Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :"

Transcription

1 Statstque 3 ème Maths Ma 00 A LAATAOUI I Itroducto : La statstque est ue scece ayat pour objet l étude des phéomèes socau surtout ceu doat leu à des varatos ou ceu e pouvat être suffsammet maîtrsés que lorsqu o les étude das des esembles ayat u ombre d élémets relatvemet élevé O dstgue deu braches : ** La statstque descrptve : a pour rôle de réur les observatos sur le phéomèe à étuder et les grouper das des tableau statstques ou les représeter sur des graphques ** La statstque ductve : a pour rôle de trater les formatos obteues e s appuyat sur des calculs de probablté, e doat à ces formatos ue sgfcato et e fasat des prévsos pour le futur II Vocabulare statstque : Eemple : Populato : C est l esemble étudé («populato» est employé, c das u ses très partculer, elle est pas écessaremet humae) les élémets de l esemble sot appelés : utés statstques ou dvdus Populato : u esemble de otes attrbuées à 5 élèves das ue classe A Tableau de doées : Echatllo : C est u sous esemble quelcoque de la populato S l échatllo est prélevé au hasard, c est u échatllo aléatore Caractère ( ou varable ) : C est l aspect de l uté statstque auquel o s téresse Il peut être qualtatf : couleur d ue voture, etc ou quattatf : l se tradut alors par u ombre Ic le caractère étudé est quattatf (valeur de la ote) O pourrat s téresser à la qualté : «être par» ; «être féreur à» Valeur statstque ou valeur du caractère : La valeur du caractère est sa mesure lorsqu o a chos ue uté O obtet des valeurs de la varable statstque Statstque 3 ème aée secodare 09 0 wwwespacemathscom

2 Varable dscrète ( ou dscotue ) : Elle e pred que des valeurs solées :,,, Ic varable dscrète qu pred treze valeurs = 3; = 4; = 6;; = Varable cotue : Elle peut predre mporte quelle valeur d u tervalle [a,b] Das ce cas, o peut partager cet tervalle e k tervalles (partto de [a,b] ) : a < a < a < < a < b k [ aa, [[ ; a, a[ ;[ ak, b[ Chaque tervalle [, [ a a + est appelé classe ; a et a + sot les frotères de la a + a classe, + est le cetre de la classe Effectf :L effectf de est le ombre d observatos assocées à la valeur de la varable statstque, ou l effectf de la classe [ ; [ a a + L effectf total : = = k k = Sére statstque : C est l esemble des couples ( ; ) ou ([ a; a+ [ ; ) O doe souvet cette sére sous la forme d u tableau statstque e pas le cofodre avec le tableau de doées (successo de résultats) Tableau statstque : Total 5 Statstque 3 ème aée secodare 09 0 wwwespacemathscom

3 III Paramètres de posto : Eemple (des otes attrbuées au 5 élèves) La domate ou mode : C est la valeur du caractère la plus fréquete Das ue La domate est ; elle est uque C est ue sére u modale répartto par classes, o parle de classe modale La moyee arthmétque: C est le Calcul de la moyee arthmétque : quotet de la somme des mesures par l effectf total = k k = = f Das ue répartto par classes, o pred pour le cetre de la classe Médae : C est la valeur Me du caractère La médae est telle que l effectf des dvdus dot la valeur du caractère est féreur à Me sot égal à l effectf des dvdus dot la valeur du caractère est supéreur à Me C est le réel où + est la parte etère de Premer quartle : c est la valeur Q du caractère telle que au mos 5 des valeurs lu sot féreures et au mos 75 des valeurs lu sot supéreures C est le réel etère de où 4 est la parte Trosème quartle : c est la valeur Q du 3 caractère telle que au mos 75 des valeurs lu sot féreures et au mos 5 des valeurs lu sot supéreures C est le réel 3 etère de où 3 4 est la parte Le premer quartle est Le trosème quartle est Remarque : O peut représeter ue sére par so dagramme e boîte qu fat terver ses valeurs etrêmes ( m et ma ), ses quartles Q et Q 3 et sa médae M e : 3 Statstque 3 ème aée secodare 09 0 wwwespacemathscom

4 IV Paramètres de dsperso : L étedue : Dfférece etre la plus grade et la plus pette des valeurs observées L écart moye : e = La varace : Formule de Koeg : v = p = = p = ( ) = v = L écart- type : σ = v C est ue mesure de dsperso qu o utlse pour mesurer la dsperso des valeurs d ue sére statstque autour de la moyee de cette sére U écart type mportat sgfe que les valeurs de la sére s éloget souvet et de faço mportate de la moyee L écart terquartle : c est la dfférece Q Q qu représete l étedue de la 3 dstrbuto sur la quelle se trouve cocetrée la moté des élémets dot les valeurs de X sot les mos dfféretes de la médae O eclut alors les 5 des valeurs les plus fables et les 5 des valeurs les plus élevées L étedue est V = σ = V Q Q = 3 4 Statstque 3 ème aée secodare 09 0 wwwespacemathscom

5 V Sére statstque à deu varables Itroducto Ue sére statstque à deu varables, X et Y, est le résultat de l observato des deu caractères X et Y pour chaque dvdu d ue populato Lorsque les caractères sot quattatfs dscrets, o peut assocer, à chaque dvdu,, y u couple de ombres réels oté ( ) Eemple : Le tableau suvat doe, e mllos de dars, le chffre d affares et la somme cosacrée au dépeses de publcté y pour cq etreprses : Etreprses A 30 3 B 55 4,5 C 60 7 E 0,5 F 50 4 y Défto y 7 Das u repère orthogoal du pla, le uage de pots assocés à la sére statstque à deu varables, X et Y, est l esemble des pots M de coordoées (, ) les dvdus de la populato Pot moye y représetatfs de tous -3 O ote X le caractère : «le chffre d affares -4 de chaque etreprse» et Y : «les dépeses de publcté» Calculer la moyee, la varace et l écart type de chaque caractère O rappelle que : = V( X) ( ) = = et σ ( X) = V( X) = ; V( X ) = ; σ ( X ) = y = ; VY ( ) = ; σ ( Y) = Défto Le pot G( y, ) est appelé pot moye du uage de pots assocé à la sére statstque à deu varables X et Y Eemple : Placer le pot moye G das le repère précédet 5 Statstque 3 ème aée secodare 09 0 wwwespacemathscom

6 3 Laso etre deu caractères Drote d ajustemet Lorsque le uage a tedace de s accumuler autour d ue drote, alors o cherche ue équato de la drote D qu approche le «meu possble» les pots du uage, c est ce qu o appelle u ajustemet léare O dvse le uage de pots e deu partes coteat à peu prés le même ombre de pots obteat as deu uages de pots O désge par G et G les pots moyes de ces deu uages passe par le pot G et déft u ajustemet affe du uage de pots représetat la sére statstque (X, Y) La drote ( GG ) Tracer das le repère précédet la drote ( GG ) Eercces p, 9 p 4 et 5 p 7 6 Statstque 3 ème aée secodare 09 0 wwwespacemathscom

Chapitre 1. Résumé d une distribution statistique

Chapitre 1. Résumé d une distribution statistique Chaptre. Résumé d ue dstrbuto statstque.. Cocepts de base de la statstque descrptve Populato = O appelle populato assocée à ue épreuve l esemble des résultats possbles d ue «épreuve». E statstques, le

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

Chapitre III : Les caractéristiques de dispersion

Chapitre III : Les caractéristiques de dispersion Chaptre III : Les caractérstques de dsperso Les caractérstques de tedace cetrale e sot pas toujours suffsates pour caractérser ue sére statstque, car séres peuvet avor Mo= Me = x alors qu elles sot dstrbuées

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b Correcto Exercces du MODULE : MExo4b Dstrbuto statstque à u caractère Exercce Mexo4 b Objectf : Cet exercce trate du calcul

Plus en détail

Saïd Chermak. Master 2012 MAGE. Statistique descriptive à une variable

Saïd Chermak. Master 2012 MAGE. Statistique descriptive à une variable Statstque descrptve à ue varable LES SAVOIRS La statstque est ue méthode scetfque qu recuelle, ordoe, aalyse et terprète des doées umérques. Pour ue melleure lsblté, ces doées sot représetées graphquemet.

Plus en détail

Séries chronologiques

Séries chronologiques Séres chroologques Rappel : Détermato de l équato d ue drote passat par pots. ( so équato peut se mettre sous la forme y ax + b ) ex : Détermato de l équato de la drote passat par les pots : A ( - ; -5

Plus en détail

PRINCIPES DES STATISTIQUES INFERENTIELLES

PRINCIPES DES STATISTIQUES INFERENTIELLES Chaptre 3 PRINCIPES DES STATISTIQUES INFERENTIELLES Bases de la statstque féretelle PLPSTA0 0 Chaptre 3 1. Problématque. Objectfs des statstques féretelles.1 Estmato poctuelle. Estmato par tervalles.3

Plus en détail

Eléments de statistique descriptive

Eléments de statistique descriptive G Elémets de statstque Elémets de statstque descrptve. Itroducto.. Défto Statstques, brache des mathématques qu a pour objet la collecte, le tratemet et l aalyse de doées umérques relatves à u esemble

Plus en détail

STATISTIQUES A UNE VARIABLE

STATISTIQUES A UNE VARIABLE Cours et exercces de mathématques ) Itroducto et vocabulare STATISTIQUES A UNE VARIABLE La statstque est la scece qu cosste à réur des doées chffrées, à les aalyser, à les commeter et à les crtquer Ue

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES Sesso févrer 009 BREVET DE TECHNICIEN SUPERIEUR «COMPTABILITE ET GESTION DES ORGANISATIONS» EPREUVE DE MATHEMATIQUES Durée : heures Coeffcet : Matérel et documets autorsés : L usage des strumets de calcul

Plus en détail

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez Corrgé de CCIP 2000 par Perre Veullez Das tout le problème, désge u eter aturel o ul. O cosdère ue ure U coteat boules umérotées de à. O tre ue boule au hasard das U. O ote k le uméro de cette boule. S

Plus en détail

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!!

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!! Cours : Statstques I. Itroducto Classe de ère S O a vu que our caractérser ue sére statstque, o utlse des : - aramètres de tedace cetrale : - la moyee ; - la médae. Ils ermettet d dquer la «osto» de la

Plus en détail

STATISTIQUE DESCRIPTIVE

STATISTIQUE DESCRIPTIVE Statstque descrtve ECS STATISTIQUE DESCRIPTIVE I Vocabulare de la statstque descrtve ) Poulato La statstque descrtve est ue scece qu recuelle et aalyse des formatos sur u esemble f, dot le cardal est souvet

Plus en détail

Résumé de statistique I

Résumé de statistique I Résumé de statstque I Etude de doées statstques : Ce qu ous téresse lorsqu o a des doées statstque ou ue dstrbuto de celles-c : Le cetre : o o Moyee : mesures o robustes Médae : mesures robustes La dsperso

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

NOTATIONS ET FORMULAIRE

NOTATIONS ET FORMULAIRE Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 1/5 PROTOCOLE SUR U ECHA TILLO NOTATIONS ET FORMULAIRE Esemble des sujets de l échatllo S { s 1 ; s ;.; s } (1) Varable

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18 1 U commerçat a relevé le motat des dépeses e euros de chaque clet au cours d ue semae. Motat des dépeses Clets [0 ; 50[ 72 x x - x ) - x )² -x ) ² [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200

Plus en détail

SOMMAIRE. Généralités :...2

SOMMAIRE. Généralités :...2 SOMMAIRE Gééraltés :... I. Déftos :... II. Apport de la statstque au écoomstes :... III. Les lmtes de la méthode statstque :... IV. Le vocabulare utlsé e statstque :...3 V. Quelques symboles mathématques

Plus en détail

COURS SUR LES MELANGES EN FILATURE DE COTON PARTIE 07. Section IV ELEMENTS DE STATISTIQUES APPLIQUES EN FILATURE

COURS SUR LES MELANGES EN FILATURE DE COTON PARTIE 07. Section IV ELEMENTS DE STATISTIQUES APPLIQUES EN FILATURE COURS SUR LES MELANGES EN FILATURE DE COTON PARTIE 07 Secto IV ELEMENTS DE STATISTIQUES APPLIQUES EN FILATURE 7.7. Elémets de statstques 7.7.. Caractérstques de posto. Moyee arthmétque La moyee est la

Plus en détail

1. Test d indépendance du KHI-2

1. Test d indépendance du KHI-2 1. Test d dépedace du HI- Ecrre ue focto qu réalse le test d dépedace du kh-. Etrée : x et y, deux vecteurs, de type factor Sorte : statstque de test, degrés de lberté, p-value Idcatos : Vous devez vérfer

Plus en détail

Statistique descriptive

Statistique descriptive SOMMAIRE Gééraltés :... I.Déftos :... II.Apport de la statstque aux écoomstes :... III. Les lmtes de la méthode statstque :... IV.Le vocabulare utlsé e statstque :...3 V.Quelque symboles mathématques utlsés

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

PRO 1 EXPRO010 EXPRO019

PRO 1 EXPRO010 EXPRO019 Exercces résolus de mathématques. PRO 1 EXPRO010 EXPRO019 http://www.matheux.be.tf Jacques ollot 1 avrl 03 www.matheux.be.tf - PRO 1-1 - EXPRO010W Ue ure cotet boules blaches ( 4) et 10 boules ores. O

Plus en détail

Module : STATISTIQUE (1 e année) Document de cours

Module : STATISTIQUE (1 e année) Document de cours ESCE-Lyo Méthodes Quattatves Module : STATISTIQUE ( e aée) par Robert Chapelo, chargé de cours et de TD Documet de cours Fare de la statstque, c'est : - collecter des doées, - trater ces doées pour e redre

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 page1/6 CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 Dosser "Défcece" 1) = 30 pour les groupes. Les classes sot d'ampltudes dfféretes doc...utlser la desté (rappel : desté = effectf/ampltude). Durée

Plus en détail

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance Parte I : Gesto de portefeulles actos Chaptre 3 Gesto de Portefeulle Moyee-arace Gesto de Portefeulle D. Msae edemet d ue acto Cette parte est cosacrée à u apport mportat de la théore facère modere qu

Plus en détail

Chapitre 3 Les indicateurs

Chapitre 3 Les indicateurs Chaptre 3 Les dcateurs O se place uqueet das le cas d ue varable quattatve. L objectf est de résuer l eseble des observatos par des dcateurs. Il est toujours suffsat de résuer ue sére par u seul dcateur.

Plus en détail

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

LOI NORMALE ET LOIS DERIVEES

LOI NORMALE ET LOIS DERIVEES Prcpes et Méthodes de la Bostatstque Chaptre 5 LOI NORMALE ET LOIS DERIVEES A-LA LOI NORMALE Présetato La dstrbuto ormale, dte ecore de Laplace-Gauss, est pour des rasos qu apparaîtrot plus lo, la plus

Plus en détail

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie Los de probabltés lées aux trages de boules das ue ure Approche sodage : échatlloage et estmato das ue populato fe Das le ouveau programme de secode, retrée 2009, sot scrtes les otos d'tervalle de fluctuato

Plus en détail

6- Tests statistiques - 1. Chapitre 6 : Tests d hypothèses

6- Tests statistiques - 1. Chapitre 6 : Tests d hypothèses 6- Tests statstques - Chaptre 6 : Tests d hypothèses 6. Costructo d u test et règle de décso... 6. ussace d u test...3 6.3 Quelques tests d hypothèses...4 6.3. Test sur la moyee d ue dstrbuto ormale de

Plus en détail

SESSION 2004 France Métropolitaine BAC PROFESSIONNEL : TCVA Conduite et gestion de l élevage canin et félin EPREUVE N 4 MATHEMATIQUES

SESSION 2004 France Métropolitaine BAC PROFESSIONNEL : TCVA Conduite et gestion de l élevage canin et félin EPREUVE N 4 MATHEMATIQUES SESSION 004 BAC PROFESSIONNEL : TCVA Codute et gesto de l élevage ca et fél EPREUVE N 4 MATHEMATIQUES (Coeffcet : - Durée : heures) Matérel autorsé : calculatrce Rappel : Au cours de l épreuve, la calculatrce

Plus en détail

Variables j.. p. Xij

Variables j.. p. Xij L alyse e Composates Prcpales (CP) O possède u tableau rectaulare de mesure dot les coloes sot des varables quattatves (mesuratos, taux, statos clmatques) et dot les les représetet des dvdus statstques

Plus en détail

1 ère partie : STATISTIQUE DESCRIPTIVE

1 ère partie : STATISTIQUE DESCRIPTIVE ère parte : STATISTIQUE DESCRIPTIVE CHAPITRE : COLLECTE DE L INFORMATION, TABLEAUX ET GRAPHIQUES. I. Défto et vocabulare Défto : la statstque est ue méthode scetfque qu cosste à réur des doées chffrées

Plus en détail

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins.

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins. Résumé statstque.6 Le coeffcet de corrélato Corrélato etre deux composats: pod/talle d'u dvdu. r = å å =1 x - xy - y å x - x y - y =1 =1 La valeur se stuera etre -1 corrélato égatve/versée et 1corrélato

Plus en détail

MATHEMATIQUES. Semestre 2. Statistiques à deux variables COURS. Cours en ligne : sur section DUT Maths S2.

MATHEMATIQUES. Semestre 2. Statistiques à deux variables COURS. Cours en ligne : sur  section DUT Maths S2. Départemet TECHNIQUES DE COMMERCIALISATION MATHEMATIQUES Semestre 2 Statstques à deux varables COURS Cours e lge : sur http://jff-dut-tc.weebly.com secto DUT Maths S2. IUT de Sat-Etee Départemet TC J.F.Ferrars

Plus en détail

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i )

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i ) Leço 08 : Statstques Termale E premer leu, l te faut relre les cours de premère sur les statstques à ue varable, l a tout u lagage à se remémorer : étude d u échatllo d ue populato, mode, moee et médae

Plus en détail

MODULE : STATISTIQUES ROYAUME DU MAROC OFPPT RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES SECTEUR : TERTIAIRE

MODULE : STATISTIQUES ROYAUME DU MAROC OFPPT RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES SECTEUR : TERTIAIRE OFPPT ROYAUME DU MAROC مكتب التكوين المهني وإنعاش الشغل Offce de la Formato Professoelle et de la Promoto du Traval DIRECTION RECHERCHE ET INGENIERIE DE FORMATION RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles L Meto Iformatque UE Probabltés Chaptre 3 : Varables aléatores réelles Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer, Serge Solovev Sot (, A, P) Ω et X : Ω R ue varable aléatore. I. Varable

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression L Meto Iformatque UE Probabltés Chaptre 4 : Smulato - Régresso Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer I- Smulato de varables aléatores. Itroducto Das certaes expéreces «réelles», où le

Plus en détail

MODULE : STATISTIQUES

MODULE : STATISTIQUES OFPPT ROYAUME DU MAROC مكتب التكوين المهني وإنعاش الشغل Offce de la Formato Professoelle et de la Promoto du Traval DIRECTION RECHERCHE ET INGENIERIE DE FORMATION RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

Analyse de régression

Analyse de régression Itroducto à la régresso Aalyse de régresso La régresso est utlsée pour estmer ue focto f( ) décrvat ue relato etre ue varable explquée cotue,, et ue ou pluseurs varables explcatves,. = f(,, 3,, )+ε Remarque

Plus en détail

FONCTIONS REELLES DEFINIES SUR Premières notions

FONCTIONS REELLES DEFINIES SUR Premières notions FONCTIONS REELLES DEFINIES SUR Premères otos A. Premères déftos Sot u eter aturel supéreur ou égal à ) Graphe d ue focto à varables Sot ue focto f défe sur D à valeurs das O appelle graphe de la focto

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

Statistiques. 2. Statistique descriptive monovariée Objectifs de la statistique descriptive monovariée La table de fréquences...

Statistiques. 2. Statistique descriptive monovariée Objectifs de la statistique descriptive monovariée La table de fréquences... Statstques Statstques. Statstque descrptve moovarée.... Objectfs de la statstque descrptve moovarée.... La table de fréqueces... 3.3 Les représetatos graphques... 5.3. Fréqueces... 5.3. Fréqueces cumulées...

Plus en détail

2. Statistique descriptive

2. Statistique descriptive - -. Statstque descrptve. Statstque descrptve «Ctoyes! Cessez de crore yeu fermés les statstces! Appreez à jauger» «Les corrélatos qu vous motret que plus l y a de médecs plus o meurt jeue!». Quelques

Plus en détail

Quelques éléments de statistiques

Quelques éléments de statistiques Quelques élémets de statstques Avat-propos Ces quelques élémets coceret essetellemet les statstques au programme das l esegemet secodare. Ils preet appu sur les documets utlsés par M. ARTIGUES, IA-IPR

Plus en détail

Nombres complexes Sessions antérieures

Nombres complexes Sessions antérieures ème aée Maths Nombres complexes Sessos atéreures Aée scolare 9 - A LAATAOUI Exercce N (SP) Das le pla complexe P rapporté à u repère orthoormé ( Ouv ; ; ) o cosdère les pots A et B d affxes respectves

Plus en détail

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2 - Varables aléatores et dstrbutos - Chaptre : Varables aléatores et dstrbutos. Varable aléatore.... Focto de répartto....3 Focto de masse et de desté....4 Dstrbuto cojote de varables aléatores...5.4. Dstrbuto

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble E des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

Fractions rationnelles

Fractions rationnelles Fractos ratoelles 1. Gééraltés 1.1. Rappels K R ou C U polyôme s écrt sous la forme : pour u ombre f de k et P(X) K [X] k k avec a k 0 sauf k 0 P( X ) a. X 1.. Défto d ue fracto ratoelle O appelle fracto

Plus en détail

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES " Hajeb Laayoun "

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES  Hajeb Laayoun Sére d'exercces *** 4 ème Maths Lycée Secodare Al ouaou LES N COMPLEXES " Hajeb Laayou " I / L esemble des ombres complexes : Défto : O appelle esemble des ombres complexes, et o ote C, l esemble des ombres

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

VI. Statistique descriptive.

VI. Statistique descriptive. VI. Statstque descrptve. 1. Avat - propos : le sge sommatore. Soet x 1, x,...x : réels x 1 + x +...+ x = x Remarquos : Proprétés. 1 x = x j j1 1. x = x + x 1 p 1. kx = k x 1 1 p1 3. ( x y ) = x + y 1 Exercces.

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale Mstère de l téreur, de l outre-mer ublcato : «le gude statstque de et des collectvtés terrtorales la fscalté drecte locale 2007» Aexe 2 Note méthodologque sur le calcul des évolutos de bases, taux et produts

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

Une nouvelle approche du sondage aléatoire simple

Une nouvelle approche du sondage aléatoire simple Résumé Ue ouvelle approche du sodage aléatore smple Mart Körg mkorg@waadoofr Ue approche bayésee du sodage aléatore smple offre des solutos smples, pratques et relatvemet facles à exploter umérquemet l

Plus en détail

PROBABILITES. A. Espaces probabilisables. 1) Définition d une tribu :

PROBABILITES. A. Espaces probabilisables. 1) Définition d une tribu : . Espaces probablsables Défto d ue trbu : PROBBILITES chaque expérece aléatore o assoce u esemble oté, appelé uvers, dot les élémets représetet les dfféretes ssues possbles de l expérece aléatore : est

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

RADIOPROTECTION CIRKUS. Sommaire

RADIOPROTECTION CIRKUS. Sommaire RADIOPROTECTION CIRKUS Documet techque Radoprotecto Crkus 89 D boulevard du Fer 74000 Aecy www.rpcrkus.org - cotact@rpcrkus.org Assocato lo 1901 créée le 9 mars 010 W91300355 - Eregstrée à la préfecture

Plus en détail

Méthodes stochastiques de calcul de stabilité des pentes

Méthodes stochastiques de calcul de stabilité des pentes Républque Algéree Démocratque et Populare Mstère de l Esegemet Supéreur et de la Recherche Scetfque UNIVERSITE MOULOUD MAMMERI - TIZI OUZOU - Faculté du Gée de la costructo Départemet de Gée Cvl MÉMOIRE

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

1 ère S Les variables aléatoires

1 ère S Les variables aléatoires ère S Les varables aléatores I Eemple troductf ) Epérece aléatore cosdérée O lace u dé cubque o truqué O ote le uméro de la face supéreure Pla du chaptre : I Eemple troductf II Défto Vocabulare Coséquece

Plus en détail

Introduction à la statistique descriptive

Introduction à la statistique descriptive Itroducto à la statstque descrptve Cours et eercces avec tableur Luce LEBOUCHER Mare-José VOISIN CÉPADUÈS-ÉDITIONS 111, rue Ncolas Vauquel 311 Toulouse Frace Tél. : 5 61 4 57 36 Fa : 5 61 41 79 89 www.cepadues.com

Plus en détail

Vecteurs de variables aléatoires réelles Généralisation des propriétés de l espérance de la variance Dans tout le cours n désigne un entier naturel 2

Vecteurs de variables aléatoires réelles Généralisation des propriétés de l espérance de la variance Dans tout le cours n désigne un entier naturel 2 Vecteurs de varables aléatores réelles Gééralsato des proprétés de l espérace de la varace Das tout le cours désge u eter aturel a) Lo d u vecteur aléatore à valeurs das ) Défto La lo d u -uplet ou d u

Plus en détail

= exportations du pays i en produit k

= exportations du pays i en produit k CHELE, Comptes harmosés sur les échages et l écoome modale LES INDICATEURS Les dcateurs reteus ot été choss e se fodat sur l'expérece acquse das les travaux du CEPII, et après avor cofroté les méthodes

Plus en détail

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation ère S Lmtes de foctos () Approche tutve ; tes des foctos de référece II. La focto carrée ) Tableau de varato Das ce chaptre, o lasse provsoremet de côté les dérvées. I. Itroducto ) Rappel Déà vu : oto

Plus en détail

Alain MORINEAU

Alain MORINEAU www.deeov.com Ala MORINEAU Cet artcle est ue reprse et u extrat de l artcle «Note sur la Caractérsato Statstque d'ue Classe et les Valeurs-tests», publé das la revue Bullet Techque du Cetre de Statstque

Plus en détail

Programmation linéaire en nombres entiers

Programmation linéaire en nombres entiers Programmato léare e ombres eters Itroducto Problème de programmato léare e ombres eters (P) M Suet à = = c a = b =,, m 0, eter =,, Eemple M z = Suet à, + 0 5 0 0, eter F(P) = domae réalsable de P Itroducto

Plus en détail

Chapitre 9. Analyse de variance. Sommaire. 1. Introduction Conditions d application Modèle de l analyse de variance.

Chapitre 9. Analyse de variance. Sommaire. 1. Introduction Conditions d application Modèle de l analyse de variance. Mathématques : Outls our la Bologe Deug SV UCBL D Mouchroud (0/03/003 Chatre 9 Aalse de varace Sommare Itroducto Codtos d alcato Structure des doées 3 Codtos d alcato 4 Idéedace 4 Normalté 4 3 Homoscédastcté

Plus en détail

5. Variables aléatoires simultanées

5. Variables aléatoires simultanées 5. Varables aléatores smultaées 5.1 Coule de varables aléatores Défto 1 Pour tout dce das 1, sot X ue varable aléatore. O dt que X X 1 X est ue varable aléatore de dmeso. Nous ous téresseros rcalemet aux

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats.

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats. rbre de déombremet et arbre de probablté Pla du documet. O présete tout d'abord la règle du produt pour les arbres de déombremet avec, e cas partculer, le cardal d'u produt cartése d'esembles fs.. O présete

Plus en détail

Chapitre I : Introduction à la résistance des matériaux & Rappel de statique. (August Wöhler)

Chapitre I : Introduction à la résistance des matériaux & Rappel de statique. (August Wöhler) Chaptre I : Itroducto à la résstace des matéraux & appel de statque (August Wöhler) Premer cours de ésstace des atéraux a été doé par August Wöhler à l'uversté de Göttge (Allemage) e 842. aculty of echacal

Plus en détail

Chapitre I : Series statistiques à une variable.

Chapitre I : Series statistiques à une variable. Dael Abécasss. Aée uverstare 200/20 Prépa- L. Cours de bo-statstques. Chaptre I : Seres statstques à ue varable. I.. Objectfs. Pour défr le sujet que ous allos trater, je me permets de me référer au mathématce

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

Ch.6ÊPROBABILITÉS _ partie 1

Ch.6ÊPROBABILITÉS _ partie 1 LFA / remère S COURS Gesto de doées Mme MAINGUY I Raels / Lo de robablté Ch6ÊPROBABILITÉS _ arte ere S défto O aelle exérece aléatore toute exérece ayat luseurs ssues (ou évetualtés) ossbles et dot o e

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

Statistique à 2 variables

Statistique à 2 variables Statstque à varables. Exemples Nous sommes souvet cofrotés à des doées etre lesquelles ous essayos d'établr des les telles que : La talle et le pods d'u groupe d'dvdus. le budget vacaces et les reveus

Plus en détail

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n 1 Notes de cours de l'isima, premère aée http://wwwsmafr/ leborge Méthode des modres carrés : melleure approxmato léare Glles Leborge 31 ma 2005 Table des matères 1 Rappel de dérvato 1 2 Cas 1-D 2 21 Les

Plus en détail

Je choisis donc de situer ce dossier en Terminale ES, anciens et nouveaux programmes.

Je choisis donc de situer ce dossier en Terminale ES, anciens et nouveaux programmes. Dossier 9 : Exemples de traitemet d ue série statistique à deux variables umériques. Etude du uage de poits associé : poit moye, corrélatio liéaire, ajustemet affie, droite de régressio. Rédigé par Cécile

Plus en détail