Autour de la loi de Poisson

Dimension: px
Commencer à balayer dès la page:

Download "Autour de la loi de Poisson"

Transcription

1 Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables aléatoires cosidérées ici sot des variables aléatoires défiies sur Ω. Si X est ue telle variable aléatoire, o ote E(X) et V(X) l espérace et la variace de X lorsque celles-ci existet. Pour N et p ]0, 1[ o otera B(p) la loi de Beroulli de paramètre p et B(, p) la loi biomiale de paramètres et p. O rappelle que la variable aléatoire X suit B(p) si elle pred les valeurs 0 et 1 avec P(X = 0) = 1 p et P(X = 1) = p et que Y suit B(, p) si elle pred les valeurs etières de 0 à avec {0,..., }, P(X = ) = ( ) p (1 p) 1 Pour λ > 0 o ote P(λ) la loi de Poisso de paramètre λ. O rappelle que X suit P(λ) si elle pred toutes les valeurs de N avec N, P(X = ) = λ! e λ Si X est ue variable aléatoire preat ses valeurs das N, alors sa foctio géératrice est la foctio g X : t E(t X ) = 0 P(X = )t. Das la première partie o révise le programme cocerat la loi de Poisso et so utilisatio comme approximatio de la loi biomiale. Das la deuxième partie o obtiet ue estimatio plus fie de cette approximatio. Das la troisième partie o étudie quelques propriétés e lie avec la foctio géératrice. 1 Loi de Poisso - révisios 1. Soit λ > 0 et Z ue variable aléatoire suivat P(λ), calculer E(Z) et V(Z).

2 2. Soit X et Y deux variables aléatoires idépedates suivat respectivemet les lois P(λ) et P(µ) pour λ et µ strictemet positifs. Démotrer que X + Y suit la loi P(λ + µ). 3. Approximatio de la loi biomiale par la loi de Poisso. Soit (X ) 1 ue suite de variables aléatoires telle que X suit la loi B(, p ) pour tout 1, où (p ) 1 est ue suite das ]0, 1[. O suppose que la suite ( p ) coverge vers λ > 0. a) Motrer que la suite (X ) coverge e loi vers ue variable aléatoire Z suivat P(λ), c est-à-dire N, lim P(X = ) = λ +! e λ b) Démotrer que lim E(X ) = E(Z) et lim V(X ) = V(Z). + + c) Applicatio. O suppose qu il apparaît e moyee deux étoiles filates toutes les 5 miutes das le ciel d ue uit de la première semaie d août. O choisit au hasard u itervalle de 5 miutes. Soit Y la variable aléatoire associat à l itervalle de 5 miutes choisi le ombre d étoiles filates observées. Pour détermier la loi de probabilité de Y, o "discrétise" le problème : o partage les ciq miutes e itervalles de temps suffisammet petits pour coteir au plus ue apparitio d étoile filate, et o suppose que les apparitios des étoiles filates au cours du temps sot des évéemets idépedats. Aisi, est "grad" et la probabilité d apparitio d ue étoile filate das l u des itervalles de temps est de l ordre de 2. Doer ue approximatio des probabilités suivates : P(Y = 0) ; P(Y = 1) et P(Y 2) Quelle serait la probabilité de voir au mois 2 étoiles filates e 10 miutes? 2 Covergece forte de la loi biomiale vers la loi de Poisso 1. Soit p [0, 4 ], détermier la loi du vecteur aléatoire (X, Y ) tel que 5 (X, Y ) pred les valeurs (0, 0), (0, 1), (1, 1) et (, 0) pour tout 2 (remarque : (X, Y ) e pred pas la valeur (1, 0)), la loi margiale X est P(p) et la loi margiale Y est B(p). O otera M(p) la loi de ce vecteur aléatoire. Déduire du calcul précédet que P(X Y ) 2 p 2 e utilisat e p 1 p. 2. Soit (X, Y ) u vecteur aléatoire preat ses valeurs das N 2 et A ue partie de N, motrer que P(X A) P(Y A) P(X Y )

3 3. Soit (X 1, Y 1 ),..., (X, Y ) des vecteurs aléatoires suivat respectivemet les lois M(p 1 ),..., M(p ) avec p i [0, 4 ] pour tout i. Soit A ue partie de N, motrer 5 que P(X X A) P(Y Y A) 2 p 2 i i=1 4. Soit λ > 0 et u etier tel que 4 5λ. Soit X et Z deux variables aléatoires suivat respectivemet la loi B(, λ ) et la loi P(λ). a) Soit A ue partie de N, motrer que P(X A) P(Z A) 2 λ2 b) Doer ue coditio sur et p pour que l approximatio de la loi B(, p) par la loi P(p) soit correcte à 10 2 près pour toute valeur {0,..., }. c) E cosidérat les esembles E = { : P(X = ) P(Z = )} et N \ E, motrer que ( ) p (1 p) 1 λ! e λ Loi de Poisso et foctio géératrice Das cette partie, X est ue variable aléatoire à valeurs etières. λ! e λ 4 λ2 1. Démotrer que la foctio géératrice de X a u rayo de covergece supérieur ou égal à Das cette questio, o suppose que X suit la loi P(λ) pour u certai λ > 0. Calculer la foctio géératrice g X de X. 3. Démotrer que 0, P(X = ) lim if t 1 g X (t) g X (1) E déduire que X admet ue espérace si et seulemet si g X admet ue dérivée à gauche g X(1 ) e 1, et que das ce cas E(X) = g X(1 ). 4. Retrouver à l aide des questios précédetes l espérace de la loi P(λ). 5. Démotrer que X admet ue variace si et seulemet si g X admet ue dérivée secode à gauche g X(1 ) e 1, et que das ce cas V(X) = g X(1 ) + g X(1 ) (g X(1 )) 2. Retrouver la variace de la loi P(λ). 6. O suppose que les variables aléatoires X et Y sot idépedates, démotrer que g X+Y = g X g Y. Retrouver le résultat de la questio 1.2.

4 4 Correctio succicte. Les parties 1 et 3 sot classiques et sot basées essetiellemet sur du cours. O peut doc e trouver l essetiel das les ouvrages usuels (Cottrell et al., Datzer, Ouvrard, etc), à l exceptio de l applicatio 3c de la partie 1. La partie 2 est plus origiale et précise la covergece de la loi biomiale vers la loi de Poisso. 4.1 Correctio de la partie 1 : Loi de Poisso - révisios 1. Les séries à termes positifs P(Z = ) et 2 P(Z = ) sot covergetes, doc Z admet ue espérace et ue variace, et o trouve : E(Z) = V(Z) = λ. 2. Puisque X et Y suivet des lois de Poisso, elles preet leurs valeurs das N, et comme elles sot idépedates o obtiet pour tout etier : P(X + Y = ) = P(X = et Y = ) = = 1 ( )! e (λ+µ) λ µ = λ! e λ µ ( )! e µ (λ + µ) e (λ+µ).! Ceci état valable pour tout N, o e déduit que X + Y suit la loi P(λ + µ). 3. Approximatio de la loi biomiale par la loi de Poisso. Soit (X ) 1 ue suite de variables aléatoires telle que X suit la loi B(, p ) pour tout 1, où (p ) 1 est ue suite das ]0, 1[. O suppose que la suite ( p ) coverge vers λ > 0. a) Soit N, pour tout o a ( ) P(X = ) = p (1 p ) = ( p ) ( 1 p ) ( 1)... ( + 1) (1 p! ) or o a ( 1 p ) = exp ( p (1 + o(1))) e λ et comme est fixé et p 0 o obtiet bie lim P(X = ) = λ +! e λ. b) Pour tout o a E(X ) = p et V(X ) = p (1 p ), doc o a lim E(X ) = + λ = E(Z) et lim V(X ) = λ = V(Z). + c) D après l éocé, Y suit la loi B(, 2 ), et comme est supposé grad o peut approcher cette loi par la loi de Poisso P(2), o trouve doc P(Y = 0) e 2 = 13, 5% P(Y = 1) 2e 2 = 27% P(Y 2) = 1 (P(Y = 0) + P(Y = 1)) 1 (e 2 + 2e 2 ) = 59%

5 Das u itervalle de 10 miutes il y a 2 petits itervalles, das ce cas le ombre d étoiles filates observées suit B(2, 2 ) ce qu o peut approcher par la loi P(4) et doc la probabilité demadée est eviro 1 (e 4 + 4e 4 ) = 91%. 4.2 Correctio de la partie 2 : Covergece forte de la loi biomiale vers la loi de Poisso Cette partie est tirée de l exercice 406 du livre Itégratio et probabilités - Aalyse de Fourier de Gérard Letac (Masso, 1997). 1. Comme la margiale X suit P(p) o a : P [(X, Y ) = (0, 0) ou (X, Y ) = (0, 1)] = e p P [(X, Y ) = (1, 1)] = pe p 2, et comme Y suit B(p) o a P [(X, Y ) = (, 0)] = λ! e p et doc o e coclut que P [(X, Y ) = (0, 1) ou (X, Y ) = (1, 1)] = p P [(X, Y ) = (0, 1)] = p p e p et P [(X, Y ) = (0, 0)] = (1 + p)e p p e utilisat le fait que les évèemets ((X, Y ) = (0, 0)), ((X, Y ) = (0, 1)) et ((X, Y ) = (1, 1)) sot icompatibles. Puisque p [0, 4 ] o a bie que ces deux 5 probabilités sot positives. Efi o remarque pour ce vecteur aléatoire o a P(X Y ) = 1 P (X = Y ) = 1 P [(X, Y ) = (0, 0) ou (X, Y ) = (1, 1)] = 1 ((1 + p)e p p + pe p ) 1 (1 + 2p)(1 p) + p = 2p O remarque que (X A) est iclus das l évèemet (Y A ou X Y ) : e effet si X(ω) A alors soit X(ω) = Y (ω) et doc Y (ω) A, soit X(ω) Y (ω). Par coséquet doc P(X A) P(Y A ou X Y ) P(Y A) + P(X Y ) P(X A) P(Y A) P(X Y ) E échageat les rôles de X et Y o obtiet l iégalité souhaitée. Autre maière d écrire la même preuve : O calcule P(X A) = P [(X A et X = Y ) ou (X A et X Y )] = P [(Y A et X = Y ) ou (X A et X Y )] P(Y A) + P(X Y ) et o coclut de même.

6 3. O applique les deux questios précédetes pour calculer P(X X A) P(Y Y A) P((X X ) (Y Y )) P((X 1 Y 1 ) ou... ou (X Y )) P(X i Y i ) 2 i=1 i=1 p 2 i i=1 où la deuxième iégalité découle du fait que (X X )(ω) (Y Y )(ω) implique que X i (ω) Y i (ω) pour au mois u idice i. 4. a) O applique le résultat de la questio précédete avec des variables aléatoires X 1,..., X idépedates suivat B( λ) et Y 1,..., Y idépedates suivat P( λ), et telles que chaque couple (X i, Y i ) suit M( λ). Das ce cas X = X X suit B(, λ) et Z = Y Y suit P(λ) et o a ( ) 2 λ P(X A) P(Z A) 2 = 2 λ2 b) E preat λ = p das ce qui précède, il suffit d avoir 2 p c) O applique la questio 4a à l esemble E = { : P(X = ) P(Z = )} et o obtiet 2 λ2 P(X E) P(Z E) = (P(X = ) P(Z = )) E = (( ) ) p (1 p) 1 λ E! e λ = ( ) p (1 p) 1 λ E! e λ où o a utilisé la défiitio de E et le fait que E {0,..., }. E appliquat la questio 4a avec N \ E il viet 2 λ2 P(X E) P(Z E) = = 0 N\E = 0 N\E ( λ! e λ λ! e λ N\E ( ) )p (1 p) 1 ( ) p (1 p) 1 + O coclut e additioat ces deux iégalités. (P(Z = ) P(X = )) λ! e λ λ! e λ 4.3 Correctio de la partie 3 : Loi de Poisso et foctio géératrice 1. Pour t = 1, la somme de la série etière P (X = )t est covergete et de valeur 1 puisque X pred ses valeurs das N : la foctio géératrice de X a doc u rayo de covergece supérieur ou égal à 1.

7 2. Lorsque X suit P(λ) o trouve g X (t) = E(t X ) = e λ(t 1), et la foctio géératrice a u rayo de covergece ifii. 3. Soit 0 fixé, alors pour tout t [0, 1[ o a d où o déduit g X (t) g X (1) = P(X = ) P(X = ) lim if t 1 g X (t) g X (1) P(X = ) Aisi, si X admet pas d espérace, alors la série à termes positifs P(X = ) est divergete et g X est pas dérivable à gauche e 1. Par cotre, si X admet ue espérace alors cette série est covergete et pour tout t [0, 1[ o a g X (t) g X (1) = = =1 g X (t) g X (1) doc lim sup t 1 P(X = ) P(X = )(1 + t t 1 ) =1 P(X = ) (1) E(X). E passat à la limite quad + das g X (t) g X (1) (1) o obtiet E(X) lim if, et o coclut doc que das ce cas t 1 g X est dérivable à gauche e 1 et E(X) = g X(1 ). 4. Si X suit la loi P(λ) alors sa foctio géératrice g X : t e λ(t 1) est dérivable e 1 de dérivée λ, qui est bie l espérace attedue. 5. E raisoat de la même maière, o trouve les iégalités (pour t [0, 1[ ) =1 P(X = ) t 1 1 g X(t) g X(1) =2 P(X = ) ( 1) d où o déduit que X admet u momet d ordre 2 si et seulemet si g X admet ue dérivée secode à gauche g X(1 ) e 1, et que das ce cas g X(1 ) = P(X = ) ( 1) = V(X)+E(X) 2 E(X) = V(X) (g X(1 )) 2 +g X(1 ) 6. Soit t ] 1, 1[, alors o peut écrire + g X+Y (t) = P(X + Y = )t = P(X = et Y = )t =0 =0 = P(X = )P(Y = )t =0 = P(X = )t P(Y = )t = g X (t)g Y (t) =0

8 où o a utilisé l idépedace de X et Y et la formule du produit de Cauchy de deux séries covergetes. Cette égalité état vraie sur u voisiage de 0, o a bie g X+Y = g X g Y sur le disque de covergece commu. Das le cas où X suit P(λ) et Y suit P(µ) o obtie alors pour tout réel t g X+Y (t)g X (t)g Y (t) = e λ(t 1) e µ(t 1) = e (λ+µ)(t 1) et doc X + Y suit la loi P(λ + µ).

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes 08. O dispose de boîtes umérotées de à. La boîte k cotiet k boules umérotées de à k. O choisit au hasard ue boîte, puis ue boule das cette boîte. Soit X le uméro de la boîte et Y le uméro de la boule..

Plus en détail

Feuille d exercices 11

Feuille d exercices 11 Mathématiques Aalyse I M. Samy Modeliar Feuille d eercices Itégratio Correctio Eercice Détermier, si elle eiste, la ite e + de la suite de terme gééral si ( π + ) d + Correctio. Pour tout etier, la foctio

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

Variables aléatoires. Exercices

Variables aléatoires. Exercices Variables aléatoires Exercices 04-05 Les idispesables Loi d ue variable aléatoire, espérace et variace O répète idéfiimet le lacer d u dé équilibré à 6 faces Soit la variable aléatoire doat la valeur du

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail

CH V : Variables aléatoires - généralités

CH V : Variables aléatoires - généralités CH V : Variables aléatoires - gééralités I. Notio de variable aléatoire réelle Soit (Ω, A ) u espace probabilisable. O dit que X est ue variable aléatoire réelle défiie sur (Ω, A ) si : (i) X est ue applicatio

Plus en détail

Produit de Cauchy de la série alternée par elle-même.

Produit de Cauchy de la série alternée par elle-même. CCP 8. Filière MP. Mathématiques. Corrigé pour serveur UPS par JL. Lamard (jea-louis.lamard@prepas.org I. Gééralités. Pour > la série défiissat F coverge absolumet, pour < elle coverge par le critère spécial

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Composition de Mathématiques D (U)

Composition de Mathématiques D (U) École Normale Supérieure Cocours d admissio 205 Filière MP Compositio de Mathématiques D (U) (Durée : 6 heures) L utilisatio des calculatrices est iterdite Sujet saisi par Michel Quercia (michel.quercia@prepas.org)

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Exercice 2 (Séries de fonctions - 7 points)

Exercice 2 (Séries de fonctions - 7 points) INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

MATHEMATIQUES Option scientifique Vendredi 13 mai 2005 de 8h à 12h

MATHEMATIQUES Option scientifique Vendredi 13 mai 2005 de 8h à 12h ECOLE DE HAUTES ETUDES COMMERCIALES DU NORD Cocours d'admissio sur classes préparatoires MATHEMATIQUES Optio scietifique Vedredi 3 mai 5 de 8h à h La présetatio, la lisibilité, l'orthographe, la qualité

Plus en détail

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ).

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ). Colle PC Semaie 3 0-03 Séries Etières Voir : http://www.mimaths.et/img/pdf/s5.pdf http://www.mimaths.et/img/pdf/sem5.pdf EXERCICE :. Doer u exemple de série etière de rayo de covergece π.. Détermier le

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3 3- Lois de distributio discrètes -1 Chapitre 3 : Lois de distributio discrètes 3.1 Loi de Berouilli...1 3. Loi Biomiale...1 3.3 Loi géométrique... 3.4 Loi de Pascal (loi égative biomiale)...3 3.5 Loi hypergéométrique...4

Plus en détail

Exo7. Théorème de Carathéodory, calcul d aire et de volume. 1 Théorème de Carathéodory. Exercices : Barbara Tumpach Relecture : François Lescure

Exo7. Théorème de Carathéodory, calcul d aire et de volume. 1 Théorème de Carathéodory. Exercices : Barbara Tumpach Relecture : François Lescure Exercices : Barbara Tumpach Relecture : Fraçois Lescure Exo7 Théorème de Carathéodory, calcul d aire et de volume 1 Théorème de Carathéodory Exercice 1 Le but de cet exercice est de prouver le Théorème

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Variables aléatoires. Loi binomiale. Indépendance de variables aléatoires. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1

Variables aléatoires. Loi binomiale. Indépendance de variables aléatoires. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Eocés 1 Variables aléatoires Loi biomiale Exercice 1 [ 03369 ] [Correctio] Ue variable aléatoire réelle X suit ue loi biomiale de taille et de paramètre

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

x 0 + f ' (x) f (x) ln 3 3 f (x) dx.

x 0 + f ' (x) f (x) ln 3 3 f (x) dx. T S Devoir surveillé 8 Vedredi avril 7 Exercice (5 poits) l (x + ) O cosidère la foctio f défiie sur [, + [ par f (x) = x +. O admet que le tableau de variatios de f est le suivat. O défiit la suite (U

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Sommaire. 2. Séries réelles ou complexes. Méthodes : L essentiel ; mise en œuvre

Sommaire. 2. Séries réelles ou complexes. Méthodes : L essentiel ; mise en œuvre 1. Espaces vectoriels ormés A. Normes et distaces............. 8 B. Étude locale des applicatios Cotiuité..... 19 C. Cotiuité des applicatios liéaires....... 25 D. Espaces vectoriels ormés de dimesio fiie...

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales Filtratios et martigales 1 [M. Gubielli - Processus discrets - M1 MMD 2009/2010-20100113 - v.6] IV Martigales 1 Filtratios et martigales O cosidère u espace probabilisé (Ω, F, P). Défiitio 1. Ue filtratio

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Variables aléatoires finies Présentation

Variables aléatoires finies Présentation Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola... 3 3. Espérace mathématique d ue variable aléatoire fiie... 4 4. Variace et écart type

Plus en détail

Lois normales et autres lois dérivées

Lois normales et autres lois dérivées Lois ormales et autres lois dérivées - Lois ormales a) - Défiitio O dit qu'ue variable aléatoire réelle X suit la loi ormale (ou gaussiee) de paramètres et, otée N ( ; ), si elle admet pour desité la foctio

Plus en détail

ANNALES. OFFICIELLES 2013 concours. ecricome. prepa. ÉPREUVE ÉCRITE ÉPREUVE spécifique. option technologique. z Mathématiques.

ANNALES. OFFICIELLES 2013 concours. ecricome. prepa. ÉPREUVE ÉCRITE ÉPREUVE spécifique. option technologique. z Mathématiques. ANNALES OFFICIELLES 3 cocours ÉPREUVE ÉCRITE ÉPREUVE spécifique optio techologique z www..org cocours Esprit de l épreuve Vérifier ches les cadidats l eistece des bases écessaires pour des études supérieures

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

Résumé 10 : Probabilités I

Résumé 10 : Probabilités I http://mpbertholletwordpresscom Résumé 10 : Probabilités I Ω sera u esemble abstrait, c est-à-dire sas structure particulière P(Ω désige l esemble de tous les sous-esembles de Ω, y compris le sous-esemble

Plus en détail

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs.

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs. Exercice Séace 2 : Estimateurs covergets, o biaisés et exhaustifs. Soiet les variables aléatoires X i i =,..., i.i.d. Motrez que S 2 = X i X 2 est u estimateur o biaisé de σ 2, où σ 2 = V ar[x ]. O utilise

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3 Tests Chapitre Table des matières 1 Pricipe d u test 1 11 Défiitios 1 Méthode géérale 3 Test de coformité à u paramètre 3 1 Test de coformité à ue moyee 3 Test de coformité à ue proportio 4 3 Test d homogééité

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires Problème 1 : costructio de triagles Das u pla affie euclidie orieté, o cosidère deux poits disticts B et C et u poit M apparteat pas à la droite BC). Pour chacue des assertios suivates, détermier s il

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EXAMEN PROBATOIRE D ADMISSION DES ETRANGERS DANS LES ECOLES DE FORMATION D OFFICIERS EPREUVE DE MATHEMATIQUES DUREE DE L EPREUVE : 4 Heures Matériel autorisé : Calculatrice Circulaire 9986 du 6 ovembre

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

S n = u u n. S = u k. k=0

S n = u u n. S = u k. k=0 Chapitre 3 Séries umériques 3. Défiitios et exemples 3.. Défiitios Défiitio 3.. Soit (u ) ue suite réelle. O lui associe (S ) ue ouvelle suite défiie par S = u 0 + + u. O appelle série de terme gééral

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

Éléments de probabilités

Éléments de probabilités Chapitre 1 Élémets de probabilités 1.1 Notio d expériece aléatoire Défiitio 1 Ue expériece, dot o coait les issues possibles, est appelé expériece aléatoire s il est impossible de savoir à l avace quelle

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

TD Modélisation Statistique

TD Modélisation Statistique Licece 3 Mathématiques TD Modélisatio Statistique Ex 1. Soit X ue variable aléatoire réelle de desité f cotiue et de foctio répartitio F. 1. Calculer la foctio de répartitio de Y = αx + β pour α, β R,

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1 [http://mp.cpgedupuydelome.fr] édité le 8 décembre 6 Eocés Séries umériques Nature de séries umériques Exercice [ ] [Correctio] Détermier la ature des séries dot les termes gééraux sot les suivats : a

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Texte Filtre de Kalman-Bucy

Texte Filtre de Kalman-Bucy Page 1. Texte Filtre de Kalma-Bucy 1 e modèle U avio se déplace etre Paris et odres. Il suit ue trajectoire théorique appelée trajectoire omiale dot les coordoées sot coues de tous. a trajectoire de l

Plus en détail

FRLT Page 1 15/08/2014

FRLT Page 1 15/08/2014 Algorithmes à aalyser O cosidère l algorithme : - u est du type ombre - q est du type ombre - p est du type ombre - S est du type ombre - Lire u - Lire q - Lire p - S pred la valeur de u - Tat que (u >

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Plan du cours. Rappels de probabilité. Axiomes des probabilités. Définition de la probabilité

Plan du cours. Rappels de probabilité. Axiomes des probabilités. Définition de la probabilité Pla du cours Rappels de probabilité Défiitios Axiomes Variable aléatoire Foctio de répartitio Momets R. Flamary, R. Herault, A. Rakotomamojy 9 octobre 4 Exemples de lois Loi uiforme Loi ormale Loi uiforme

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques CHAPITRE 2 : Estimatio o-paramétrique 1. Estimateurs empiriques Soit u échatillo i.i.d. de durées T i i1,..., de foctio de survie S Défiitio: L estimateur empirique de la foctio de survie est S x 1 i1

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

Correction du devoir Surveillé 6 : Probabilités

Correction du devoir Surveillé 6 : Probabilités S www.wicky-math.fr.f DS - Probabilités Correctio du devoir Surveillé : Probabilités Exercice. ROC Démotrer le théorème suivat : ( poits) Théorème : La probabilité de la réuio de deux évéemetsaetb est

Plus en détail