit N le poit d itersectio des droites (OM) et D. II.. O suppose k <. II..a) Justifier que les triagles OMH et OH N sot semblables. II..b) E déduire que le poit N est l image du poit M par l iversio I. II..c) Quelle est l image du cercle C par l iversio I? II.2. O suppose k >. Quelle est la ature de l image du cercle C par l iversio I? page 2 sur 8

3 III. Image par l iversio I d u cercle e passat pas par le poit O. Soit C u cercle de cetre Ω (d affixe ω) et de rayo r >, e passat pas par le poit O. Soiet M u poit de P d affixe z et M so image par l iversio I. O ote z l affixe du poit M. III.. Démotrer que : M C zz ωz ωz = r 2 ωω. III.2. E déduire que l image du cercle C par l iversio I est u cercle C e passat pas par le poit O. III.3. Justifier que le cercle C est aussi l image du cercle C par ue homothétie de cetre O. page 3 sur 8 Tourer la page

4 PROBLEME Le thème de ce problème est l approche, par plusieurs outils mathématiques, du ombre réel π 2. Le problème est divisé e trois parties, A, B et C idépedates. Le pla P est rapporté au repère orthoormé direct R = (O, ( # u, # v )). La foctio cotagete est otée cot, c est-à-dire que pour tout x R qui est pas das πz o a cot x = cos x si x. Partie A. π 2 e tat que somme de série ou comme itégrale. Préciser pourquoi la foctio cotagete est ue bijectio de l itervalle ] ; π ] sur [; + [ Si P est u polyôme de degré p à coefficiets complexes, P = a p X p + a p X p + + a, p ayat pour racies z,..., z p, doer la formule liat s = z k aux coefficiets a i. k= 3. Démotrer que pout tout réel x de ] ; π 2 ], o a : cot x x si x. 4. Pour x réel o ul, o pose : g(x) = x e x. 4.a) Prouver que g se prologe e ue foctio cotiue sur R. Pour simplifier les otatios, ce prologemet sera ecore oté g das la suite. 4.b) Quelle est alors la valeur de g()? 4.c) Etudier la dérivabilité de g e. 4.d) Après avoir doé les limites de g e et +, doer le tableau de variatios de g (o pourra être ameé à étudier le sige sur R de h : x ( x)e x ). 4.e) (Cette questio e sert pas das la suite du problème.) Démotrer que la courbe représetative de g das le repère R admet au voisiage de ue asymptote dot o doera ue équatio cartésiee. Das tout le reste de cette partie, désige u etier strictemet positif. page 4 sur 8

5 5. Pour k, o pose : r k = cot 2 kπ. Prouver que ces ombres sot deux à deux 2 + disticts. 6. E utilisat la formule de Moivre, établir l égalité suivate, valable pour tout réel a : ( 2+ ) si a cos 2 a ( ) 2+ 3 si 3 a cos 2 2 a + + ( ) ( ) si 2+ a = si((2 + )a) a) A l aide de la questio précédete, motrer qu il existe ue foctio polyôme à coefficiets réels otée P que l o explicitera, telle que pour tout réel a qui est pas das πz, o ait : si((2 + )a) si 2+ = P (cot 2 a). a 7.b) Etablir l uicité d u tel polyôme P. 7.c) Détermier les racies du polyôme P a) Calculer le ombre S = r k = k= 8.b) E déduire la valeur de T, où T = 9. Après avoir ecadré. Calculer l= k= (2l + ) 2. cot 2 k= k=. g désige toujours la foctio défiie e 4. kπ si 2 kπ 2 + k 2, retrouver le célèbre résultat dû à Euler : l=.a) Justifier l existece de l itégrale gééralisée K =.b) O pose, pour etier strictemet positif, K = avoir justifié so existece..c) Vérifier que pour tout x o ul,.d) Motrer que K = π2 6. k= + + g(x)dx. l 2 = π2 6. xe x dx. Calculer K après e kx = e x ; e déduire que : e x K = g(x)e x dx. page 5 sur 8 Tourer la page

6 Partie B. π 2 et les séries etières Das cette partie, o étudie la série etière 2 4 (!) 2 (2 + 2)! x2+2 ; e cas de covergece de cette série, o posera F(x) = 2 4 (!) 2 = (2 + 2)! x2+2. O otera efi, pour N, a = 2 4 (!) 2 (2 + 2)!.. Calculer le quotiet a + a et doer le rayo de covergece de la série etière a x a) Détermier les costates a et b telles que a + a = a + b ( ) + o. 2.b) Pour, o pose v = + et w = 5/4. Motrer que, pour assez grad : v + v a + a w + w. 2.c) E déduire l existece de deux costates strictemets positives c et d (qu o e cherchera pas à préciser) telles que, pour assez grad : cv a dw. 2.d) Que peut-o e déduire sur la covergece de la série a? 3. Justifier avec soi que lim x F(x) = a. 4. Le but de cette questio est d expliciter la foctio F. O pose G(x) = (arcsi x) 2 quad c est possible. 4.a) Doer l esemble de défiitio de la foctio G. Sur quel itervalle I la foctio G est-elle dérivable et même de classe C? 4.b) Vérifier que G est solutio sur I de l équatio différetielle otée (L) : ( x 2 )y (x) xy (x) = 2. 4.c) Calculer les ombres F(), F (), G(), G (). 4.d) Démotrer que x I, F(x) = G(x). 5. Détermier la somme de chacue des deux séries umériques a 4 et a. page 6 sur 8

7 Partie C. Irratioalité de π 2. Soit u cotiue sur l itervalle [; ], motrer que, si U est défiie sur R par : U(x) = u(t) cos(xt)dt, alors U est dérivable sur R et pour tout x R o a U (x) = u(t)t si(xt)dt. Il y a plusieurs méthodes pour parveir à ce résultat, l ue d elles cosiste à reveir à la défiitio du ombre dérivé e u poit et à utiliser l iégalité suivate (qu o justifiera), valable pour tous réels a et b : cos b cos a + (b a) si a (b a) Soit P ue foctio polyôme à coefficiets réels. Motrer que la foctio P est paire si et seulemet si elle est combiaire liéaire de foctios moômes de degrés pairs. 3. Soiet P et Q deux foctios polyômes à coefficiets réels telles que : Démotrer que P et Q sot ulles. x R, P(x) cos x + Q(x) si x =. 4. O pose, pour tout réel x et pour tout etier aturel ( ), f (x) = 4.a) Calculer f sur R e justifiat. x ( t 2 ) cos(xt)dt. 4.b) Doer u lie algébrique etre f +, f et f. 5. Calculer f (x) pour tout réel x. 6. Démotrer que, quel que soit l etier aturel ( ), il existe u uique couple de foctios polyômes (A, B ) à coefficiets etiers tel que : x R, f (x) = A (x) cos x + B (x) si x, A est impaire et B est paire, les degrés de A et de B sot iférieurs ou égaux à. page 7 sur 8 Tourer la page

8 7. Supposos que l o puisse écrire π2 4 = p q 7.a) Motrer qu alors, le ombre u défii par ( ) p 2 p u = q q q où p est q sot deux etiers aturels o uls. ( π ) ( t 2 ) 2 cos 2 t dt est u etier aturel o ul. ( 7.b) Démotrer que π ) ( t 2 ) 2 cos 2 t dt et que pour tout p o a u ( ) p p q 4q!. 8. E cosidérat la suite (u ), démotrer que π 2 est irratioel. FIN page 8 sur 8

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

Théorème de Rolle dans le cas complexe.

Théorème de Rolle dans le cas complexe. Théorème de Rolle das le cas complexe. Das ce problème o se propose de prouver l aalogue complexe suivat du théorème de Rolle : Théorème. Soiet a et b deux ombres complexes disticts et u etier. Soit P

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p.

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p. MATHÉMATIQUES I Objectifs O se roose, das ce qui suit, de détermier l esemble des solutios d ue équatio différetielle liéaire à coefficiets costats lorsqu elle est homogèe, uis lorsque celle-ci admet u

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Devoir de synthèse n 1

Devoir de synthèse n 1 Mathématiques Lycée IBN KHALDOUN - RADES Devoir de sythèse 4 e Maths Mardi 06--0 Durée : heures Prof : ABIDI Farid Exercice :(pts) Répodre par Vrai à Faux et avec justificatio à chacue des trois propositios

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES ) PUISSANCES D'EXPOSANTS REELS A ) La otatio a Si est u etier aturel, la otatio a a u ses pour tout réel a Das le cas où est u

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

Correction du baccalauréat S Pondichéry 16 avril 2009

Correction du baccalauréat S Pondichéry 16 avril 2009 Correctio du baccalauréat S Podichéry 6 avril 009 EXERCICE 7 poits La foctio f est défiie sur l itervalle [0 ; + [ par : f (x)=xe x. Partie. a. O remarque que, pour tout x> 0, f (x)= x x e. x lim x + x

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

ESPACES VECTORIELS APPLICATIONS LINEAIRES

ESPACES VECTORIELS APPLICATIONS LINEAIRES SPACS VCTORILS APPLICATIONS LINAIRS xercices Les exercices précédés de ce symbole e serot pas traités e classe (U corrigé sera mis sur le site) XRCIC : O ote M3 l espace vectoriel des matrices carrées

Plus en détail

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c.

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c. NOUVELLE CALEDONIE NOVEMBRE 2007 Exercice 4 poits Commu à tous les cadidats Pour chaque questio, ue seule des trois propositios est exacte. Le cadidat idiquera sur la copie le uméro de la questio et la

Plus en détail

Exercices sur les fonctions trigonométriques réciproques

Exercices sur les fonctions trigonométriques réciproques Eercices sur les foctios trigoométriques réciproques O cosidère la foctio f défiie par f Arcta ) Détermier l esemble de défiitio D de f ) Simplifier l epressio de f pour D Idicatio : Poser y Arccos Soit

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EXAMEN PROBATOIRE D ADMISSION DES ETRANGERS DANS LES ECOLES DE FORMATION D OFFICIERS EPREUVE DE MATHEMATIQUES DUREE DE L EPREUVE : 4 Heures Matériel autorisé : Calculatrice Circulaire 9986 du 6 ovembre

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Chapitre 2 Nombres Complexes Exercices

Chapitre 2 Nombres Complexes Exercices Chapitre Nombres Complexes Exercices I. Ciril, F. De Lepie, F. Duffaud, C. Peschard Exercice 1 Mettre chacu des ombres complexes suivats sous la forme a + ib, a R et b R. 1 i, 1 1 + i i, 1 + i 1 i, + 5i

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes Jeudi 20 javier 2011 DEVOIR COMMUN Termiales S Mathématiques Cadidats o spécialistes Le sujet comporte 4 exercices. Ue feuille aexe est à redre complétée avec les copies. L'usage du téléphoe portable 'est

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 006 EPREUVE SPECIIQUE ILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot autorisées * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

CONCOURS INTERNE MATHEMATIQUES

CONCOURS INTERNE MATHEMATIQUES CONCOURS INTERNE Sectio : Mathématiques Scieces Physiques MATHEMATIQUES Durée : 4 heures. Le sujet est costitué de quatre exercices idépedats. Le premier exercice a pour but de tester quelques savoir-faire

Plus en détail

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i }

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i } Nom :........................ DS Préom :..................... Devoir o 7 Mars 6.../... Le soi et la rédactio serot pris e compte das la otatio. Faites des phrases claires et précises. Le barème est approximatif.

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

A) Forme algèbrique d un nombre complexe.

A) Forme algèbrique d un nombre complexe. A) Forme algèbrique d u ombre complexe. Théorème Il existe u esemble, oté,de ombres appelés ombres complexes, tel que : cotiet ; est mui d ue additio et d ue multiplicatio pour lesquelles les règles de

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Les ratioels, les réels Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Fiche 6 : Nombres complexes

Fiche 6 : Nombres complexes Nº : 3006 Fiche 6 : Nombres complexes Pla de la fiche I - Esemble des ombres complexes II - Nombre complexe cojugué III - Module et argumet IV - Les différetes écritures d u ombre complexe o ul V - Equatio

Plus en détail

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques Cocours commu Mies-Pots Corrigé de la secode épreuve de mathématiques a Nous pouvos appliquer le critère de d Alembert : doc le rayo R est égal à /4 C+ + + + C = + 4, + b O sait que h est de classe C avec

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

CONCOURS D ADMISSION Filière MP (Durée de l épreuve : 3 heures) (L usage d ordinateur ou de calculette est interdit).

CONCOURS D ADMISSION Filière MP (Durée de l épreuve : 3 heures) (L usage d ordinateur ou de calculette est interdit). A 2003 Math MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES. ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe Termiale S mai 6 Cocours Fesic Calculatrice iterdite ; traiter eercices sur les 6 e h ; répodre par Vrai ou Fau sas justificatio + si boe répose, si mauvaise répose, si pas de répose, bous d poit pour

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h.

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h. Coceptio : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES mai 07, de 8 h à h La présetatio, la lisibilité, l orthographe, la qualité de la rédactio, la clarté et la précisio des raisoemets etrerot pour ue part

Plus en détail

MPSI Nombres complexes

MPSI Nombres complexes MPSI Nombres complexes Exercice 1: Résoudre das C l équatio 4 + 6 3 + 9 2 + 100 = 0 Exercice 2: 1 Motrer que si π 5 = 5 5 2 Détermier l esemble des poits M d affixe tels que = 2 i Exercice 3: Soit ABC

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1 SESSION 2005 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES PREMIER EXERCICE a. T (x + y dxdy = = ( y= (x + y dy y= x dx = ((x + 2 ( x2 + x2 2 dx = T (x + y dxdy = 4 3. [xy +

Plus en détail

Cours de Mathématiques : Polynômes et Suites

Cours de Mathématiques : Polynômes et Suites Uiversité de Cergy-Potoise Départemet de Mathématiques L MIPI - S2 205/206 Cours de Mathématiques : Polyômes et Suites - Polycopié d Exercices Chapitre : Nombres complexes Exercice a) Détermier la partie

Plus en détail

APPLICATIONS LINEAIRES Exercices

APPLICATIONS LINEAIRES Exercices EXERCICE : APPLICATIONS LINEAIRES Exercices ) Motrer que l applicatio f : f : est liéaire x, y, z x z, y z ) Soit ue matrice AM et soit f l applicatio qui à toute matrice X M associe la matrice Y défiie

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

DAEUB EXAMEN PREMIERE SESSION 2013/2014

DAEUB EXAMEN PREMIERE SESSION 2013/2014 DAEUB EXAMEN PREMIERE SESSION 2013/2014 LE SUJET EST COMPOSE DE TROIS EXERCICES INDEPENDANTS. LE CANDIDAT DOIT TRAITER TOUS LES EXERCICES. Les calculatrices sot autorisées. Les portables doivet être éteits.

Plus en détail

B(z B ) A(z A ) Les nombres complexes

B(z B ) A(z A ) Les nombres complexes 1 Les ombres complexes I) Forme algébrique d u ombre complexe. Théorème Il existe u esemble, oté c,de ombres appelés ombres complexes, tel que : ccotiet r ; c est mui d ue additio et d ue multiplicatio

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Épreuve écrite d analyse et probabilités

Épreuve écrite d analyse et probabilités Épreuve écrite d aalyse et probabilités Notatios et défiitios Le problème traite de certaies propriétés cocerat les racies de polyômes dot les coefficiets sot aléatoires. Das tout le problème, l espace

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

1 Séries trigonométriques

1 Séries trigonométriques Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, / ANALYSE Fiche de Mathématiques 9 - Séries de Fourier Séries trigoométriques Défiitio O appelle série trigoométrique toute série dot le

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Frace métropolitaie 202 Eseigemet spécifique EXERCICE 3 (6 poits (commu à tous les cadidats Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

Covariance et ajustement affine par la méthode des moindres carrés

Covariance et ajustement affine par la méthode des moindres carrés Uiversité de Poitiers - 205-206 A. Moreau Algèbre - Géométrie M MEEF Covariace et ajustemet affie par la méthode des moidres carrés Das tout le documet, la lettre désige u etier aturel o ul. Les deux parties

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1.

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1. Nombres complexes TS 1. Nombre complexe Représetatio Défiitio u ombre complexe est u ombre de la forme x + i y, où x et y sot deux ombres réels et i est u ombre imagiaire vérifiat i = 1. L esemble des

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Cours Termiale S La foctio logarithme épérie O a vu das u chapitre précédet que la foctio epoetielle est cotiue et strictemet croissate sur R et que l image de R par cette

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

x k, 2 : x k 1 n x x 1

x k, 2 : x k 1 n x x 1 SMIA/S3 ANALYSE 3 AALAMI IDRISSI et EZEROUALI Chapitre 5 FONCTIONS DE IR DANS IR p I) NOTIONS DE TOPOLOGIE SUR IR 1) Normes sur IR : a) Défiitio: O appelle orme sur toute applicatio x x de das telle que

Plus en détail

Séries d exercices Aritmetiques

Séries d exercices Aritmetiques Séries d exercices Aritmetiques ème Maths Maths au lycee Ali AKIR Site Web : http://maths-akirmidiblogscom/ EXERCICE N )Quel est le reste de la divisio par 7 du ombre ) Quel est le reste de la divisio

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Feuille d exercices 4

Feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 2009/200 MIME 22 LM5-Suites et Itégrales Groupe 22 Feuille d exercices Suites Covergece de suites Exercice Ecrire l éocé qui traduit : (u ) N est pas croissate Cet

Plus en détail

Calculs de limites, développements limités, développements asymptotiques

Calculs de limites, développements limités, développements asymptotiques Eo7 Calculs de limites, développemets limités, développemets asymptotiques Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

TD1 - Suites numériques

TD1 - Suites numériques IUFM du Limousi 2008-09 PLC1 Mathématiques S. Viatier Exercices TD1 - Suites umériques Exercice 1 Soit α > 0, étudier la covergece des suites déies par u = ( ) 1 + si α, v = 3 + cos α ( ) 1 + α. 3 + Idicatio

Plus en détail

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires Problème 1 : costructio de triagles Das u pla affie euclidie orieté, o cosidère deux poits disticts B et C et u poit M apparteat pas à la droite BC). Pour chacue des assertios suivates, détermier s il

Plus en détail

Développements limités

Développements limités [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Eocés Développemets limités Calcul de développemets limités Eercice [ 0447 ] [correctio] Détermier les développemets limités suivats : a) DL 3 (π/4)

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 25 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la lus grade imortace à la clarté, à la récisio et à la cocisio de

Plus en détail

Plan d étude d une fonction

Plan d étude d une fonction Début de TS Pla d étude d ue octio ➀ Esemble de déiitio «eiste si et seulemet si» «eiste» A B eiste si et seulemet si B A eiste si et seulemet si A ➁ Parité - Périodicité Foctio paire D cetré e D C admet

Plus en détail

2. Correction : Limites, continuité, dérivabilité

2. Correction : Limites, continuité, dérivabilité Correctio : Limites, cotiuité, dérivabilité Exercices de base U algorithme a est la valeur de la variable x pour laquelle o cherche ( x ), p est la précisio utilisée das le calcul : plus o avace das la

Plus en détail

Corrigé du Bac blanc du lycée Prévert. Session de janvier Durée 4 h.

Corrigé du Bac blanc du lycée Prévert. Session de janvier Durée 4 h. Corrigé du Bac blac du lycée Prévert. Sessio de javier 015. Durée h. EXERCICE 1 Étude d'ue famille de foctios 6 poits A tout etier aturel o ul o associe la foctio f défiie sur R par f (x)= ex e x +7. O

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé Baccalauréat S Nouvelle-Calédoie 7 mars 4 Corrigé A. P. M. E. P. EXERCICE 4 poits Commu à tous les cadidats Aucue justificatio était demadée das cet exercice.. Répose b. : 4e i π Le ombre i a pour écriture

Plus en détail

Feuille 2 : Séries numériques.

Feuille 2 : Séries numériques. Feuille 2 : Séries umériques. Master Eseigemet Spécialité Maths Coseils O accordera ue importace toute particulière aux démostratios des théorèmes du cours. Certais exercices de cette feuille sot ispirés

Plus en détail