MATHEMATIQUES Terminale Scientifique
|
|
|
- Robin Boivin
- il y a 10 ans
- Total affichages :
Transcription
1 MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi lescoursi@cours-icom site : htt://wwwcours-icom siège social et cetre d exéditio : -3 rue de l Éée de Bois, 75 5 Paris tél : bureaux et accueil du ublic : 6 rue Sait Deis, 34 Motellier tél :
2 Quelques idicatios our votre Termiale e mathématiques (obligatoire) Référeces o Les exercices fot référece au livre : Maths TS Collectio Symbole Beli (Programme 22) Vous disosez : du livre de fiches récaitulat les riciaux oits du cours de corrigés d exercices du livre de 2 devoirs thématiques et de 3 devoirs de tye Bac blac à redre Lecture des fiches Les fiches suivet globalemet le découage du livre Les référeces au livre sot idiquées e italiques Remarque : il est idiqué certaies erreurs d éocé du livre Il est ossible que vous disosiez d ue éditio où ces erreurs ot déjà été corrigées Les défiitios et riciaux résultats sot idiqués avec le symbole : Á la fi de chaque fiche ou de certaies arties, o a idiqué les cométeces à avoir (issues du rogramme officiel) et les exercices du livre à faire qui sot corrigés ar les Cours PI Coseils de rogressio Pour chaque fiche : Commecer ar lire le livre aux ages idiquées Il est vivemet coseillé de lire égalemet les ages «Caacités attedues» Certaies démostratios sot exigibles Il est surtout imortat de bie les comredre et de reteir les méthodes Faire le maximum d exercices (si ossible tous!) Il est coseillé de faire égalemet les exercices corrigés du livre Calculatrice et iformatique Vous devez osséder our l eseigemet scietifique au lycée d ue calculatrice grahique de tye CASIO GRAPH 25+ ou CASIO GRAPH 35+ Il faut aredre à vous e servir Devoirs Les devoirs thématiques coceret des arties sécifiques du rogramme Les devoirs de tye-bac sot euvet faire ael à l esemble du rogramme Le momet où ils sot faisables est idiqué das le sommaire age suivate COURS PI
3 Mathématiques Termiale S Sommaire COURS PI
4 Fiche Suites et récurrece Chaitres et 2 Das la suite, o otera u, v, w, des suites et u, v, w, leur terme gééral resectif Sauf récisio cotraire, les suites serot défiies our tout Raisoemet ar récurrece O cosidère ue roriété P ( ) Si : P ( () ) est vraie (iitialisatio) (2) et our tout, P( ) vraie imlique P( ) vraie (hérédité), alors our tout, P ( ) est vraie E ratique sur u exemle : u et u u Soit la suite u défiie ar : ( )( 2) u Motrer que our tout : O écrit la roriété de récurrece : O ose : P( ) : u 2 O iitialise la récurrece : Iitialisatio : u Pour : doc P() est vraie 3 O vérifie la coditio d hérédité : Hérédité : u Soit u etier O suose que P ( ) est vraie O a doc : ( 2) u u = ( )( 2) ( )( 2) ( )( 2) ( ) ( )( 2) ( )( 2) 2 doc P ( ) est vraie 4 O coclut : coclusio : ar récurrece, o eut e déduire que our tout etier : u COURS PI Mathématiques Termiale S
5 Ses de variatio, suites majorées et miorées (Raels) Variatios d ue suite : u est croissate si o a our tout u u u est strictemet croissate si o a our tout u u u est décroissate si o a our tout u u u est strictemet décroissate si o a our tout u u u est costate si o a our tout u u u est strictemet mootoe si u est soit strictemet croissate soit strictemet décroissate Suite majorée, miorée, borée u est majorée ar M (réel) si o a our tout u u est miorée ar m (réel) si o a our tout u u est borée si elle est majorée et miorée M m Suites arithmétiques et géométriques Suites arithmétiques La suite u est ue suite arithmétique de raiso r (réel) si our tout : u u r u Terme gééral d ue suite arithmétique : u r Somme des + remiers termes d ue suite arithmétique : Nombre de termes ( remier terme derier terme) ( )( u u ) S u u u 2 2 Cas articulier : 2 3 ( ) ( ) 2 Ses de variatio et limite : Si r : u est strictemet croissate ; lim u Si r : u est strictemet décroissate ; lim u Si r : u est costate ; lim u u COURS PI Mathématiques Termiale S 2
6 Suites géométriques La suite u est ue suite géométrique de raiso q (réel) si our tout : u qu u Terme gééral d ue suite géométrique : uq Somme des + remiers termes d ue suite géométrique : ombre de termes raiso q S u u u remier terme u raiso q Cas articulier : q q q Ses de variatio et limite : 2 q q our u q i croissate, i croissate, Variatios décroissate croissate i décroissate i décroissate Limites as de limite our u q i croissate, i croissate, Variatios croissate décroissate i décroissate i décroissate Limites as de limite COMPETENCES Aliquer u raisoemet ar récurrece Détermier le ses de variatios d ue suite, et motrer qu ue suite est majorée, miorée ou borée e utilisat évetuellemet le raisoemet ar récurrece EXERCICES N 2 age 8 (Corrigé ) N 4 age 8 (Corrigé 2) N 7 age 8 (Corrigé 3) N age 9 (Corrigé 4) N 7 age 9 (Corrigé 5) N 2 age 9 (Corrigé 6) N 22 age 9 (Corrigé 7) N 28 age 2 (Corrigé 8) N 3a age 2 (Corrigé 9) N 4 age 2 (Corrigé ) N 43 age 2 (Corrigé ) N 47 et N 49 b et c age 22 (Corrigé 2) N 65 age 24 (Corrigé 4) COURS PI Mathématiques Termiale S 3
7 Covergece d ue suite I Ue suite u admet ue limite l si our tout itervalle ouvert ; u rag tel que : our tout o a u I Notatio : lim u coteat l, il existe Si ue suite admet ue limite, elle est covergete Ue suite o covergete est dite divergete Ue suite u admet ue limite (res ) il existe u rag tel que : our tout o a u I I si our tout itervalle A A ; (res ; ), Notatio : lim u lim u Ue suite est divergete si elle admet aucue limite ou qu elle admet ue limite ifiie Exemles u suite covergete : lim u u suite divergete : lim u u ( ) suite divergete : as de limite Les limites à coaître* : lim lim our, lim our q, lim q our q, lim q *il y e aura d autres ar la suite Oératios sur les limites Voir tableau age 36 Les formes idétermiées : 4 u 2 Exemle our la limite d ue suite ratioelle : u avec lim ( ) ( ) ( ) doc : 2 lim u lim COURS PI Mathématiques Termiale S 4
8 Théorèmes de comaraiso de suites Si à artir d u certai rag u v et lim v alors lim u Si à artir d u certai rag u v et lim v alors lim u Théorème «des gedarmes» : Si à artir d u certai rag, w u v avec lim v et lim w alors lim u Cas articulier : Si à artir d u certai rag, u v avec lim v alors lim u Ces théorèmes sot très utiles et ermettet de doer la limite (fiie ou ifiie) d ue suite Limites de suites mootoes Toute suite croissate majorée coverge Toute suite décroissate miorée coverge Remarque : il s agit de théorèmes d existece Le majorat ou miorat trouvé est as forcémet la limite! Si ue suite est croissate et a our limite l, alors elle est majorée ar l (et l est le lus etit majorat) Si ue suite est décroissate et a our limite l, alors elle est miorée ar l (et l est le lus grad majorat) COMPETENCES Coaître les défiitios des limites Coaître les oératios sur les limites et résoudre les cas des formes idétermiées Utiliser les théorèmes de comaraiso Motrer l existece d ue limite our les suites croissates majorées et décroissates miorées EXERCICES N 4 age 48 (Corrigé 2) N 9 age 49 (Corrigé 22) N 7 a,b,c,d,e age 49 (Corrigé 23) N 22 a,b age 5 (Corrigé 24) N 23 a,b age 5 (Corrigé 25) N 26 a,b age 5 (Corrigé 26) N 4 a,b age 5 (Corrigé 27) N 4 a age 5 (Corrigé 28) N 44 age 52 (Corrigé 29) N 52 age 53 (Corrigé 2) N 54 age 53 (Corrigé 2) N 57 age 53 (Corrigé 22) N 67 age 55 (Corrigé 23) N 68 age 55 (Corrigé 24) N 73 age 55 (Corrigé 25) COURS PI Mathématiques Termiale S 5
9 Fiche 2 Limites d ue foctio Chaitre 3 Limites e + ou - et asymtotes horizotales O cosidère ue foctio f (o suosera que so esemble de défiitio e ose as de roblème e + ) f admet ue limite (ou ted vers) L e + si our tout itervalle ouvert I ; coteat l, il existe u ombre x tel que : our tout x x (res x x) o a f ( x) I Notatio : lim f ( x) L lim f ( x) L x x f ted vers + e + (res e I A; il existe u ombre x tel que : our tout x x (res x x ) o a f ( x) I Notatio : lim f ( x) lim f ( x) x x I f ; B ombre x tel que : our tout x x (res x x ) o a f ( x) I Notatio : lim f ( x) lim f ( x) x x il existe u Asymtote horizotale : si f admet ue limite fiie L asymtote horizotale à la courbe rerésetative de f y L est ue f est ue foctio avec lim f ( x ) x et lim f ( x ) x Sa courbe rerésetative admet ue asymtote horizotale d équatio : y COURS PI Mathématiques Termiale S 6
10 Limites e u réel et asymtotes verticales f I e a si our tout itervalle A; O cosidère ue foctio f défiie sur a r; a existe u ombre x tel que : our tout x x a o a f ( x) I xa Notatios : O arle de limite à gauche de f e a I (res ; B lim f ( x) ou lim f ( x) lim f( x) ou lim f( x) xa xa xa xa xa O eut défiir de la même maière des limites à droite Si ue foctio admet ue limite ifiie à gauche et/ou à droite e u oit a, la courbe rerésetative de f admet ue asymtote verticale d équatio x a ) il f est défiie sur ; ; ar lim f ( x) lim f ( x) x x x x f( x) x Sa courbe rerésetative admet ue asymtote verticale d équatio : x O e cherche des asymtotes que our x tedat vers ou vers u oit our lequel la foctio est as défiie lim lim our, lim our q, lim q our q, lim q Les limites à coaître* : *il y e aura d autres ar la suite Oératios sur les limites Elles sot similaires aux oératios sur les limites de suite Les formes idétermiées : Limites des foctios comosées : lim u( x) b et lim f ( x) c lim f ( u( x)) c xa xb xa O a les mêmes résultats our a, b et c ifiis ou réels COURS PI Mathématiques Termiale S 7
11 Comaraisos et limites O suose que our tout x de ;, f ( x) g( x) si lim g( x) alors lim f ( x) x x si lim f ( x) alors lim g( x) x x O suose que our tout x de ;, f ( x) g( x) si lim f ( x) alors lim g( x) x x si lim g( x) alors lim f ( x) x x Théorème «des gedarmes» : O suose que our tout x de ;, h( x) f ( x) g( x) si lim g( x) et lim h( x) alors lim f ( x) x x x O a les mêmes résultats our les ifiis ou our u réel a COMPETENCES Détermier les asymtotes d ue courbe Utiliser les théorèmes des limites sur la somme, u roduit, et u quotiet de foctios Utiliser les théorèmes de comaraiso our détermier des limites Calculer les limites des foctios comosées EXERCICES N 2 age 82 (Corrigé 3) N 6 age 82 (Corrigé 32) N 9 age 82 (Corrigé 33) N 8 age 83 (Corrigé 34) N 2/27 a et b age 84 (Corrigé 35) N 3 age 85 (Corrigé 36) N 35 age 85 (Corrigé 37) N 44 age 86 (Corrigé 38) N 57 age 87 (Corrigé 39) N 67 age 88 (Corrigé 3) N 73 a age 89 (Corrigé 3) N 75 a age 89 (Corrigé 32) N 76 age 89 (Corrigé 33) N 78 age 9 (Corrigé 34) N 9 age 92 (Corrigé 35) COURS PI Mathématiques Termiale S 8
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1
Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S
Convergences 2/2 - le théorème du point fixe - Page 1 sur 9
Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios
Etude de la fonction ζ de Riemann
Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.
[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =
[http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
Suites et séries de fonctions
[http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de
Séries réelles ou complexes
6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés
Séquence 5. La fonction logarithme népérien. Sommaire
Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa
14 Chapitre 14. Théorème du point fixe
Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de
CHAPITRE 2 SÉRIES ENTIÈRES
CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.
Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :
Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **
Séries numériques. Chap. 02 : cours complet.
Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm
Processus et martingales en temps continu
Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice
Les Nombres Parfaits.
Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie
dénombrement, loi binomiale
dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X
Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour
Cours de Statistiques inférentielles
Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios
Solutions particulières d une équation différentielle...
Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod
Partie 1 Automatique 1 et 2 (Asservissements Linéaires Continus)
Réublique Algériee Démocratique et Poulaire Miistère de l'eseigemet Suérieur et de la Recherche Scietifique Uiversité Djillali Liabès Sidi Bel-Abbès Faculté de Techologie Déartemet d'electrotechique Partie
LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.
Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la
Dénombrement. Chapitre 1. 1.1 Enoncés des exercices
Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
Des résultats d irrationalité pour deux fonctions particulières
Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: [email protected] Received
Introduction : Mesures et espaces de probabilités
Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,
STATISTIQUE AVANCÉE : MÉTHODES
STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................
2 ième partie : MATHÉMATIQUES FINANCIÈRES
2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul
Processus géométrique généralisé et applications en fiabilité
Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR
II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009
M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted
Chapitre 3 : Transistor bipolaire à jonction
Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats
Chap. 5 : Les intérêts (Les calculs financiers)
Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie
FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI
FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue
Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES
DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces
4 Approximation des fonctions
4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour
Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe
Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das
Module : réponse d un système linéaire
BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée
capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...
Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1
Module 3 : Inversion de matrices
Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que
Des familles de deux enfants
Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article
55 - EXEMPLES D UTILISATION DU TABLEUR.
55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique
Formation d un ester à partir d un acide et d un alcool
CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester
STATISTIQUE : TESTS D HYPOTHESES
STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie
Cours 5 : ESTIMATION PONCTUELLE
Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-
La spirale de Théodore bis, et la suite «somme=produit».
Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de
16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.
16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme
prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1
3- LE MONOOLE DISCRIMINANT Le monoole eut vendre ertaines unités de roduit à des rix différents. On arle de disrimination ar les rix. Selon une terminologie due à igou (The Eonomis of Welfare, 1920), on
Statistique descriptive bidimensionnelle
1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets
Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions
Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires
Probabilités et statistique pour le CAPES
Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes
UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4
UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»
TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )
RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude
Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.
Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités
Exercices de mathématiques
MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris
S2I 1. quartz circuit de commande. Figure 1. Engrenage
TSI 4 heures Calculatrices autorisées 214 S2I 1 L essor de l électronique nomade s accomagne d un besoin accru de sources d énergies miniaturisées. Les contraintes imosées à ces objets nomades sont multiles
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus
UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. [email protected] ) page 1
UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. [email protected] ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau
Chaînes de Markov. Arthur Charpentier
Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.
PROMENADE ALÉATOIRE : Chaînes de Markov et martingales
PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées [email protected] Novembre 2013 2 Table des matières
Procès - Verbal du Conseil Municipal Du lundi 15 décembre 2014
Procès - Verbal du Conseil Municial Du lundi 15 décembre 2014 Nombre de membres comosant le Conseil Municial : 15 Nombre de membres en exercice : 15 Nombre de Conseillers résents : 14 Nombre de Conseillers
PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS
PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie
Statistiques appliquées à la gestion Cours d analyse de donnés Master 1
Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques
La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe
1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios
L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).
CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur
Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot
Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars
LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE
LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe
Gérer les applications
Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces
Accès optiques : la nouvelle montée en débit
Internet FTR&D Dossier du mois d'octobre 2005 Accès otiques : la nouvelle montée en débit Dans le domaine du haut débit, les accès en France sont our le moment très majoritairement basés sur les technologies
Les algorithmes de tri
CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....
Un modèle de composition automatique et distribuée de services web par planification
Un modèle de comosition automatique et distribuée de services web ar lanification Damien Pellier * Humbert Fiorino ** * Centre de Recherche en Informatique de Paris 5 Université Paris Descartes 45, rue
Intégrales généralisées
3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle
Exponentielle exercices corrigés
Trmial S Foctio potill Ercics corrigés Fsic 996, rcic Fsic 996, rcic 3 3 Fsic 996, rcic 4 4 Fsic, rcic 6 3 5 Fsic, rcic 4 3 6 Baqu 4 4 7 Epo + air, Amériqu du Nord 5 5 8 Basiqu, N Calédoi, ov 4 7 9 Basiqus
3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.
3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios
POLITIQUE ECONOMIQUE ET DEVELOPPEMENT
POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier
Régulation analogique industrielle ESTF- G.Thermique
Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité
Compte Sélect Banque Manuvie Guide du débutant
GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de
TP : Outils de simulation. March 13, 2015
TP : Outils de simulation March 13, 2015 Chater 1 Initialisation Scilab Calculatrice matricielle Exercice 1. Système Unix Créer sous Unix un réertoire de travail outil_simulation dans votre home réertoire.
Bois. P.21 Bois-béton à Paris. Carrefour du Bois. Saturateurs. Usinage fenêtres. Bardages P.25 P.34 P.31 P.37. La revue de l activité Bois en France
CMP Bois n 19-12 avril - mai 2010 P.25 Carrefour du Bois P.34 cm La revue de l activité Bois en France Bois Saturateurs P.31 Usinage fenêtres P.37 Bardages Tout our l usinage du bois massif. Tout d un
Guide des logiciels de l ordinateur HP Media Center
Guide des logiciels de l ordiateur HP Media Ceter Les garaties des produits et services HP sot exclusivemet présetées das les déclaratios expresses de garatie accompagat ces produits et services. Aucu
Initiation à l analyse factorielle des correspondances
Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique
Découvrez les bâtiments* modulaires démontables
Découvrez les bâtiments* modulaires démontables w Industrie w Distribution * le terme «bâtiment» est utilisé our la bonne comréhension de l activité de Locabri. Il s agit de structures modulaires démontables
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Neolane Leads. Neolane v6.0
Neolae Leads Neolae v6.0 Ce documet, aisi que le logiciel qu'il décrit, est fouri das le cadre d'u accord de licece et e peut être utilisé ou copié que das les coditios prévues par cet accord. Cette publicatio
Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.
II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café
MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB
MUTUELLE D&O MUTUELLE D&O Copilote de votre saté AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyace CRC CRIS CRPB-AFB DOMISSIMO-Assuraces DOMISSIMO-Services FONGECFA-Trasport IPRIAC MUTUELLE D&O OREPA-Prévoyace
Échantillonnage et estimation
Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos
Une action! Un message!
Ue actio! U message! Cotact Master est u service exclusif de relaces automatiques de vos actes vers vos cliets, par SMS, messages vocaux, e-mails, courrier... Il se décleche lorsque vous réalisez ue actio
Contribution à la théorie des entiers friables
UFR STMIA École Doctorale IAE + M Uiversité Heri Poicaré - Nacy I DFD Mathématiques THÈSE présetée pour l obtetio du titre de Docteur de l Uiversité Heri Poicaré, Nacy-I e Mathématiques par Bruo MARTIN
Sommaire Chapitre 1 - L interface de Windows 7 9
Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18
Chambre Régionale de Métiers et de l Artisanat. Région Auvergne. Région Auvergne
Chambre Régionale de Métiers et de l Artisanat L Artisanat en Auvergne, l Energie du Déveloement Région Auvergne Région Auvergne Edito Edito Valoriser la formation des jeunes et des actifs : un enjeu
