Troisième semaine de travail : Transformée de Fourier - Convolution

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Troisième semaine de travail : Transformée de Fourier - Convolution"

Transcription

1 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie. Exercice En uilisan les propriéés de dérivaion de la TF, déerminer la TF de la foncion : ( x 2 si x < f (x) 0 ailleurs Endéduirelavaleurdel inégrale: µ u cos u sin u cos ux du 0 u 3 Exercice 2. Eude la cellule C Fig. Schéma d une cellule C. On considère le sysème consiué d un généraeur basse fréquence fournissan une ension d enrée x(), d une résisance e d un condensaeur de capacié C. Le signal de sorie que l on éudie es la ension v() aux bornes du condensaeur. On rappelle que la charge q() du condensaeur vau Cv() e que l inensié dans le circui es donné par i() dq(). D aure d par, les ensions vérifien l égalié : x() v()+i() - Donner l équaion différenielle vérifiée par v(). 2- En supposan que x() es el que e C x() es inégrable sur ],], exprimerv(). 3- En posan h() C U() C e où U() I [0,+ [ (), exprimerv() comme un produi de convoluion enre h e x.

2 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier 2 Correcion de l exercice f es inégrable (foncion bornée a suppor compac), nous pouvons donc calculer sa TF : bf () TF x 2 I [,] (x) () Par linéarié de la TF, nous pouvons écrire : bf () TF I [,] (x) () TF x 2 I [,] (x) () () D après les ables de ransformées de Fourier, nous savons que : TF I [,] (x) π emarque Il es aisé de rerouver cee valeur par un calcul direc. La ransformée de Fourier de la foncion pore (I [,] (x)) esdéfinie par : TF I [,] (x) () I [,] (x) e 2iπx dx + 2iπ e 2iπx dx e 2iπx + En uilisan les formules lian TF e dérivaion : x k f(x) F e 2iπ e 2iπ 2iπ ( 2iπ) k d ³ bf(λ) dλ k π nous déduisons (en prenan k 2) la ransformée de Fourier du deuxième erme de () : Soi : TF x 2 I [,] (x) 4π 2 ³ \ I[,] (x) 00 () bf () π + 4π 2 µ Nous devons calculer la dérivée seconde de la ransformée de Fourier de la foncion pore. Commençons par calculer la dérivée première, soi : ³ µ 0 0 I[,] \ (2π cos 2π) π π (x) () π 2 2 2π cos 2π cos 2π 2 π 2 π 2 π 00

3 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier 3 Dérivons cee dernière expression pour obenir la dérivée seconde, soi : µ 00 µ 0 cos 2π 2 π 2 2π cos 2π 2 2π2 2 cos 2π 2π 2 π 2 4 cos 2π cos 2π sin 2π 4π π 3 Finalemen le calcul de la dérivée seconde donne : µ 00 cos 2π 4π 4 +2 π 2 π 3 LaransforméedeFourierpour 6 0a donc pour expression : µ cos 2π bf () 4π 4 2 Examinonslecasoù 0: Finalemen, nous avons + π 4π 2 π π cos 2π + π 2 2 2π 2 3 bf (0) x x3 3 f (x) dx x 2 dx cos 2π π 2 2 ( bf () cos 2π π 2 2 bf (0) π x 2 I [,] (x) dx + 2π 3 3 π 3 (2) emarque 2 On pourrai plus classiquemen uiliser la formule de définiion de la TF bf () + x 2 e 2iπx dx C es un bon exercice echnique que d effecuer ce calcul pour rerouver le résula précéden. En ermededifficulés, les méhodes se valen, la calcul de la dérivée seconde précédene n éan pas spécialemen commode! La foncion rouvé précédemmen f b cos 2π () + es une foncion inégrable. En π 2 2 2π 3 3 effe, il ne peu pas y avoir de problème en 0 car on sai que la ransformée de Fourier d une

4 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier 4 foncion inégrable es coninue (Paragraphe 3.2 Prop. 3). On es donc sûr - e ceci sans calculs -que µ cos 2π lim π 2 2 2π (A ire d exercice, on peu vérifier ce résula : pour celà uiliser les équivalens des sinus e cosinus au voisinage de 0). Comme f L () e f b L (), nous pouvons écrire (formule d inversion de la TF cf. Paragraphe 3.5 Theo. 7 i)) : f (x) bf () e +2iπx d pour presque ou x de De plus comme la foncion f es coninue, l égalié précédene es vraie pour ou x réel (Paragraphe 3.5 Theo. 7 ii)) emplaçons f b dans la relaion précédene par l expression (2) : µ cos 2π f (x) e 2iπx d x. (3) π 2 2 2π 3 3 Soi le changemen de variable : u 2π d du,(3)devien: 2π f (x) 2 u cos u sin u e iux du (4) π u 3 Prenons la parie réelle de (4), nous obenons : f (x) 2 u cos u sin u cos ux du π u 3 La foncion inégrée es paire, donc : soi : + f (x) 4 π 0 0 u cos u sin u u 3 u cos u sin u u 3 cos ux du cos ux du π 4 f (x)

5 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier 5 Correcion de l exercice 2 - Nous parons de la relaion lian les ensions : x() v()+i() (5) e nous remplaçons i par son expression en foncion de v. Pour cela, nous nous inéressons au condensaeur. Le couran es lié à la dérivée de la charge qui es exprimée linéairemen en foncion de la ension, soi : i () dq () dcv () C dv d d d () L équaion (5) devien donc : x () v ()+C dv d () Soi : dv d ()+ C v () x () (6) C 2- ésolvons cee équaion différenielle. La méhode consise, d abord, à chercher la soluion de l équaion homogène (c es-à-dire sans second membre), soi : La soluion es de la forme : dv d ()+ v () 0 (7) C v () Ae C Pour obenir l ensemble des soluions de l équaion (7), nous considérons ensuie que la consane A dépend de la variable (cee méhode s appelle variaion de la consane ). Prenons donc : e injecons cee expression dans (6) : A 0 () e C A () C e v () A () e C C + A () e C C C x () A 0 () e C C x () A 0 () C e C x () Nous pouvons à présen calculer la valeur de A en inégran le erme de droie, nous avons donc : A () C e u C x (u) du + B Nous savons par hypohèses que e C x() es inégrable sur ],], donc l inégrale précédene exise. Nous devons déerminer la valeur de B. Considérons<0 x 0e v 0car le

6 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier 6 sysème es causal. Donc : A () B e v () A () e C obenons : soi : B 0 A () v () e C Be C C e u C x (u) du C e u C x (u) du 0. Finalemen nous 3-Ilespossibledefairepasserl exponeniellesur sous le signe inégrale puisqu elle ne dépend pasdelavariabled inégraion(u). Soi : v () Effecuons le changemen de variable : C e C e u C e u C x (u) du C x (u) du y u dy du Les bornes d inégraions deviennen : quand u vau, y vau 0 e quand u end vers, y end vers +. L expression de v devien donc : v 0 + C e + 0 C e C e y y y C x ( y) dy C x ( y) dy C U (y) x ( y) dy Nous reconnaissons l expression du produi de convoluion enre la foncion x (l exciaion du sysème) e h (la réponse impulsionnelle du sysème) Donc : h() C e v h x C U() Nous développons mainenan une deuxième méhode qui illusre bien l inérê d uiliser conjoinemen la Transformée de Fourier e le Produi de Convoluion. La lecure de cee méhode es hauemen conseillée. evenons à l équaion différenielle que doi vérifier la ension e prenons la TF de chacun des ermes. On fai ici un calcul puremen formel, au moins dans un premier emps! On suppose que les "bonnes propriéés" son vérifiées permean d uiliser les différenes formules e ransformaions. L idée es d avoir grâce à ce calcul, la forme de la soluion, quie à revenir ensuie

7 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier 7 en arrière, pour vérifier que la foncion obenue es bien soluion e/ou possède les "bonnes propriéés". En uilisan la formule de TF de la dérivée : TF v (k) (λ) (2iπλ) k TF (v)(λ) nous obenons : 2iπλV (λ)+ C V (λ) C X (λ) où V, resp. X, représene la ransformée de Fourier de v, resp. x. µ V (λ) 2iπλ + C C X (λ) V (λ)(+2iπcλ) X (λ) V (λ) +2iπCλ X (λ) En regardan dans la able des ransformées de Fourier, nous consaons que la foncion +2iπCλ es la ransformée de Fourier de e C U (). V (λ) s écri donc comme le produi de deux ransformées de Fourier : µ V (λ) TF C e C U () TF (x ()) TF (h ()) TF (x ()) Commelesdeuxfoncionsdelavariable appariennen à L, nous pouvons appliquer la relaion lian TF e Convoluion : V TF (h x) Prenons la ransformée de Fourier inverse, nous obenons : v () (h x)() p.p..x Nous rerouvons bien la forme de la soluion. En l absence de la première méhose, on vérifierai mainenan que cee foncion v () (h x)() es dérivable pour ou e qu elle vérifie l équaion différenielle pour ou dans ce qui améliore le presque parou précéden!

8 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier 8 Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercice Type 2 avec noes e soluions. Exercice On pose f(λ) e x2 cos(λx) dx ) Monrer que f es dérivable sur e soluion d une équaion différenielle. 2) En déduire f(λ) e monrer que ceci perme de calculer la ransformée de Fourier de g(x) e x2. Exercice 2. Soi la foncion définie sur par : Calculer f f f (x) 2π e x2 2

9 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier 9 Exercice : Indicaions e soluions - On applique le héorème de dérivaion d une inégrale dépendan d un paramère e on obien f 0 (λ) xe x2 sin(λx) dx λ. On uilise l inégraion par paries ( u sin(λx) du λ cos(λx) dx dv xe x2 dx v 2 e x2 e : sin(λx) 2 e x2 0 quand x ± 2 e x2 Finalemen f(λ) es soluion de l équaion différenielle f 0 (λ) 2 λf(λ) 2) Cee équaion différenielle a pour soluion générale : f(λ) Ce λ2 4. La consane s obien pour λ 0avec C dx π donc f(λ) πe λ2 e x2 4 λ. On par de g(x) e x2 e on calcule sa TF bg(λ) e x2 e 2iπλx dx On idenifie pourobenir: bg(λ) e x2 cos(2πλx) dx f(2πλ) πe π2 λ 2. Exercice 2 : Indicaions e soluions Nousavonsdeuxmanièresdifférenes pour calculer ce produi de convoluion : le calcul direc ou le calcul par TF. Calcul direc f L (), donc la foncion f f apparien aussi à L (). On applique la définiion du produi de convoluion : f f (x) f (x u) f (u) du 2π On pourra uiliser le changemen de variable : x + u d du 2

10 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier 0 Deplus,noussavonsque e 2 d π,nousobenons: Calcul par TF Comme f L (),nous avons : f f (x) 2 x 2 π e 4 [f f f. b f b ³ bf 2 (8) En uilisan les ables de TF, nous obenons : [f f () e 4π2 2 Par ransformée de Fourier inverse, nous rouvons finalemen le produi de convoluion : f f (x) 2 x 2 π e 4

11 Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier Exercice Type 3 devoir. Exercice.. Déerminer la ransformée de Fourier de f(x) e ax U(x) où U(x) I [0, [ (x) e a>0 es un paramère fixé. 2. En uilisan les propriéés de dérivaion de la TF, en déduire que la TF de la foncion g (x) x n e ax U(x) avec n N s écri bg () µ n ³ bf (n ) () 2iπ ³ où bf (n ) () désigne la dérivée d ordre n de f. b 3. Calculer cee dérivée d ordre n de b f e en déduire la ransformée de Fourier de x n e ax (n )! U(x) Exercice 2. On cherche les foncions à valeurs réelles, paires, coninues sur e inégrables sur vérifian f (x)cos(2πx) dx I [,] ()( ). Monrer que ceci revien à chercher f vérifian bf () I [,] ()( ) 2. En déduire que f (x) sin2 πx pour ou x dans π 2 x 2 3. En déduire rès simplemen la valeur de l inégrale cos 2πx x + 2 dx π On rapelle que sin 2 a cos 2a 2

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Analyse de Fourier. Eric Aristidi

Analyse de Fourier. Eric Aristidi Analyse de Fourier Eric Arisidi Version rès préliminaire, 5 décembre 3 Table des maières Signau disconinus Disribuion de Dirac. La foncion de Heaviside H()........................................ La foncion

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

PHYSIQUE. Partie préliminaire

PHYSIQUE. Partie préliminaire PHYSIQUE Les différenes paries de ce problème son dans une large mesure indépendanes Seules les argumenaions précises e concises seron prises en compe en réponse aux quesions qualiaives Parie préliminaire

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé y -4 Devoir n TAITMNT D SIGNAL Parie I OMPOTMNT DYNAMIQ D N LAM D QATZ On considère une lame de quarz, cylindrique, de secion S consane, d axe Ox (de veceur uniaire r u X ), don les deux faces e en

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Potentiels ponctuels en dimension 1

Potentiels ponctuels en dimension 1 0 mon exe Poenies poncues en dimension 1 Séminaire du Maser 2 Recherche de Mahémaiques Universié de Rennes 1 mon exe Suje proposé par Dimiri Yafaev Lauren Paer janvier 2009 Cadre physique du probème On

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max G. Pinson - Physique Appliquée Signaux périodiques A3-P / A3 - Mesurage des signaux périodiques ère parie : caracérisiques générales d'un signal périodique () 3 + 4 sin 5 max pp DC (ms) min () Signal arian

Plus en détail

2 ème Partie Cinématique: Déplacement, vitesse, accélération

2 ème Partie Cinématique: Déplacement, vitesse, accélération ème Parie Cinémaique: Déplacemen, viesse, accéléraion Inroducion Noes de cours de Licence de A. Colin de Verdière Un obje es en mouvemen si sa posiion mesurée par rappor à un aure obje change. Si cee posiion

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

~ = Les redresseurs se divisent en deux grands groupes : On classe les divers redresseurs en trois catégories : Les redresseurs semicommandés

~ = Les redresseurs se divisent en deux grands groupes : On classe les divers redresseurs en trois catégories : Les redresseurs semicommandés Le redressemen c'es la ransformaion de l'énergie élecrique alernaive du réseau en énergie coninue. Symbole : ~ = Les redresseurs se divisen en deux grands groupes : les redresseurs demi onde, à une alernance

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Solutions auto-semblables pour des modèles avec conductivité thermique

Solutions auto-semblables pour des modèles avec conductivité thermique Soluions auo-semblables pour des modèles avec conducivié hermique Séphane DELLACHERIE e Olivier LAFITTE CRM-327 5 décembre 25 Cenre de Recherches Mahémaiques, Universié de Monréal, Case posale 628, Succursale

Plus en détail

PTSI PT AUTOMATIQUE. Constituants des systèmes

PTSI PT AUTOMATIQUE. Constituants des systèmes PTSI PT AUTOMATIQUE des sysèmes Table des maières 1 LA CHAINE FONCTIONNELLE 1 1.1 STRUCTURE FONCTIONNELLE... 1 1.2 CHAINE D ENERGIE... 1 1.3 CHAINE D INFORMATION... 2 2 LES ACTIONNEURS 3 2.1 LES VERINS

Plus en détail

LES CAPTEURS. Perturbations. Acquérir et coder une information. Capteur

LES CAPTEURS. Perturbations. Acquérir et coder une information. Capteur CPGE / Sciences Indusrielles pour l Ingénieur CI9 Capeurs LES CAPTEURS Le domaine indusriel a besoin de conrôler de rès nombreux paramères physiques (longueur, force, poids, pression, déplacemen, posiion,

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

( ) et est alors représenté par le graphe ci-

( ) et est alors représenté par le graphe ci- LE SIGNAL SINUSOIDAL : PRODUCTION ET OBSERVATION Le bu de ce premier TP es d une par la prise en main du maériel nécessaire pour l observaion des ondes lors de la prochaine séance (uilisaion de l oscilloscope),

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

RELATIONS FONCTIONNELLES. I Généralités

RELATIONS FONCTIONNELLES. I Généralités Universié d'angers : LSEN relaions foncionnelles p. Parie A : Proporionnalié RELATIONS FONCTIONNELLES I Généraliés / Définiion : Soien deux suies de nombres réels : (x ;x ;x ;x 4 ) e (y ;y ;y ;y 4 ). Ces

Plus en détail

1 Cours Sciences Physiques MP. Analyse de Fourier

1 Cours Sciences Physiques MP. Analyse de Fourier Cours Sciences Physiques MP Analyse de Fourier En 86, le physicien e mahémaicien français Joseph Fourier (768-83) éudiai les ransfers hermiques. En pariculier, il chauffai un endroi de la périphérie d

Plus en détail

UNITÉ 1: LA CINÉMATIQUE

UNITÉ 1: LA CINÉMATIQUE UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

Considérons un dipôle AB d un circuit parcouru par un courant d intensité I :

Considérons un dipôle AB d un circuit parcouru par un courant d intensité I : Filière SM Module Physique lémen : lecricié Cours Prof..Tadili 2 ème Parie Chapire 2 ude des dipôles nergie élecrique e puissance. appel Considérons un dipôle d un circui parcouru par un couran d inensié

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

MESURE DE VISCOSITÉ. v(z) V = 0. Figure 1.

MESURE DE VISCOSITÉ. v(z) V = 0. Figure 1. MESURE DE VISCOSITÉ I - QUELQUES ÉLÉMENTS DE RHÉOLOGIE La mesure de la viscosié d'un fluide fai parie de la rhéologie, qui es la science des écoulemens de la maière. Dans la suie, on noera : -la viscosié

Plus en détail

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance ème édiion du congrès inernaional pluridisciplinaire Du au 20 mars 2009 Modélisaion e quanificaion de sysèmes vieillissans pour l opimisaion de la mainenance LAIR William,2, MERCIER Sophie, ROUSSIGNOL

Plus en détail

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou ELECRICIE Analyse des signaux e des circuis élecriques Michel Piou Chapire 9 Valeur moyenne des signaux périodiques. Ediion //24 able des maières POURQUOI E COMMEN?... 2 INERE DE LA NOION DE VALEUR MOYENNE....2

Plus en détail

Mesures de risque dynamiques, pricing d options vanilles et EDSR quadratiques.

Mesures de risque dynamiques, pricing d options vanilles et EDSR quadratiques. Mesures de risque dynamiques, pricing d opions vanilles e EDSR quadraiques. Cyrille Guillaumie 1 Thibau Masrolia 2 Rappor echnique rendu en juin 213 1. European Securiies and Markes Auhoriy, cyrille.guillaumie@esma.europa.eu

Plus en détail

4. Principe de la modélisation des séries temporelles

4. Principe de la modélisation des séries temporelles 4. Principe de la modélisaion des séries emporelles Nous raierons ici, à ire d exemple, la modélisaion des liens enre la polluion amosphérique e les indicaeurs de sané. Mais les méhodes indiquées, comme

Plus en détail

Le modèle de Black Scholes

Le modèle de Black Scholes Le modèle de Black Scholes Philippe Briand, Mars 3 1. Présenaion du modèle Les mahémaiciens on depuis longemps essayé de résoudre les quesions soulevées par le monde de la finance. Une des caracérisiques

Plus en détail

GENERATEURS DE HAUTE TENSION

GENERATEURS DE HAUTE TENSION ours de A. Tilmaine HAPITRE VII GENERATEURS DE HAUTE TENSION Les généraeurs de haue ension son uilisés dans : a) les laboraoires de recherche scienifique ; b) les laboraoires d essai, pour eser les équipemens

Plus en détail

Les Univers Virtuels de la Finance

Les Univers Virtuels de la Finance Les Univers Viruels de la Finance Viruel Worlds of Finance ierre Devolder 1 Résumé. La mesure neure au risque es devenue une noion cenrale en finance moderne: elle s obien par changemen de mesure de probabilié

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL Bac blanc du vendredi 17 mars 006 - Lycée Élie Caran - La Tour du Pin Physique - Chimie Série S DURÉE DE L ÉPREUVE : h0 COEFFICIENT : 8 pour les spécialiés physique e chimie - 6 pour

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Production d un son par les instruments de musique

Production d un son par les instruments de musique Producion d un son par les insrumens de musique ACTIVITÉ 1 : Recherche documenaire : Les foncions d un insrumen de musique Objecif : découvrir commen les insrumens de musique acousique peuven remplir leurs

Plus en détail

Sur la résolution numérique de problèmes de contrôle optimal à solution bang-bang via les méthodes homotopiques. Joseph Gergaud

Sur la résolution numérique de problèmes de contrôle optimal à solution bang-bang via les méthodes homotopiques. Joseph Gergaud Sur la résoluion numérique de problèmes de conrôle opimal à soluion bang-bang via les méhodes homoopiques Joseph Gergaud Universié de Toulouse INP-ENSEEIHT-IRIT (UMR CNRS 555) Mémoire d Habiliaion à Diriger

Plus en détail

Relais de mesure et de contrôle industriels Zelio Control 3

Relais de mesure et de contrôle industriels Zelio Control 3 Présenaion elais de mesure e de conrôle indusriels Zelio Conrol elais de conrôle de réseaux riphasés M T 0 M T Foncionnaliés Ces appareils son desinés à la surveillance des réseaux riphasés e à la proecion

Plus en détail

AMPLIFICATEUR LINEAIRE INTEGRE (A.L.I) Montages Fondamentaux à base d A.L.I

AMPLIFICATEUR LINEAIRE INTEGRE (A.L.I) Montages Fondamentaux à base d A.L.I Chapire C1 Leçon C1 AMPLIFICATEU LINEAIE INTEGE (A.L.I) Monages Fondamenaux à base d A.L.I I. Uilisaion d un A.L.I en régime non linéaire : 1) Acivié praique : a) A l aide d une maquee fournie ou à parir

Plus en détail

LES CAPTEURS. Energie. Acquérir et coder une information. Capteur

LES CAPTEURS. Energie. Acquérir et coder une information. Capteur CPG / ciences Indusrielles pour l Ingénieur C83 Les capeurs L CAPTUR Le domaine indusriel a besoin de conrôler de rès nombreux paramères physiques (longueur, force, poids, pression, déplacemen, posiion,

Plus en détail

5.1 La conception d'animation

5.1 La conception d'animation ANIMATIONS Flash CS6 5.1 La concepion d'animaion A- Le concep d'animaion dans Flash Flash perme de créer des animaions. Lorsque vous animez un obje, vous gérez deux espaces : l'espaceemps dans le panneau

Plus en détail

MATRICES EXERCICES CORRIGES Exercice n 1.

MATRICES EXERCICES CORRIGES Exercice n 1. MATRICES EXERCICES CORRIGES Exercice n. 6 8 4 On considère l mrice A = 0 7 3. 7 0, 8 ) Donner le form de A ) Donner l vleur de chcun des élémens 4, 3, 33 3 3) Ecrire l mrice rnsposée A de A donner son

Plus en détail

Cahier technique n 202

Cahier technique n 202 Collecion Technique... Cahier echnique n 22 Les singulariés de l harmonique 3 J. Schonek Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés à l inenion des ingénieurs e echniciens

Plus en détail

Capteurs CCD (Charge Coupled Device)

Capteurs CCD (Charge Coupled Device) Capeurs CCD (Charge Coupled Device) 1 NOTION SUR LES CONDUCTEURS, SEMI-CONDUCTEURS ET ONDES LUMINEUSES... 2 1.1 STRUCTURE DE LA MATIERE... 2 1.2 LES ISOLANTS... 2 1.3 LES CONDUCTEURS... 2 1.4 LES SEMI-CONDUCTEURS...

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT.

ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT. Objecifs CINÉMATIQUE DES FLUIDES ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT Coprendre les différences enre l approche lagrangienne e l approche eulérienne Saoir eprier une accéléraion lagrangienne en

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures SESSION PSIP3 EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE Durée : 4 heures NB : Le candida aachera la plus grande imporance à la claré, à la précision e à la concision de la rédacion Si un candida es amené

Plus en détail

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance UNIVERSITE DE PARIS-DAUPHINE Février 2004 MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Inernaionale, Monnaie, Finance Noes de Cours Auorisées, seules les

Plus en détail

Retour aux bases de la photographie Partie 1 L' EXPOSITION

Retour aux bases de la photographie Partie 1 L' EXPOSITION Parie 1 - Secion 1.5 Reour aux bases de la phoographie Parie 1 L' EXPOSITIO Secion 1.5 Synhèse Exposiion Indices de Luminaion IL (EV) 1 Synhèse des valeurs Rappel des échelles normalisées des différens

Plus en détail

Principes et caractéristiques des principaux moteurs électriques

Principes et caractéristiques des principaux moteurs électriques Principes e caracérisiques des principaux moeurs élecriques Crières de choix d un moeur Le moeur es généralemen choisi en foncion de l uilisaion mécanique e de l alimenaion élecrique don on dispose. Cahier

Plus en détail

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB) Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un

Plus en détail

budgétaire et extérieure

budgétaire et extérieure Insiu pour le Développemen des Capaciés / AFRITAC de l Oues / COFEB Cours régional sur la Gesion macroéconomique e les quesions de dee Dakar, Sénégal du 4 au 5 novembre 203 Séance S-4 : Souenabilié budgéaire

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2003-2004 Devoir n 5 CONVERSION DE PUISSANCE Parie I EUDE D UN CAPEUR DE POSIION ANGULAIRE A / ÉUDE D'UN CIRCUI MAGNÉIQUE Considérons le disposiif schémaisé sur la figure, composé de deux bobines

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

Dipôles en régime transitoire

Dipôles en régime transitoire our au mnu! Dipôls n régim ransioir 1 laions couran nsion S il xis un rlaion linéair nr la nsion u() l couran i() dans un dipôl, cluici s «linéair». applons ls rlaions nr u() i() pour ls dipôls passifs

Plus en détail

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE INTRODUCTION L'oscilloscope es le plus polyvalen des appareils de mesures élecroniques. Il peu permere simulanémen de visualiser

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT icence Sciences Economiques 3ème année er semesre MICROECONOMIE APPROFONDIE ET CACU INTERTEMPORE CHAPITRE 6 CONSOMMATION ET CACU INTERTEMPORE : HYPOTHESE DU REVENU PERMANENT Vision simplifiée du schéma

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX Obje de la séance 9: défini le risque de aux e présener

Plus en détail

LES ALIMENTATIONS ELECTRIQUES SOMMAIRE. I) Généralités... 3. II) Les alimentations linéaires... 5 II.1) Schéma fonctionnel... 5

LES ALIMENTATIONS ELECTRIQUES SOMMAIRE. I) Généralités... 3. II) Les alimentations linéaires... 5 II.1) Schéma fonctionnel... 5 AMNAON CQ OMMA ) Généraliés... 3 ) es alimenaions linéaires... 5.1) chéma foncionnel... 5.2) ude de F1 : ransformaion ou abaissemen... 5.3) ude de F2 : edressemen.... 8.3.1) edressemen : Mono alernance....

Plus en détail

Groupe de travail master MASEF-Université Paris-Dauphine Optimisation d une fonction d utilité sous contraintes de risques

Groupe de travail master MASEF-Université Paris-Dauphine Optimisation d une fonction d utilité sous contraintes de risques Groupe de ravail maser MASEF-Universié Paris-Dauphine Opimisaion d une foncion d uilié sous conraines de risques Benedea Baroli Thibau Masrolia Eienne Pillin sous la direcion d Anhony Réveillac 13 sepembre

Plus en détail

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé ENSAE 3 eme année Romain Burgo & Tchim Silué Synhèse de l aricle : Noe sur l évaluaion de l opion de remboursemen anicipé Mémoire de gesion ALM Juin 2006 Résumé Depuis 1979, la loi offre à l empruneur

Plus en détail

Redressement non commandé sur charge RLE en conduction continue

Redressement non commandé sur charge RLE en conduction continue Redressemen non commandé sur charge RL en conducion coninue SI 9- I. Conversion alernaif-coninu, exemples d applicaions liés à la racion Figure : Locomoive BB5 Réseau de disribuion Redresseur saique monophasé

Plus en détail

Version Mai 2010. Reproduction sans préavis du concepteur n est pas autorisée, Contacter mohamedbouacida@yahoo.fr

Version Mai 2010. Reproduction sans préavis du concepteur n est pas autorisée, Contacter mohamedbouacida@yahoo.fr REGULATION CLASSIQUE EN INDUSTRIE S U P P O R T D E C O U R S P O U R B T S _ G M II Concepion e réalisaion Mohamed BOUASSIDA Ingénieur en Elecromécanique Formaeur en Insrumenaion e Régulaion indusrielle

Plus en détail

La détection synchrone : application

La détection synchrone : application La déecion synchrone : applicaion (Anglais: lock-in amplifier) La cigale chane U IN () Mais il y a du brui + beaucoup de brui. U OUT () Quelle es l'ampliude du chan de la cigale? Commen exraire le signal

Plus en détail

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore :

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore : Plnche Exercice 1 On considère un mrché nncier de ux d'inérê r e une cion de dynmique risque neure ds = S µd + σdw, S = x Soi une brrière hue ; on considère une opion brrière Up In qui délivre l'cion S

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

arxiv:1003.6004v1 [math.sg] 31 Mar 2010

arxiv:1003.6004v1 [math.sg] 31 Mar 2010 OPTIMALITÉ SYSTOLIQUE INFINITÉSIMALE DE L OSCILLATEUR HARMONIQUE arxiv:1003.6004v1 [mah.sg] 31 Mar 2010 J.C. ÁLVAREZ PAIVA AND F. BALACHEFF Résumé. Nous éudions les aspecs infiniésimaux du problème suivan.

Plus en détail

Electronique de puissance

Electronique de puissance Haue Ecole d Ingénierie e de Gesion du Canon du Vaud Elecronique de puissance Chapire 9 MODÉLISAION HERMIQUE DES COMPOSANS DE PUISSANCE M. Correvon A B L E D E S M A I E R E S PAGE 9. ANALYSE HERMIQUE

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt»

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt» Exercice du Gesion Financière à Cour Terme «Cas FINEX Gesion du risque de aux d inérê» Ce cas raie des différens aspecs de la gesion du risque de aux d inérê liée à la dee d une enreprise : analyse d emprun,

Plus en détail

Solutions AUTOMATISMES. L essentiel

Solutions AUTOMATISMES. L essentiel AUTOMATISMES Freinage élecronique des Les variaeurs de viesse on beaucoup évolué ces dernières années, an en ermes de performance echnique que de coû. Cela leur a permis de conquérir de nouvelles posiions,

Plus en détail

ÉTUDE D UN SYSTÈME PLURITECHNIQUE

ÉTUDE D UN SYSTÈME PLURITECHNIQUE DM SSI: AQUISITION DE l INFORMATION ÉTUDE D UN SYSTÈME PLURITECHNIQUE Pores Laérales Coulissanes de monospace PRÉSENTATION DE L ÉTUDE Mise en siuaion Les fabricans d'auomobiles, face à une concurrence

Plus en détail

Gestion Actif Passif et Solvabilité

Gestion Actif Passif et Solvabilité Gesion Acif Passif e Solvabilié Charles Descure & Crisiano Borean Generali France 7/9 Boulevard Haussmann 759 Paris Tel. : +33 58 38 86 84 +33 58 38 86 64 Fax. : +33 58 38 8 cdescure@generali.fr cborean@generali.fr

Plus en détail

Physique appliquée. Analyse spectrale. Harmoniques 50 Hz. Spectre d un signal FSK Spectre d un signal périodique. 500 Hz. 2000 Hz

Physique appliquée. Analyse spectrale. Harmoniques 50 Hz. Spectre d un signal FSK Spectre d un signal périodique. 500 Hz. 2000 Hz Analyse specrale Physique appliquée Analyse specrale Harmoniques 50 Hz Specre d un signal FSK Specre d un signal périodique 500 Hz 000 Hz Analyse specrale Sommaire 1- La représenaion emporelle d un signal

Plus en détail