TD d algorithmique avancée Corrigé du TD 2 : récursivité
|
|
|
- Alexandre Petit
- il y a 9 ans
- Total affichages :
Transcription
1 TD d algorithmique avacée Corrigé du TD : récursivité Jea-Michel Dischler et Frédéric Vivie Suite de Fiboacci La suite de Fiboacci est défiie comme suit : 1 si = 0 Fib() = 1 si = 1 Fib( 1) + Fib( ) sio. 1. Écrivez u algorithme récursif calculat Fib(). Fiboacci() si = 0 ou = 1 alors revoyer 1 sio revoyer Fiboacci( 1) + Fiboacci( ). Motrez que la complexité (e ombre d additios) de cet algorithme est e Ω( ). O procède par récurrece. O veut motrer qu il existe ue costate c strictemet positive telle que T () c., pour des valeurs de supérieures à ue certaie bore 0 (à détermier). Supposos le résultat démotré jusqu au rag 1. Alors : T () = T ( 1) + T ( ) + 1 c. 1 + c + 1 c. + c. + 1 c. = c. Il ous reste juste à motrer que cette équatio est vraie «au départ». Nous e pouvos bie évidemmet pas partir des cas = 0 et = 1, puisque pour ces valeurs T () = 0. Nous partos doc des cas = et = 3 (la récurrece écessite deux valeurs de départ) : Cas = : Fiboacci() = Fiboacci(1) + Fiboacci(0), et T () = 1. Pour que la propriété désirée soit vraie, c doit doc vérifier : 1 c. = c c 1 Cas = 3 : Fiboacci(3) = Fiboacci() + Fiboacci(1), et T (3) =. Pour que la propriété désirée soit vraie, c doit doc vérifier : c. 3 = c c Doc si c = 1, pour, o a T () c et doc T () = Ω( ). 3. Écrire u algorithme récursif qui calcule, pour > 0, le couple (Fiboacci(), Fiboacci( 1)). Fib-Paire() si = 1 alors revoyer (1, 1) sio (x, y) = Fib-Paire( 1) revoyer (x + y, x) 4. Utilisez l algorithme précédet pour écrire u ouvel algorithme calculat Fiboacci(). 1
2 Fiboacci() si = 0 alors revoyer 1 sio (x, y) = Fib-Paire() revoyer x 5. Qu elle est la complexité (e ombre d additios) de cet algorithme? La complexité de l algorithme Fib-Paire, e ombre d additios, est doée par la récurrece T () = 1 + T ( 1). O a doc T () = 1 pour Fib-Paire, et par extesio pour la ouvelle versio de Fiboacci. Opératios esemblistes Das cette partie o cosidère des esembles représetés par des tableaux, certais esembles serot triés et d autres pas. Toutes les solutios proposées doivet être récursives. 1. Nous voulos u algorithme Apparteace(A, x) qui recherche si u élémet x appartiet à l esemble A. Si x appartiet effectivemet à A, l algorithme reverra Vrai, et Faux sio. Recherche(A, rag, x) si rag > logueur(a) alors revoyer Faux si A[rag] = x alors revoyer Vrai sio revoyer Recherche(A, rag + 1, x) L appel iitial de l algorithme est alors Recherche(A, 1, x). ii. Quelle est sa complexité e ombre de comparaisos? Das le pire cas, l élémet appartiet pas à l esemble et tout le tableau est parcouru. La complexité au pire est doc e Θ(), où est la logueur du tableau (et doc la taille de l esemble). Recherche(A, rag, x) si rag > logueur(a) ou A[rag] > x alors revoyer Faux sio si A[rag] = x alors revoyer Vrai sio revoyer Recherche(A, rag + 1, x) L appel iitial de l algorithme est alors Recherche(A, 1, x). ii. Quelle est sa complexité e ombre de comparaisos? Le pire cas est aussi e Θ() : il iterviet quad l élémet recherché appartiet pas à l esemble mais est plus grad que tous les élémets de l esemble. iii. Utilisez ue recherche dichotomique pour améliorer votre algorithme. Recherche(A, x, if, sup) milieu if +sup si A[milieu] = x alors revoyer Vrai sio si A[milieu] > x alors revoyer Recherche(A, x, if, milieu - 1) sio revoyer Recherche(A, x, milieu + 1, sup)
3 iv. Quelle est la complexité de votre ouvel algorithme? Posos = sup if +1 le ombre d élémets das la partie du tableau à étudier. Cosidéros la taille du tableau lors de l évetuel appel récursif. Nous avos deux cas à cosidérer : L appel effectué est : Recherche(A, x, if, milieu - 1). Le ombre d élémets cocerés sup if. est alors : milieu 1 if + 1 = = 1 L appel effectué est : Recherche(A, x, milieu + 1, sup). Le ombre d élémets cocerés est alors : sup (milieu + 1) + 1 = sup if = 1. O passe doc d u esemble de taille à u esemble de taille au plus. D où T () T ( ) (la foctio T () état croissate, o peut se permettre l approximatio). Par coséquet : T () log ()T ( ) et T () = O(log log ).. Nous voulos maiteat u algorithme Uio(A, B) qui ous revoie l uio des deux esembles qui lui sot passés e argumet. Uio(A, B, rag, C) si Recherche(A, B[rag]) = Faux C[logueur(C)] B[rag] Uio(A, B, rag + 1, C) L appel iitial est alors Uio(A, B, 1, C) où C est u tableau de taille logueur(a) + logueur(b), et dot les logueur(a) premières cases cotieet les élémets de A. La recopie de A das C est de coût logueur(a). L algorithme Uio est appelé logueur(b) fois, chacu de ces appels effectuat u appel à Recherche sur A, dot le coût au pire est e logueur(a). La complexité au pire de Uio est doc e Θ(logueur(A) logueur(b)) ou Θ(m), et m déotat la taille des deux tableaux. Ce pire cas apparaît quad les tableaux A et B sot disjoits. Uio(A, a, B, b, C) si a > logueur(a) et b > logueur(b) alors revoyer C si b > logueur(b) ou B[b] > A[a] Uio(A, a + 1, B, b, C) sio logueur(c) logueur(c) + 1 C[logueur(C)] B[b] si a logueur(a) et A[a] = B[b] alors Uio(A, a + 1, B, b + 1, C) sio Uio(A, a, B, b + 1, C) L appel iitial est Uio(A, 1, B, 1, C). La complexité de cet algorithme est au pire e Θ(logueur(A) + logueur(b)) ou Θ( + m) : 3. Nous voulos maiteat u algorithme Itersectio(A, B) qui ous revoie l itersectio des deux esembles qui lui sot passés e argumet. 3
4 Itersectio(A, B, rag, C) si Recherche(A, B[rag]) = Vrai C[logueur(C)] B[rag] Itersectio(A, B, rag + 1, C) L appel iitial est alors Itersectio(A, B, 1, C) où C est u ouveau tableau, de taille mi(logueur(a), logueur(b)), et e coteat iitialemet aucu élémet (logueur(c) = 0). L algorithme Itersectio est appelé logueur(b) fois, chacu de ces appels effectuat u appel à Recherche sur A, dot le coût au pire est e logueur(a). La complexité au pire de Itersectio est doc e Θ(logueur(A) logueur(b)) ou Θ(m), et m déotat la taille des deux tableaux. Ce pire cas apparaît quad les tableaux A et B sot disjoits. Itersectio(A, a, B, b, C) si a > logueur(a) ou b > logueur(b) alors revoyer C si A[a] = B[b] revoyer Itersectio(A, a + 1, B, b + 1, C) sio si B[b] > A[a] alors revoyer Itersectio(A, a + 1, B, b, C) sio revoyer Itersectio(A, a, B, b + 1, C) L appel iitial est Itersectio(A, 1, B, 1, C, 0). La complexité de cet algorithme est au pire e Θ(logueur(A) + logueur(b)) ou Θ( + m) : 4. Nous voulos maiteat u algorithme Différece(A, B) qui ous revoie la différece des deux esembles qui lui sot passés e argumet (La différece de A et de B, otée A \ B est l esemble des élémets de A apparteat pas à B). Différece(A, rag, B, C) si Recherche(B, A[rag]) = Faux C[logueur(C)] A[rag] Différece(A, rag + 1, B, C) L appel iitial est alors Différece(A, 1, B, C) où C est u tableau de taille logueur(a), e coteat iitialemet aucu élémet (logueur(c) = 0). L algorithme Différece est appelé logueur(a) fois, chacu de ces appels effectuat u appel à Recherche sur B, dot le coût au pire est e logueur(b). La complexité au pire de Différece est doc e Θ(logueur(A) logueur(b)) ou Θ(m), et m déotat la taille des deux tableaux. Ce pire cas apparaît quad les tableaux A et B sot disjoits. 4
5 Différece(A, a, B, b, C) si a > logueur(a) alors revoyer C si A[a] = B[b] alors revoyer Différece(A, a + 1, B, b + 1, C) sio si A[a] < B[b] revoyer Différece(A, a + 1, B, b, C) sio revoyer Différece(A, a, B, b + 1, C) L appel iitial est Différece(A, 1, B, 1, C, 0). La complexité de cet algorithme est au pire e Θ(logueur(A) + logueur(b)) ou Θ( + m) : 5
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =
[http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
Dénombrement. Chapitre 1. 1.1 Enoncés des exercices
Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
Séquence 5. La fonction logarithme népérien. Sommaire
Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
Solutions particulières d une équation différentielle...
Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod
Etude de la fonction ζ de Riemann
Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X
Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour
Suites et séries de fonctions
[http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe
Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
14 Chapitre 14. Théorème du point fixe
Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de
FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI
FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue
II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009
M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted
Convergences 2/2 - le théorème du point fixe - Page 1 sur 9
Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios
Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions
Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter
CHAPITRE 2 SÉRIES ENTIÈRES
CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.
Processus et martingales en temps continu
Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de
Les Nombres Parfaits.
Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
Chap. 5 : Les intérêts (Les calculs financiers)
Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie
Formation d un ester à partir d un acide et d un alcool
CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester
Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.
Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités
. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1
Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S
LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE
LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe
Séries réelles ou complexes
6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice
UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. [email protected] ) page 1
UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. [email protected] ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
55 - EXEMPLES D UTILISATION DU TABLEUR.
55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique
2 ième partie : MATHÉMATIQUES FINANCIÈRES
2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul
Probabilités et statistique pour le CAPES
Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes
Statistique descriptive bidimensionnelle
1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets
La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe
1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios
Introduction : Mesures et espaces de probabilités
Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,
Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :
Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +
Les algorithmes de tri
CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....
LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.
Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la
STATISTIQUE : TESTS D HYPOTHESES
STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie
UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4
UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»
Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES
DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces
Échantillonnage et estimation
Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos
3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.
3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction
A ew adaptive operator of fusio par Fraçois DELMOTTE LAMIH, Uiversité de Valeciees et du Haiaut-Cambrésis, Le Mot Houy, BP 3, 5933 Valeciees CEDEX 9 [email protected] résumé et mots clés
TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )
RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude
Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3
1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que
Terminale S. Terminale S 1 F. Laroche
Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM
Processus géométrique généralisé et applications en fiabilité
Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR
capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...
Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1
UNIVERSITÉ DE SFAX École Supérieure de Commerce
UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
Exercices de mathématiques
MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris
Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot
Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars
RECHERCHE DE CLIENTS simplifiée
RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées
Des résultats d irrationalité pour deux fonctions particulières
Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: [email protected] Received
Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014
Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE
Neolane Leads. Neolane v6.0
Neolae Leads Neolae v6.0 Ce documet, aisi que le logiciel qu'il décrit, est fouri das le cadre d'u accord de licece et e peut être utilisé ou copié que das les coditios prévues par cet accord. Cette publicatio
PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS
PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie
Coefficient de partage
Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos
Cours de Statistiques inférentielles
Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios
STATISTIQUE AVANCÉE : MÉTHODES
STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................
n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :...
Nom:... Préom :... Chaque répose peut valoir : c) 2 poits si le choix est totalemet exact + poit si le choix est partiellemet exact + 0 poit si le choix est erroé + -i poit si le choix est u coeses Ue
POLITIQUE ECONOMIQUE ET DEVELOPPEMENT
POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier
4 Approximation des fonctions
4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour
La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison
ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de
Options Services policiers à Moncton Rapport de discussion
Optios Services policiers à Mocto Rapport de discussio Le 22 ovembre 2010 Also available i Eglish TABLE DES MATIÈRES Chapitre 1.0 Sommaire 3 Chapitre 2.0 Problématique 4 Chapitre 3.0 Cotexte 5 Chapitre
Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?
Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres
TARIFS BANCAIRES. Opérations bancaires avec l étranger Extrait des conditions bancaires au 1 er juillet 2014. Opérations à destination de l étranger
Opératios bacaires avec l étrager Extrait des coditios bacaires au 1 er juillet Opératios à destiatio de l étrager Viremets émis vers l étrager : Frais d émissio de viremets e euros (3) vers l Espace écoomique
Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller
Les solutios mi-hypothécaires, mi-bacaires de Mauvie Guide du coseiller 1 2 Table des matières Itroductio... 5 La Baque Mauvie...5 Le compte Mauvie U...5 Le compte Sélect Baque Mauvie...5 1. Les solutios
Mécanismes de protection contre les vers
Mécaismes de protectio cotre les vers Itroductio Au cours de so évolutio, l Iteret a grademet progressé. Il est passé du réseau reliat quelques cetres de recherche aux États-Uis au réseau actuel reliat
PROMENADE ALÉATOIRE : Chaînes de Markov et martingales
PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées [email protected] Novembre 2013 2 Table des matières
Compte Sélect Banque Manuvie Guide du débutant
GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de
Sommaire Chapitre 1 - L interface de Windows 7 9
Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18
2. Commerce international et emploi informel en zone CEMAC
2. Commerce iteratioal et emploi iformel e zoe CEMAC Mathuri Tchakoute Njoda 1 et Alai Remy Zolo Eyea 2 Résumé Cet article eamie durat ue courte période la relatio etre le commerce iteratioal et l emploi
Notes de version. Neolane v6.1
Notes de versio Neolae v6.1 Ce documet, aisi que le logiciel qu'il décrit, est fouri das le cadre d'u accord de licece et e peut être utilisé ou copié que das les coditios prévues par cet accord. Cette
BARÈMES. i n d i c a t i f s. Œuvres préexistantes Œuvres de commande
BARÈMES i d i c a t i f s 2010 Œuvres préexistates Œuvres de commade droit d auteur pour les œuvres préexistates DROIT D AUTEUR POUR LES ŒUVRES PRÉEXISTANTES UNION DES PHOTOGRAPHES PROFESSIONNELS 2 121
Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015
Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir
Sips Dictionnaire des données
Sips Dictioaire des doées Versio 2.01 Octobre 2010 1/63 Sommaire 1. INTRODUCTION... 5 2. DESCRIPTION DES CHAMPS... 6 ACCOUNT_ID... 6 ACCOUNT_SERIAL... 6 ADVERT... 6 AMOUNT... 6 AUTHORISATION_ID... 6 AUTHORISED_AMOUNT...
Séries numériques. Chap. 02 : cours complet.
Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm
Chapitre 3 : Transistor bipolaire à jonction
Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats
Copyright 2001 2006 Hewlett-Packard Development Company, L.P.
Guide des logiciels Media Ceter Les garaties des produits et services HP sot exclusivemet présetées das les déclaratios expresses de garatie accompagat ces produits et services. Aucu élémet de ce documet
Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR
Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets
S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui.
S-PENSION Costituez-vous u capital retraite complémetaire pour demai tout e bééficiat d avatages fiscaux dès aujourd hui. Sommaire 1. Il est temps de predre l iitiative 4 2. Profitez dès aujourd hui des
Régulation analogique industrielle ESTF- G.Thermique
Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité
Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.
II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café
Manuel d initiation à l ordinateur HP Media Center
Mauel d iitiatio à l ordiateur HP Media Ceter Les garaties des produits et services HP sot exclusivemet présetées das les déclaratios expresses accompagat ces produits et services. Aucu élémet de ce documet
GUIDE METHODOLOGIQUE INDUSTRIES, OUVREZ VOS PORTES
GUIDE METHODOLOGIQUE INDUSTRIES, OUVREZ VOS PORTES SOMMAIRE Les visites d etreprises : pourquoi ouvrir ses portes?.... 8 1.1 Des motivatios variées pour les etreprises... 8 1.2 Les freis à l ouverture
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus
Principes et Méthodes Statistiques
Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............
Statistiques appliquées à la gestion Cours d analyse de donnés Master 1
Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques
MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB
MUTUELLE D&O MUTUELLE D&O Copilote de votre saté AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyace CRC CRIS CRPB-AFB DOMISSIMO-Assuraces DOMISSIMO-Services FONGECFA-Trasport IPRIAC MUTUELLE D&O OREPA-Prévoyace
II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1
II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d
Comment les Canadiens classent-ils leur système de soins de santé?
Novembre Les sois de saté au Caada, c est capital bulleti o 4 Commet les Caadies classet-ils leur système de sois de saté? Résultats du sodage iteratioal du Fods du Commowealth sur les politiques de saté
