Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème sciences

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème sciences"

Transcription

1 Séries d exercices Deomremet 3 ème scieces Maths au lycee *** Ali AKIR Site We : htt://maths-akir.midilogs.com/ EXERCICE N Soit E l esemle des etiers tels que. Pour tout etier, o ote ar M ( ) l esemle M( ) = E tel que est u multile de { } )Calculer card M(5 ), card M(7 ), card M(5 ) et card M(7 ) )Défiir l esemle M(5 ) M(7 ) et calculer cardm(5 ) M(7 ) 3 )Calculer le omre d élémets de E qui sot divisile soit ar 5, soit ar 7. 4 ) Calculer le omre d élémets de E qui e sot divisile i ar 5, i ar 7. 5 )Justifier our quoi : card M( ) M(4 ) = card M(4 ) EXERCICE N Das u classe de 3 ème Maths de 3 élèves, il y a 7 élèves aimet le maths, élèves aimet le hysique et élèves aimet le deux. O ote ar : M : «Les élèves qui aimet le maths» P : «Les élèves qui aimet le hysique» )Calculer les omres des élèves qui aimet soit le maths, soit le hysique. ) Calculer les omres des élèves qui aimet le maths seulemet. 3 ) Calculer les omres des élèves qui aimet le hysique seulemet. 4 ) Calculer les omres des élèves qui aimet, i le maths, i le hysique. EXERCICE N 3 Parmi les élèves de classe 3 ème Maths, aimet le maths, 4 aimet le hysique, aimet l aglais, 9 aimet le maths et le hysique, 5 aimet le maths et l aglais, 7 aimet le hysique et l aglais et aime les trois. Comie y a t-il doc d élèves das cette classe. EXERCICE N 4 O aelle aagramme d u mot, chacu des «mots», ayat u ses ou o, que l o eut former avec lettres de ce mot lacées à la suite les ue des autres de toutes les faços ossiles. ) Comie y a-t-il d aagrammes du mots «Maths» )Comie y a-t-il d aagrammes du mots «Mathématiques» 3 ) Comie y a-t-il d aagrammes du mots «MATHEMATIQUES» 4 )Comie eut-o former de mots de 4 lettres disticts a, k, i, r das lesquelles les voyelles a et i e sot as voisies? 5 )O admet que le mot le lus log est ''aticostitutioellemet'' Comie la lague fraçaise cotiet-elle au maximum de mots? EXERCICE N 5 Partie O veut former des omres à ciq chiffres distict avec les chiffres :,,3,4,5 a- Comie de omre disticts eut-o aisi former? - Comie de omre disticts eut-o former tel que le chiffre des uités est 3 c- Comie de omre disticts eut-o former tel que le omre soit air. Partie Faire le même travail avec le chiffre :,,, 3, 4 Partie 3 O veut former des omres à ciq chiffres distict avec les chiffres :,,,3,4,5,6,7,8,9 a- Comie de omres disticts eut-o aisi former? - Déomrer les cas assile si : i- Le chiffre des uités est u omre remier. ii- Le omre formé est air. iii- Le omre formé comred le chiffre. Partie 4 O veut former des omres à ciq chiffres avec les chiffres :,,,3,4,5,6,7,8,9 Faire le même travail de questio artie 3 EXERCICE N 6 Ue ure cotiet 49 oules umérotés de à 49. O tire successivemet 6 oules, sas remise. )Comie y-a t'il de tirages ossiles? )Comie y-a t'il de tirages qui cotieet 3 uméros airs et 3 uméros imairs, 3 ) Comie y-a t'il de tirages qui cotieet au mois 5 uméros airs?

2 EXERCICE N 7 U sac cotiet 9 jetos réartis comme suit : quatre jetos lacs marqués:,,, 6 et ciq jetos rouges marqués :,,,3, 4 Partie I. O tire simultaémet 3 jetos du sac. )Déomrer les tirages ossiles )Déomrer les tirages comreat : a- Trois jetos rouges - Au mois u jeto lac c- 3 jetos dot la somme des uméros marqués est égale à 8. d- U jetos et u seul lac et u jeto et u seul ortat u uméro multile de 3. e- Deux oules ortat le et ue seul oule ortat le. Partie II. O tire successivemet sas remise 3 jetos du sac. Déomrer les tirages das chacu des cas suivats : )Le remier jeto tiré orte le uméro. )Oteir u seul jeto marqué. 3 )Le remier jeto tiré est lac et le deuxième jeto tiré est marqué. Partie III. Meme questios II, o tire successivemet et avec remise 3 jetos du sac. EXERCICE N 8 O cosidère les chiffres :,, 3, 4,5,6. )O veut costituer u omre de 3 chiffres disticts. a) Comie de omres disticts eut-o réaliser? ) Comie de omres airs disticts eut-o réaliser? )A l aide de ces chiffres, comie eut-o former de omres de 3 chiffres écrits avec chiffres disticts,l u d eux état réète fois. 3 ) A l aide de ces chiffres, comie eut-o former de omres de 4 chiffres écrits avec chiffres disticts. EXERCICE N 9 Ue ure cotiet douze oules :ciq laches, quatre oires et trois verts. O tire maiteat successivemet sas remise quatre oules de l'ure. Détermier le omre de tirages comreat )Exactemet deux oules laches. )Au mois ue oule oire. 3 )Au lus ue oule lache. 4 )Ue seule couleur. 5 )Les trois couleurs. 6 )Exactemet deux couleurs. 7 )La remière oule lache est la deuxième tirée. 8 )La remière oule tirée est lache. 9 )La deuxième oule tirée est oire. )La troisième oule tirée est verte. EXERCICE N Ue ure cotiet douze oules : set rouges umérotées :,7,7,8,8,8,9 et ciq oires umérotées :,,7,8,9. )O tire simultaémet ciq oules de l'ure. Détermier le omre de tirages comreat : a) Des oules de même couleur. ) Des oules ortat des uméros dot la somme est aire. )O tire maiteat successivemet sas remise quatre oules de l'ure. Détermier le omre de tirages où: a) Les quatre uméros sot oteus. ) Ue oule rouge ortat u uméro air aairait our la remière fois au troisième tirage. c) Ue oule rouge ortat le uméro 7 aaraît our la derière fois au deuxième tirage. d) Si les quatre oules tirées sot osées ar ordre du uméro du tirage e lige et de gauche à droite de faço à former u omre. Quelle est le omre de tirages ermettat de former: i) Le omre 8 ii) iii) U omre de quatre chiffres. Le omre 88 où les couleurs sot alterées. EXERCICE N (le rolème de Galilée) Le duc de Toscae demada u jour à Galilée : «ourquoi, lorsqu o effectue trois lacers d u dé, otiet-o lus souvet la somme que la somme 9, ie que ces deux sommes soiet oteues chacue de six faços différetes : 9=6=35=44=5=34=333 et =36=45=6=44=35=334?». la réose que fit Galilée : «l évèemet : la somme est 9 est formé de 5 issues favorales et l évéemet :"la somme est "est formé de 7 issues favorales.» Justifier la réose de galilée. EXERCICE N O fait tourer 5 disques à 6 secteurs chacu umérotés de à 6 our oteir u omre à 5 chiffres. )Déomrer tous les résultats ossiles. )Comie de omres e comreat as le chiffres eut-o oteir.

3 3 )Comie des omres comreat au mois 3 fois le chiffre eut-o oteir. EXERCICE N 3 O jette 3 dés de couleurs différetes mais idetiques, et o lit les faces suérieurs de chaque dé.. Déomrer tous les résultats ossiles.. Déomrer les résultats comortat u seul Déomrer les résultats comortat exactemet deux Déomrer les résultats e comortat aucu Déomrer les résultats formés de trois chiffres différets. EXERCICE N 4 U groue de ersoes comred : ciq ersoes de groues sagui A ; trois ersoes de groues sagui B et deux ersoes de groues sagui O. Partie I. O choisit au hasard 4 ersoes. Déomrer les ossiilités comreat : )Exactemet ersoes de groue sagui B. )Au mois ersoes de groues sagui B. 3 )Au lus ue ersoe de groue sagui O. 4 )Les trois tyes de groues saguis. Partie II. Les dix ersoes sot malades. O disose de trois médecies X, Y et Z. Chaque malade aelle au hasard u médeci et u seul. )Déomrer tous les cas ossiles. )Parmi les ersoes il y a 3 frères. Déomrer les ossiilités das chacu des cas suivats : a- Les 3 frères aellet le même médeci - Les 3 frères aellet des médeci deux à deux différets. 3 ) Déomrer les ossiilités das chacu des cas suivats : a- Le médeci X reçoit exactemet 4 aels - Les malades aellet le même médeci. c- Les 3 médecis sot aelés. EXERCICE N 5 Ue lasse de garços et 8 filles décide de moter ue ièce de théâtre comreat 3 rôles masculis et deux rôles fémiis. )O choisit au hasard 3 garços et deux filles our former ue troue. a) Comie y a t il de troues ossile?. ) Ue fois cette troue choisie, de comie de faços eut-o distriuer les rôles(ceci sera aelé distriutios). )Zakaria et Yasamie fot artie de la classe. a) Quel est le omre de distriutios où Yasamie joue das la ièce? ) Quel est le omre de distriutios où Zakaria et Yasamie jouet esemle? c) Quel est le omre de distriutios où i Zakaria i Yasamie e jouet das le ièce? EXERCICE N 6 O disose de ciq casiers umérotés :,, 3, 4 et 5 et de trois oules ortat les lettres a, et c. O rage les trois oules das les ciq casiers. Chaque oule va das u casier et chaque casier eut coteir aucue oule, ue oule,ou lusieurs oules. )Comie y a-t-il de ragemets ossiles? )Comie y a-t-il de ragemets our lesquels chaque casier cotiet au lus ue oule?. 3 ) Comie y a-t-il de ragemets our lesquels le casier cotiet oules et le casier ue? 4 ) Comie y a-t-il de ragemets our lesquels le casier e cotiet aucue oules? 5 ) Das cette questio o suose que chaque casier e eut coteir lus d'ue oule. a) Comie y a-t-il de ragemets ossiles? ) Comie y a-t-il de ragemets our lesquels le casier est vide? EXERCICE N 7 U sac cotiet oules oires et oules laches. O tire simultaémet oules du sac avec, les tirages ot suosées équiroales. )Déomrer les tirages comortat zéro oules oires, ue oules oire, oules oires, 3 oules oires,.., oules oires. )E déduire que : C C C C C C... C C = C 3

4 EXERCICE N 8 )A l aide de formule du iôme, démotrer que : )Calculer de même : o = C C... ( ) C. 3 )Calculer e foctio de : s = C C... C et t = C C... C 4 )E déduire e foctio de la valeur de z = C C... C EXERCICE N 9 Démotrer les relatios suivates : q ) C q q = C C... C où q q ) C = C C... C où = C 6C... ( ) C. 4

5 5

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème Maths

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web :  3 ème Maths Séries d exercices Deomremet 3 ème Maths Maths au lycee *** Ali AKIR Site We : htt://maths-akir.midilogs.com/ EXERCICE N Soit E l esemle des etiers tels ue. Pour tout etier, o ote ar M ( ) l esemle M(

Plus en détail

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement " Hajeb Laayoun "

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement  Hajeb Laayoun Série d'exercices *** 3 ème M Lycée Secodaire Ali Zouaoui Déombremet " Hajeb Laayou " I / -ulet : Défiitio : Soit E u esemble o vide et * ;O aelle -ulet d élémet de E toute écriture de la forme : a a a

Plus en détail

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants DERNIÈRE IMPRESSION LE 7 février 07 à 6:47 Déombremet Calcul sur les factorielles EXERCICE Simlifier les écritures sas utiliser la calculette. )! 0! ) 7! 5! 3) 6! 5! 5! 4) 6 4! 5! 5) 7! 5! 0! 6) 7) 8)

Plus en détail

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants Exercices Déombremet Exercice Calcul sur les factorielles ) Simlifier les écritures sas utiliser la calculette. a)! 0! b) 7! 5! c) 6! 5! 5! d) 6 4! 5! e) 7! 5! 0! f) 5! 4 7! g) 6! 3! 3! h) 9! 5! 4! i)

Plus en détail

INTRODUCTION A L ANALYSE COMBINATOIRE.

INTRODUCTION A L ANALYSE COMBINATOIRE. INTRODUCTION A L ANALYSE COMBINATOIRE. I- ENSEMBLES FINIS ET CARDINAL D UN ENSEMBLE FINI. ) Produit cartésie d esembles fiis. Défiitio. Soit E et F deux esembles fiis et o vides. O aelle roduit cartésie

Plus en détail

COUPLES VARIABLES ALEATOIRES DISCRETES

COUPLES VARIABLES ALEATOIRES DISCRETES COUPLES VARIABLES ALEATOIRES DISCRETES EERCICE : U sac cotiet six jetos, u ortat le uméro, deux ortet le uméro et trois ortet le uméro Ces jetos sot idiscerables au toucher. Deux jetos sot rélevés de ce

Plus en détail

Licence 1 Mathématiques

Licence 1 Mathématiques Licece Mathématiques 204 205 Algèbre et Arithmétique Feuille o 3 : combiatoire. Exercices à savoir faire.. Réuio, itersectio, artitio. Exercice Au mois de javier, Aatole a ris ses reas de midi au Restau

Plus en détail

est la probabilité cherchée est donc :

est la probabilité cherchée est donc : Lycée Secodaire Ali Zouaoui Probabilités 4 Sc-T Loi iomiale: Ue ure cotiet des boules blaches et des boules oires.la - robabilité de tirer ue boule blache au hasard est égale à ; q Aée Scolaire 007/008

Plus en détail

Dénombrement. 3 ème Maths Mai I. Arrangements :

Dénombrement. 3 ème Maths Mai I. Arrangements : Déomremet ème Mths Mi A. LAATAOUI I. Arrgemets : Activité rértoire : Seize équies de footll rticiet à u chmiot. hque équie recotre toutes les utres e deux mtches : u «Aller» u «RETOUR». omie de mtches

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition :

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition : Probabilités : coditioemet et idéedace Termiale S Déombremet. Pricie O raelle que le cardial d u esemble fii E, oté Card(E), rerésete so ombre d élémets. Si E 0,0 alors Card(E). Notre but est de détermier

Plus en détail

POLYNESIE Série S Juin 2001 Exercice

POLYNESIE Série S Juin 2001 Exercice OLYNESIE Série S Jui 00 Exercice gros rouges et 3 petits rouges Ue boîte cotiet 8 cubes : gros verts et petit vert petit jaue U efat choisit au hasard et simultaémet 3 cubes de la boîte (o admettra que

Plus en détail

PROBABILITES Révisions

PROBABILITES Révisions EXERCICE : Cacuer, pour Soit,,3, 4,5,6, ( ), itégrae I PROBABILITES Révisios x dx. 0 x ; détermier e rée pour que o défiisse ue probabiité p sur e posat, pour tout etier,6 p I Quee est a probabiité de

Plus en détail

2. Espace de probabilité fini équilibré

2. Espace de probabilité fini équilibré 36 2. Esace de robabilité fii équilibré Esace de robabilités fii équilibré (résumé)...37 Esace de robabilités fii équilibré (défiitio)...38 Le modèle de Maxwell-Boltzma...39 Les ragemets de objets discerables

Plus en détail

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé TS Le déombremet est l art de compter (Il y e a souvet aux cocours) (cardial d u esemble fii : ombre de ses élémets Exemple : si E est u esemble fii à élémets, o dit que le cardial de E est égal à et o

Plus en détail

Ensembles et dénombrement

Ensembles et dénombrement CHAPITRE 2 Esembles et déombremet 21 Théorie des esembles 211 Déitios Déitio 1 Soiet u 1, u 2,, u des objets mathématiques O forme alors l'esemble E {u 1, u 2,, u } O dit alors que chaque u i (our 1 i

Plus en détail

Dénombrement et probabilités ( révisions de 6 ème) Combien de nombres à 5 chiffres peut-on écrire à l aide des trois chiffres 1,2,3?

Dénombrement et probabilités ( révisions de 6 ème) Combien de nombres à 5 chiffres peut-on écrire à l aide des trois chiffres 1,2,3? I. Déombremet :. Exemles : Exemle : Déombremet et robabilités ( révisios de 6 ème) ombie de ombres à 5 chiffres eut-o écrire à l aide des trois chiffres,,? Ecrire u ombre à 5 chiffres à l aide des trois

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Cours Dénombrement Analyse combinatoire 1 / 11 A Chevalley

Cours Dénombrement Analyse combinatoire 1 / 11 A Chevalley 2016 Déombremet, aalyse combiatoire leth Chevalley 1. Rael sur les esembles : 1.1. Défiitio Soiet E, des esembles x sigifie «x est u élémet de» ou «x aartiet à». O désige ar l esemble vide qui a aucu élémet.

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Mathématiques. Devoir de Synthèse N 3. Exercice N 1 : 4,5. Enseignant : Ghadhab Lassad. Le sujet comporte 3 pages

Mathématiques. Devoir de Synthèse N 3. Exercice N 1 : 4,5. Enseignant : Ghadhab Lassad. Le sujet comporte 3 pages Devoir de Sthèse ème Maths : M Date : le 0 / 0 / 00 Durée : heures oefficiet : Eseigat : hadhab Lassad Le sujet comorte ages Eercice : oits L esace est mui d u reère orthoormé de ses direct ( A i j k)

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /05/2015

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /05/2015 IUT de Sait-Etiee - déartemet Techiques de Commercialisatio M. Ferraris Promotio 2014-2016 28/05/2015 Semestre 2 - MATHEMATIQUES DEVOIR 2 durée : 2 heures coefficiet 2/3 La calculatrice grahique est autorisée.

Plus en détail

EXERCICES PROBABILITES

EXERCICES PROBABILITES EXERCICE : Calculer, pour EXERCICES PROBABILITES Soit,,3, 4,5,6, ( ) x, l itégrale I dx. 0 x ; détermier le réel pour que l o défiisse ue probabilité p sur * e posat, pour tout etier,6 p I Quelle est la

Plus en détail

NOTION DE PROBABILITÉ Site MathsTICE de Adama Traoré Lycée Technique Bamako

NOTION DE PROBABILITÉ Site MathsTICE de Adama Traoré Lycée Technique Bamako I Itroductio : NOTION DE PROBABILITÉ Site MathsTIE de Adama Traoré Lycée Techique Bamako ) Exemple : O lace fois e l air u dé o pipé (ormal), x et y fot u pari Si 66 apparaît alors x gage 600Frs Si ou

Plus en détail

Chapitre 14 : Ensembles-Dénombrement

Chapitre 14 : Ensembles-Dénombrement PCSI Préaratio des Khôlles 0-04 Chaitre 4 : Esembles-Déombremet Exercice tye SoitE u esemble, eta,b deux arties dee, o désire motrer que sia BA B alorsab. Le rouver avec les foctios idicatrices. Le rouver

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

Corrigé du Devoir Libre n 2

Corrigé du Devoir Libre n 2 Corrigé du Devoir Libre Exercice 1 : Aagrammes 1. Combie les mots suivats ossèdet-ils d aagramme : a. BRETON U aagramme du mot BRETON est u réarragemet des lettres qui comoset ce mot. Par exemle NORBET

Plus en détail

aa ab ac ab ac avec ordre ba bb bc ba bc ca cb cc ca cb sans ordre aa ab ac ab ac bc bb bc cc

aa ab ac ab ac avec ordre ba bb bc ba bc ca cb cc ca cb sans ordre aa ab ac ab ac bc bb bc cc Chaitre I ANALYSE COMBINATOIRE Exemle itroductif Le but de ce chaitre est d'aredre à déombrer des esembles das des coditios variées. La comréhesio de ce chaitre et des exercices qui s' y raortet costitue

Plus en détail

Mathématiques Colle n o 22 Combinatoire. Probabilités. Lycée Charlemagne PCSI. Exercice 10. Exercice 7.

Mathématiques Colle n o 22 Combinatoire. Probabilités. Lycée Charlemagne PCSI. Exercice 10. Exercice 7. Mathématiques 205-206 Colle o 22 Combiatoire. Probabilités Lycée Charlemage PCSI Exercice. Exercice 5. O dispose de différets vêtemets : quatre slips, trois patalos, deux tee-shirts et ciq paires de chaussures.

Plus en détail

Dénombrement Site MathsTICE de Adama Traoré Lycée Technique Bamako

Dénombrement Site MathsTICE de Adama Traoré Lycée Technique Bamako Déombremet Site MathsTIE de Adama Traoré Lycée Techique Bamako A) Parties d u esemble : Soit la représetatio sagittale des esembles E, A et B E 9 8 4 6 0 3 A B ) Existe-t-il des élémets de A qui e sot

Plus en détail

TD 4 : Variables aléatoires discrètes

TD 4 : Variables aléatoires discrètes MA40 : Probabilités TD 4 : Variables aléatoires discrètes Exercice Soit N u etier aturel supérieur ou égal à.. Motrer les égalités suivates : N k k N N + ) N k k N N + ) N + ). Ue ure cotiet ue boule blache

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Exercices de dénombrement

Exercices de dénombrement DOMAINE : Combiatoire AUTEUR : Atoie TAVENEAUX NIVEAU : Itermédiaire STAGE : Grésillo 0 CONTENU : Exercices Exercices de déombremet Exercice Combie y a-t-il de sous-esembles d u esemble de cardial? Exercice

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Dénombrement - Analyse combinatoire

Dénombrement - Analyse combinatoire S4 Maths 2011-2012 Probabilités 1 Déombremet - Aalyse combiatoire Uiversité de Picardie Jules Vere 2011-2012 UFR des Scieces Licece metio Mathématiques - Semestre 4 Probabilités 1 Déombremet - Aalyse combiatoire

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

Contrôle du mercredi 3 juin 2015 (50 minutes) TS1

Contrôle du mercredi 3 juin 2015 (50 minutes) TS1 TS Cotrôle du mercredi jui 20 (0 miutes) Préom :.. Nom : Note :. / 20 I. (6 oits : ) 2 oits ; 2 ) 2 oits ; ) 2 oits) Ue ure cotiet boules blaches et boules oires idiscerables au toucher. O cosidère l exériece

Plus en détail

Éléments de correction de la feuille d exercices # 3

Éléments de correction de la feuille d exercices # 3 Uiversité de Rees L SVE Probabilités et statistiques aée 25-26 Élémets de correctio de la feuille d exercices # 3 Exercice Exemple de loi discrète Soit X ue variable aléatoire discrète preat les valeurs

Plus en détail

Probabilités. 1 Trois coeurs. 2 Trois dés. 3 L'as de pique

Probabilités. 1 Trois coeurs. 2 Trois dés. 3 L'as de pique Probabilités Trois coeurs O tire trois cartes successivemet et sas remise das u jeu de 3 Probabilité our que les trois soiet des coeurs? 7 60 Trois dés O jette trois dés ; robabilité d'obteir les faces,,

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions.

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions. Probabilités, MATH 44 Feuille de travaux dirigés. Solutios. 1 Exercices Exercice 1. O jette trois dés o pipés. 1. Calculer la probabilité d obteir au mois u 1.. Que vaut la probabilité d obteir au mois

Plus en détail

I - ENSEMBLES FINIS ET CARDINAL

I - ENSEMBLES FINIS ET CARDINAL Séciales PSI LYCÉE BUFFON COURS Probabilités 1 Déombremet I - ENSEMBLES FINIS ET CARDINAL 1 DÉFINITION DÉFINITION 1 U esemble E o vide est dit fii s il existe u etier aturel o ul et ue bijectio de 1, sur

Plus en détail

Seconde 1 Chapitre 17 : Paramètres d une série statistique. Page n

Seconde 1 Chapitre 17 : Paramètres d une série statistique. Page n Secode Chaitre 7 : Paramètres d ue série statistique. Page Aujourd'hui, aucue doée e semble échaer au statistiques. Pour gérer la comleité des situatios, o essaie souvet de résumer les séries statistiques

Plus en détail

Expérience aléatoire - modélisation - langage des probabilités

Expérience aléatoire - modélisation - langage des probabilités T.S Probabilités coditioelles L 5 I Expériece aléatoire - modélisatio - lagage des probabilités Ue expériece aléatoire est ue expériece liée au hasard. Les mathématiques itervieet pour apporter u modèle

Plus en détail

Combinatoire. Domaine : Combinatoire. Auteur : Joon Kwon Niveau : Débutants Stage : Montpellier 2014 Contenu : Exercices

Combinatoire. Domaine : Combinatoire. Auteur : Joon Kwon Niveau : Débutants Stage : Montpellier 2014 Contenu : Exercices Domaie : Combiatoire Auteur : Joo Kwo Niveau : Débutats Stage : Motpellier 2014 Coteu : Exercices Combiatoire Exercices Exercice 1 O souhaite rager sur ue étagère livres de mathématiques (disticts), m

Plus en détail

I. Séries de données et représentation graphique

I. Séries de données et représentation graphique Chaitre Statistiques : I. Séries de doées et rerésetatio grahique. Vocabulaire Ue série statistique traite de doées de différets tyes : effectifs, ourcetages, idices, Le caractère quatitatif étudié eut

Plus en détail

Correction du devoir Surveillé 6 : Probabilités

Correction du devoir Surveillé 6 : Probabilités S www.wicky-math.fr.f DS - Probabilités Correctio du devoir Surveillé : Probabilités Exercice. ROC Démotrer le théorème suivat : ( poits) Théorème : La probabilité de la réuio de deux évéemetsaetb est

Plus en détail

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications.

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications. Leço 3 : Coefficiets biomiaux, déombremet des combiaisos, formule du biome. Alicatios. Prérequis : Nombres de listes, arragemets. Pricies de la somme et de la multilicatio. Cadre : O cosidèrera das la

Plus en détail

Chapitre 1. Dénombrement

Chapitre 1. Dénombrement Chapitre Déombremet Itroductio Lorsque l o compte les objets d ue collectio, o attribue à la collectio so cardial, c est à dire le ombre d objets qu elle cotiet. Par exemple u Picasso, u Rembrat et u Degas

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS Ozième Aveture DÉNOMBREMENTS A - PERMUTATIONS Le Père Noël a offert à ma etite cousie Josette u jeu de cubes où sot iscrits les lettres de l alhabet. Très édagogue, je lui doe d abord les trois cubes A,

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

Espaces probabilisés finis et dénombrement

Espaces probabilisés finis et dénombrement CNAM MULHOUSE. Ramm Algebra Ceter Formatio Igéieur Iformatique Mathématiques: PROBABILITES Cours Michel GOZE Chaitre 3 Esaces robabilisés fiis et déombremet 1. Problèmes de déombremet 1.1. Arragemets.

Plus en détail

EXERCICES SIMULATION LOIS DISCRETES

EXERCICES SIMULATION LOIS DISCRETES EXERCICES SIMULATION LOIS DISCRETES EXERCICE 1 : 1) Ecrire u programme qui revoie le lacer d u lacer de dé équilibré 2) Trasformer le programme précédet pour qu il simule ue série de 100 lacers d u dé

Plus en détail

Terminale S. Lycée Desfontaines Melle Chapitre 11 Probabilité Conditionnement et indépendance

Terminale S. Lycée Desfontaines Melle Chapitre 11 Probabilité Conditionnement et indépendance Termiale S. Lycée Desfotaies Melle Chapitre 11 Probabilité Coditioemet et idépedace I. Probabilité coditioelle 1- Exemple Das u lycée coteat N élèves, 4% des élèves sot des filles, % des garços. Parmi

Plus en détail

1 ère S Exercices sur le schéma de Bernoulli (1)

1 ère S Exercices sur le schéma de Bernoulli (1) ère Exercices sur le schéma de Beroulli () 8 Le chevalier de Méré, philosophe et homme de lettres, pose le problème suivat au mathématicie Blaise ascal : «Qu est-ce qui est le plus probable : obteir au

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Probabilité conditionnelle 4 ème Sciences Avril 2010

Probabilité conditionnelle 4 ème Sciences Avril 2010 Probabilité coditioelle 4 ème Scieces vril 200 LTOUI Raels { e e e } Ω=, 2,, est l uivers des ossibles (esemble des évetualités) associé à ue éreuve, exériece, u jeu, Exemles : Lacer d ue ièce de moaie

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

Exercices d ALGORITHMIQUE

Exercices d ALGORITHMIQUE Exercices d ALGORITHMIQUE Exercice 1 : Ecrire u rogramme qui boucle à l ifii a) E utilisat la structure TANT QUE b) E utilisat la structure REPETER JUSQUE c) E utilisat POUR Exercice 2 : Écrire u sous-rogramme

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h.

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h. Coceptio : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES mai 07, de 8 h à h La présetatio, la lisibilité, l orthographe, la qualité de la rédactio, la clarté et la précisio des raisoemets etrerot pour ue part

Plus en détail

x 0 + f ' (x) f (x) ln 3 3 f (x) dx.

x 0 + f ' (x) f (x) ln 3 3 f (x) dx. T S Devoir surveillé 8 Vedredi avril 7 Exercice (5 poits) l (x + ) O cosidère la foctio f défiie sur [, + [ par f (x) = x +. O admet que le tableau de variatios de f est le suivat. O défiit la suite (U

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

1 ère S Exercices sur le schéma de Bernoulli (1)

1 ère S Exercices sur le schéma de Bernoulli (1) ère Exercices sur le schéma de Beroulli () Recommadatios : Das u arbre de Beroulli, les évéemets sot systématiquemet (sauf exceptio) otés et. Avat chaque arbre défiir clairemet l évéemet cosidéré. Das

Plus en détail

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p.

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p. MATHÉMATIQUES I Objectifs O se roose, das ce qui suit, de détermier l esemble des solutios d ue équatio différetielle liéaire à coefficiets costats lorsqu elle est homogèe, uis lorsque celle-ci admet u

Plus en détail

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes 08. O dispose de boîtes umérotées de à. La boîte k cotiet k boules umérotées de à k. O choisit au hasard ue boîte, puis ue boule das cette boîte. Soit X le uméro de la boîte et Y le uméro de la boule..

Plus en détail

S Métropole septembre 2016

S Métropole septembre 2016 S Métropole septembre 206 Exercice 3 Cadidats ayat suivi l'eseigemet de spécialité 5 poits O dispose d'u dé équilibbré à 6 faces umérotées de à 6 et de trois pièces A, B et C ayat chacue u côté pile et

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1

Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1 Statistiques de Base haitre. Aalyse combiatoire e cours est basé sur les otes de cours de D. Mouchiroud Lyo Itroductio L aalyse combiatoire est ue brache des mathématiques qui étudie commet comter les

Plus en détail

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique EXERCICE : EXERCICES SR LES SITES NMÉRIQES Site MathsTICE de Adama Traoré Lycée Techique I) r désigat respectivemet le premier terme, le ième terme, la raiso et la somme des premier termes d ue suite arithmétique,

Plus en détail

Séries d exercices Aritmetiques

Séries d exercices Aritmetiques Séries d exercices Aritmetiques ème Maths Maths au lycee Ali AKIR Site Web : http://maths-akirmidiblogscom/ EXERCICE N )Quel est le reste de la divisio par 7 du ombre ) Quel est le reste de la divisio

Plus en détail

a quand n tend vers plus l infini. d. Interpréter le résultat précédent en terme de nombre d abonnements de type A.

a quand n tend vers plus l infini. d. Interpréter le résultat précédent en terme de nombre d abonnements de type A. Liba Jui 23 Série ES Exercice U théâtre propose deux types d aboemets pour ue aée : u aboemet A doat droit à six spectacles ou u aboemet B doat droit à trois spectacles. O cosidère u groupe de 2 5 persoes

Plus en détail

Analyse combinatoire

Analyse combinatoire Mathématiques : Outils our la Biologie Deug SV1 UCBL D. Mouchiroud (10/10/2002) Chaitre 1 Aalyse combiatoire Sommaire 1. Itroductio 2 2. Arragemets..2 2.1. Itroductio..2 2.2. Arragemets avec réétitios

Plus en détail

Compléments sur les suites Suites adjacentes

Compléments sur les suites Suites adjacentes DERNIÈRE IMPRESSION LE 7 février 07 à 6:3 Complémets sur les suites Suites adjacetes I Ecadremet d ue suite EXERCICE ) Motrer que pour tout k N et pour tout x [k ; k+], o a : k+ k+ k x dx k ) O pose u

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

2 Propriétés élémentaires des probabilités

2 Propriétés élémentaires des probabilités Uiversité de Reims Champage Ardee UFR Scieces Exactes et Naturelles Aée uiversitaire 2013-2014 MA 0804 - Master 1 CM1 Espaces probabilisés 1 Déitio Pour déir u espace probabilisé, o a besoi d'u esemble

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2008 Date : Dimanche 16 mars 2008 de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2008 Date : Dimanche 16 mars 2008 de 14h00 à 17h00 MAT 080 MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 008 Date : Dimache 16 mars 008 de 1h00 à 17h00 INSTRUCTIONS 1. Détachez la feuille-réoses à la fi de ce cahier et iscrivez-y immédiatemet votre om, votre

Plus en détail

LEÇON N 2 : Dénombrement.

LEÇON N 2 : Dénombrement. LEÇON N : Déombremet Pré-requis : Vocabulaire esembliste ; Raisoemet ar récurrece ; Défiitio : U esemble E est dit fii et de cardial, soit s il est vide et alors 0, soit si N et s il existe ue bijectio

Plus en détail

APPLICATIONS LINEAIRES Exercices

APPLICATIONS LINEAIRES Exercices EXERCICE : APPLICATIONS LINEAIRES Exercices ) Motrer que l applicatio f : f : est liéaire x, y, z x z, y z ) Soit ue matrice AM et soit f l applicatio qui à toute matrice X M associe la matrice Y défiie

Plus en détail

Chapitre 11 Loi binomiale. Table des matières. Chapitre 11 Loi binomiale TABLE DES MATIÈRES page -1

Chapitre 11 Loi binomiale. Table des matières. Chapitre 11 Loi binomiale TABLE DES MATIÈRES page -1 Chapitre Loi biomiale TABLE DES MATIÈRES page - Chapitre Loi biomiale Table des matières I Exercices I-................................................ I-................................................

Plus en détail

CH V : Variables aléatoires - généralités

CH V : Variables aléatoires - généralités CH V : Variables aléatoires - gééralités I. Notio de variable aléatoire réelle Soit (Ω, A ) u espace probabilisable. O dit que X est ue variable aléatoire réelle défiie sur (Ω, A ) si : (i) X est ue applicatio

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Correction Bac ES Liban juin 2010

Correction Bac ES Liban juin 2010 Correctio Bac ES Liba jui 2010 EXERCICE 1 (4 poits) Commu à tous les cadidats 1) A et B sot deux évéemets idépedats et o sait que p(a) = 0,5 et p(b) = 0,2. La probabilité de l évéemet A B est égale à :

Plus en détail

EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICE 01 : EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Techique Bamako 1) Démotrer par récurrece que : a) ε N*: 1+ + 3+ + = ( + 1) b) ε N*: 1+ 3+ 5+ + ( 1) = c) ε N*: 1 + 3+ 5 + +

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Les symboles somme et produit

Les symboles somme et produit DERNIÈRE IMPRESSION LE 7 février 07 à 5:4 Les symboles somme et roduit Table des matières Le symbole somme Σ Défiitio Liéarité et chagemet d idice 3 3 Sommes télescoiques 4 4 Sommes à coaître 5 5 Sommes

Plus en détail

LEÇON N 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binôme. Applications.

LEÇON N 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binôme. Applications. LEÇON N : Coefficiets biomiaux, déombremet des combiaisos, formule du biôme Alicatios Pré-requis : Cardial d u esemble fii, arragemets ; Raisoemet ar récurrece 1 Défiitios et roriétés Défiitio 1 : Soit

Plus en détail

Rappels. A-Oukhai Suites géométriques 2 e Science

Rappels. A-Oukhai Suites géométriques 2 e Science A-Oukhai Suites géométriques e Sciece Rappels Pour motrer que u est ue suite géométrique : Soit o exprime u +1 e foctio de u et o doit trouver ue relatio de la forme u +1 qu où q est u réel qui e déped

Plus en détail