SUITES ET SÉRIES. On peut aussi représenter une suite par un dessin : Une suite est strictement décroissante si u n > u n+1, n N *.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "SUITES ET SÉRIES. On peut aussi représenter une suite par un dessin : 0.8 0.6 0.4 0.2. Une suite est strictement décroissante si u n > u n+1, n N *."

Transcription

1 SUITES ET SÉRIES 7 2. Suites et séries 2.. Suites Défiitio Exemples Liste u = 5, u 2 = 8, u 3 = 4, u 4 =, Formule u = 2 ; 4 ; 9 ; 6 ; Récurrece { u = 2 u = 2u Ue suite réelle est ue liste ordoée (ou liste umérotée) de ombres réels, appelés termes. La suite {u ; u 2 ; u 3 ; } est aussi otée (u ). Ue suite peut être détermiée : par la liste de tous ses termes (s'il 'y a pas de règle de formatio) par ue formule qui doe u par rapport à (doer f() = u ) par récurrece : le deuxième terme de la suite est doé e foctio du premier, le troisième e foctio du deuxième, et aisi de suite. O peut aussi représeter ue suite par u dessi : 2 ; 5 ; ; 23 ; Représetatio de la suite u = Défiitios Rappel des otatios : il existe, : pour tout Exercice 2. Covergece Ue suite est croissate si u u +, N *. Ue suite est décroissate si u u +, N *. Ue suite est strictemet croissate si u < u +, N *. Ue suite est strictemet décroissate si u > u +, N *. Ue suite est mootoe si elle est soit croissate, soit décroissate. Ue suite est alterée si ses termes sot alterativemet positifs et égatifs. Ue suite est majorée si u réel α tel que etier N *, u α. Ue suite est miorée si u réel α tel que etier N *, u α. Ue suite est borée si elle est majorée et miorée. Pour détermier si ue suite est croissate ou décroissate, il faut étudier le sige de la différece (u + u ), ou comparer u u avec. Les suites ci-dessous sot-elles croissates, décroissates? a. ; ; ; ; b. u = c. u = 2 O dit qu'ue suite (u ) est covergete si elle admet ue limite réelle e +, autremet dit si lim u =L R. Si elle existe, la limite d'ue suite est uique. Si ue suite 'est pas covergete, elle est divergete. Didier Müller - LCP Suites et séries

2 8 CHAPITRE 2 Théorème 2. a. Toute suite mootoe et borée coverge. b. Toute suite covergete est borée. c. Soit (u ) ue suite covergete vers a et (v ) ue suite covergete vers b. Alors (u + v ) coverge vers (a + b) (u v ) coverge vers (a b) u v coverge vers a b (λ u ) coverge vers (λ a) Exercice 2.2 Motrez que : 2 a. lim 3 =2 b. lim =0 2 Exercice 2.3 Exercice 2.4 Exercice 2.5 Les suites suivates sot-elles covergetes? Si oui, vers quelle valeur? a. 23 d. l b. 2 2 e. l c. ( ) f.! Étudiez la covergece des suites dot o doe le terme gééral : a. d. 2 2 b. e c. a, 0 < a < f a, a > Soit (u ) ue suite telle que la suite ( u ) coverge. Peut-o e déduire que (u ) coverge? Exercice 2.6 O défiit la suite de terme gééral v de la faço suivate : { v = v = 2 v a. Motrez que 0 < v < 4 pour tout strictemet positif. b. O pose 4 v = w. Démotrez que w + < 4 w. c. Déduisez-e que la suite coverge et calculez la limite de w. d. Doez la limite de v, lorsque ted vers l'ifii. Exercice 2.7 Expliquez pourquoi ce dessi doe visuellemet la répose de l'ex Suites et séries Didier Müller - LCP - 206

3 SUITES ET SÉRIES 9 Exercice 2.8 Héro d'alexadrie, savat grec du er siècle après J.-C., a iveté u algorithme qui permet de s'approcher très vite de la racie carrée d'u ombre réel m positif, e itérat la formule récursive : {u = m,m u = 2 u m u Utilisez et justifiez cet algorithme. Exercice 2.9 De ombreux algorithmes itératifs sot fodés sur des suites du type { u = a valeur iitiale u = f u,pour La foctio b. (appelée logistique) modélise quelques situatios d'équilibre. O la retrouve e particulier das les systèmes proies-prédateurs. Suite de Syracuse Syracuse est ici le om d'ue ville uiversitaire américaie (New York). Vous pourrez étudier cette suite sur le web. Exercice 2.0 où f est ue foctio réelle d'ue variable réelle. Observez sur u ordiateur que : a. si f(x) = cos(x), la suite covergera vers la solutio de l'équatio cos(x) = x b. si f(x) = 4x( x) et u ]0;], la suite aura u comportemet chaotique. La suite de Syracuse est défiie par : * = a N {x {x x = si x 2 est pair 3 x si x est impair La cojecture de Syracuse dit que cette suite se termie toujours par le cycle 4, 2,. Il 'existe pour l'istat aucue démostratio. O cosidère deux suites (u ) et (v ) défiies simultaémet > 0 par u =! 2!!, v =u! Motrez que : a. N *, u < v b. (u ) est croissate c. (v ) est décroissate d. lim u v =0 e. La limite commue de ces deux suites est le ombre e. Motrez par l'absurde que e est irratioel (procédez par ecadremet). Nombres pseudoaléatoires U ordiateur e sait pas géérer du hasard. Il costruit e fait ue suite de ombres etiers qui a l'apparece du hasard, mais qui est tout à fait détermiiste. Par exemple, la suite suivate est courammet utilisée : u + = (u 6807) mod (2 3 ) Ces ombres sot esuite divisés par 2 3, pour obteir des ombres das l'itervalle [0 ; [. Didier Müller - LCP Suites et séries

4 0 CHAPITRE Séries Défiitio Exercice 2. Exercice 2.2 Soit (u k ) ue suite ifiie et s = u + u u = u k. O appelle série de terme gééral u k la suite (s ). s est la -ième somme partielle de la série. Écrivez la quatrième somme partielle des séries suivates : 2 a. = b. = 2 k = c. Doez ue expressio du terme gééral des séries suivates : a b k =0 k 2k k! 2.3. Covergece des séries c d e Si la suite (s ) coverge, o dit que la série de terme gééral u k coverge et, das ce cas, la limite de la suite (s ) s'appelle somme de la série et o la ote : u k. Ue série qui e coverge pas diverge. Calculer la somme exacte d'ue série est, e gééral, ue tâche difficile. Voilà pourquoi ous allos ous itéresser à des tests qui permettet de savoir si ue série est covergete ou divergete, sas e calculer explicitemet la somme. k = Théorème 2.2 Si lim u k 0, alors la série k k = Par cotraposée, si la série k = u k diverge. u k est covergete, alors lim u k =0. k La réciproque 'est e gééral pas vraie. Si lim u k =0, o e peut pas coclure que u k coverge. k = Motros que la série harmoique k = k diverge. k O cherche ue série qui est iférieure à la série harmoique et qui diverge. Cela implique que la série harmoique diverge aussi. k = k = > = termes 4 termes 8 termes 6 termes = Suites et séries Didier Müller - LCP - 206

5 SUITES ET SÉRIES s 2 m est la somme partielle des 2 m premiers termes de la série harmoique. Exercice 2.3 Exercice 2.4 Série alterée Exemple Théorème 2.3 Doc, s 2 mm 2. Ceci motre que s 2 m lorsque m. Il s'esuit que (s ) diverge. Pourtat k 0. Motrez que la série = Démotrez que la série 2 = diverge. est covergete et calculez sa somme. Q.E.D Ue série alterée est ue série dot les termes sot alterativemet positifs et égatifs. k = k k = Soit la somme d'ue suite alterée s= k b k, avec b k > 0 Si la série alterée satisfait a. 0 < b k+ < b k, k N * b. lim b k =0 k alors la série est covergete. k = La première somme partielle s = b est positive. La deuxième s 2 = b b 2 est ecore positive, car b 2 < b. La somme suivate s 2 = b b 2 +b 3 se trouve à droite de s 2, mais à gauche de s. Les sommes partielles oscillet vers l'avat et vers l'arrière, et, puisque la distace etre elles ted vers zéro, elles fiisset par coverger. Exercice 2.5 Exercice 2.6 Exercice 2.7 La série harmoique alterée k k coverge-t-elle? La série k 3 k k = 4 k k = coverge-t-elle? La série k k 2 k = k 3 coverge-t-elle? Covergece absolue Théorème 2.4 Ue série u k est dite absolumet covergete lorsque la série des valeurs absolues k = k = u k est covergete. Si ue série u k est absolumet covergete, alors elle est covergete. k = La réciproque 'est pas vraie. E effet, la série harmoique alterée coverge, mais pas la série harmoique. Didier Müller - LCP Suites et séries

6 2 CHAPITRE 2 Démostratio Ue des propriétés de la valeur absolue est a + b a + b. O peut la gééraliser pour obteir : u k= k k = u k. Comme la série est absolumet covergete, u k = s R, la suite u k est réelle k = et comprise etre s et s. Elle est doc covergete. k = Test de comparaiso L'emploi du test de comparaiso est subordoé à la coaissace d'u certai ombre de séries v k qui servet de repère. k = Supposos que u k et v k soiet des séries à termes positifs. k = k = a. Si v k est covergete et u k v k, k, alors u k coverge. k = k = b. Si v k est divergete et u k v k, k, alors u k diverge. k = k = Exercice 2.8 O sait que 2 a 3 a coverge si a > et diverge si a. cos k La série coverge-t-elle? k = k 2 Quelques séries coues k = k k = k 2 k = k 4 k = k 2 = k k = k 4= k 2 =2 8! 2! k! =e Séries alterées =l = 4 Exemple Soit v k = 2 k, v k = =2 et u k= k k!. k = k fois k k k et doc Il s'esuit que k = Exemple 2 Soit v k = k, k = kk et doc Il s'esuit que k = k!, k N* k 2 u k = coverge et vaut mois que v k = qui diverge et u k= k. k k pour tout k N*. u k = diverge. 4 Suites et séries Didier Müller - LCP - 206

7 SUITES ET SÉRIES 3 Exercice 2.9 Dites si les séries suivates coverget ou o : a. c. e. g b d f Exercice 2.20 La série l k k = k est-elle covergete? Test du quotiet Théorème 2.6 Démostratio Le test du quotiet (ou test de D'Alembert) est efficace pour détermier si ue série doée est absolumet covergete. Soit c=lim k u k u k. a. Si c <, la série u k est absolumet covergete. k = b. Si c >, la série u k diverge. k = c. Si c =, le test e doe aucue iformatio. La démostratio du test du quotiet repose sur la comparaiso de la série doée avec ue progressio (ou série) géométrique. Il 'est pas étoat qu'itervieet des séries géométriques parce qu'elles sot caractérisées par le fait que le rapport q des termes cosécutifs est costat et elles sot covergetes lorsque q <. Ici, le rapport des termes cosécutifs 'est pas costat mais il ted vers c, et doc, pour k grad, ce rapport est presque costat et la série coverge lorsque c <. Exemple Soit la série harmoique : k = k. Il y a doc doute. c=lim k = lim k k k k k = Exemple 2 Soit la série k = k!. La série est doc covergete. c=lim k k! =lim k! k k! k! =lim k k =0 Exercice 2.2 Utilisez le test du quotiet pour détermier si les séries suivates coverget. a. c.! 0 2!! 00 0 b d ! e Didier Müller - LCP Suites et séries

8 4 CHAPITRE 2 Test de la racie Exercice 2.22 Test de l'itégrale Exemple k Soit c=lim u k. k a. Si c <, la série u k coverge. k = b. Si c >, la série u k diverge. k = c. Si c =, le test e doe aucue iformatio. Utilisez le test de la racie pour dire si les séries suivates coverget. a b. c Soit f ue foctio cotiue, positive et jamais croissate das l'itervalle [p ; ] et soit u k = f(k). La série u k coverge ou diverge, selo que f xdx existe ou o. k =p p De plus : p f xdx k =p Soit la série harmoique k = k. u k u p f x dx p La foctio est doc f x= x et p =. f x dx=lim t t x dx=lim t 0 l t l =. La série est doc divergete. Exemple 2 Soit la série k = k. 2 La foctio est doc f x= x 2 et p =. f x dx=lim t t x dx=lim 2 t t =. La série est doc covergete et comprise etre et 2. Exercice 2.23 Démotrez le critère de comparaiso avec ue itégrale. Idicatio : Approchez l'aire sous la courbe par des rectagles de largeur. Exercice 2.24 Utilisez le test de l'itégrale pour détermier si ces séries coverget. a b c. si 4 si 2 9 si 3 6 si 4 d. 2 a 3 a a Suites et séries Didier Müller - LCP - 206

9 SUITES ET SÉRIES Séries etières Ue série etière est ue série de la forme a k x k k =0 des costates, appelées les coefficiets de la série. où x est ue variable et les a k sot Remarquez que f ressemble à u polyôme. La seule différece est que f a u ombre ifii de termes. Théorème 2.7 Chaque fois qu'ue valeur est attribuée à x, la série etière est ue série de costates qui peut être testée quat à sa covergece ou à sa divergece. La somme de la série est ue foctio f x= a k x k dot le domaie de défiitio est l'esemble des valeurs de x pour lesquelles la série coverge. Il existe u ombre positif r, appelé rayo de covergece de la série, tel que : la série etière coverge absolumet si x < r, la série etière diverge si x > r. k=0 Das la plupart des cas, le rayo de covergece peut être détermié par le test du quotiet, mais ce test échoue toujours quad x est l'ue des extrémités de l'itervalle de covergece. Il faut doc u autre test pour savoir ce qui se passe aux extrémités. Exemple Test du quotiet (p. 3) Détermios le rayo et l'itervalle de covergece de 3 k x k k =0 k. Soit u k = 3k x k k Alors u k u k = 3k x k k k2 k 3 k x =3 k k2 x 3 x si k. La série est doc covergete si 3 x < et divergete pour 3 x >. Rayo de covergece Elle coverge doc pour x 3 et diverge pour x 3 covergece est r = 3.. Cela sigifie que le rayo de Maiteat que l'o sait la série coverge das l'itervalle ] 3 ; 3 [, o regarde ce qui se passe aux extrémités de l'itervalle. Si x = 3, k =0 Si x = 3, k =0 k k 3 3 k k 3 k 3 k alterées (théorème 2.3). = k=0, qui est divergete. k = k, qui est covergete d'après le test des séries k =0 k Fialemet, la série proposée coverge pour 3 < x 3. Didier Müller - LCP Suites et séries

10 6 CHAPITRE 2 Exercice 2.25 Trouvez l'itervalle de covergece des séries etières suivates. a. x + 2x + 3x + 4 x +... b. x x x x c. x x x x d. x x x x e. 2 4 x x f. x x x (l 2) (l 3) (l 4) 2.5. Ce qu'il faut absolumet savoir Coaître les défiitios d'ue suite Coaître la défiitio d'ue série Coaître les critères de covergece d'ue série et savoir les utiliser Calculer le rayo de covergece d'ue série etière ok ok ok ok Suites et séries Didier Müller - LCP - 206

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 6 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

CORRIGÉ DE LA FEUILLE 2

CORRIGÉ DE LA FEUILLE 2 CORRIGÉ DE LA FEUILLE. Exercice Soiet u et v deux séries à termes positifs.. Si ue des séries est divergete, alors la série de terme gééral u + v est divergete C est vrai. E effet, supposos que la série

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 5 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0 Chapitre 1 : Les suites umériques I. Le raisoemet par récurrece 1. Présetatio Soit P( ) la propriété : «7 + 2 est divisible par 3». O veut vérifier que cette propriété est vraie pour tout etier aturel.

Plus en détail

Cours 4 SUITES DE NOMBRES RÉELS

Cours 4 SUITES DE NOMBRES RÉELS Cours 4 SUITES DE NOMBRES RÉELS A/ GÉNÉRALITÉS 1. Défiir ue suite de ombres réels Ue suite u de ombres réels, est ue foctio défiie sur N qui, à chaque etier aturel, associe u ombre oté u. Ce ombre u s

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes 1 Ue défiitio de la foctio expoetielle das l esprit des ouveaux programmes 0. Itroductio. Les ouveaux programmes de mathématiques de termiale S qui sot etrés e vigueur à la retrée 2002 icitet fortemet

Plus en détail

Quelques inégalités classiques

Quelques inégalités classiques Quelques iégalités classiques O se propose de motrer, sous forme d exercices, quelques iégalités classiques. Les preuves de ces iégalités e écessitet que quelques coaissaces élémetaires.. Exercices classiques

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 5 mai 2016 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 5 mai 2016 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 5 mai 06 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer qu

Plus en détail

Université Mohammed V Faculté des Sciences Département de Mathématiques & d Informatique Rabat, Maroc

Université Mohammed V Faculté des Sciences Département de Mathématiques & d Informatique Rabat, Maroc Uiversité Mohammed V Faculté des Scieces Départemet de Mathématiques & d Iformatique Rabat, Maroc Cours d Aalyse 4 Zie El Abidie ABDELALI Table des matières Chapitre. Notios sur la topologie de R 7.

Plus en détail

14.1 Rayon de convergence d une série entière

14.1 Rayon de convergence d une série entière 4 Séries etières Nous faisos ici l étude des séries etières réelles ou complees sas référece au séries de foctios qui serot étudiées plus loi. Avec les eercices 3.3 et 6.34 ous avos déjà recotré la foctio

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également.

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également. SUITES (Partie ) I. Raisoemet par récurrece ) Le pricipe C'est au mathématicie italie Giuseppe Peao (858 ; 93), ci-cotre, que l'o attribue le pricipe du raisoemet par récurrece. Le om a probablemet été

Plus en détail

= P (X k)p (Y k) = (1 α) k (1 β) k = [(1 α)(1 β)] k.

= P (X k)p (Y k) = (1 α) k (1 β) k = [(1 α)(1 β)] k. Aée 25/26 Semaie 2 Classe de PC*, lycée Louis le Grad Exercice Soiet (Ω, F, P ) u espace probabilisé, X et Y deux variables idépedates suivat des lois géométriques (à valeurs das N) de paramètre α et β

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

Comportement asymptotique des suites

Comportement asymptotique des suites Comportemet asymptotique des suites Table des matières 1 Itroductio 2 2 Limite d ue suite 2 2.1 Limite fiie d ue suite........................................... 2 2.2 Limite ifiie d ue suite..........................................

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

1 + ln x + 1 2. MA + MB + MC + MD. AMERIQUE DU SUD Novembre 2000

1 + ln x + 1 2. MA + MB + MC + MD. AMERIQUE DU SUD Novembre 2000 MERIQUE DU SUD Novembre 000 EXERIE U sac cotiet trois boules umérotées respectivemet 0, et, idiscerables au toucher. O tire ue boule du sac, o ote so uméro et o la remet das le sac ; puis o tire ue secode

Plus en détail

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1.

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1. Chapitre VI : Foctio expoetielle I. La foctio expoetielle a) Défiitio La foctio expoetielle, otée exp, est la foctio défiie sur! par exp(x) = e x, e x état l uique ombre réel strictemet positif dot le

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

Exercice 2 (Séries de fonctions - 7 points)

Exercice 2 (Séries de fonctions - 7 points) INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA SESSION 993 SAINT-CYR MATHEMATIQUES - Epreuve commue Optios M, P, T, TA PREMIÉRE PARTIE ) Les polyômes L 0,, L sot + polyômes de R [X] qui est de dimesio + Pour vérifier que la famille (L i ) 0 i est ue

Plus en détail

Feuille d Exercices : Suites, suite!

Feuille d Exercices : Suites, suite! ECS 1 Dupuy de Lôme Semaie du 6 décembre 004 Feuille d Exercices : Suites, suite! Exercice 1 : Pour tout etier, o défiit u = 1. Motrez que u est mootoe.. Motrez que v est géométrique. k= 3. E déduire l

Plus en détail

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP Cocours Commus Polytechiques - Sessio 11 Corrigé de l épreuve d aalyse- Filière MP Séries etières, équatios différetielles et trasformée de Laplace Corrigé par M.TRQI http://alkedy.1.m Eercice 1 1. La

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1 SESSION 2005 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES PREMIER EXERCICE a. T (x + y dxdy = = ( y= (x + y dy y= x dx = ((x + 2 ( x2 + x2 2 dx = T (x + y dxdy = 4 3. [xy +

Plus en détail

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1 SOLUTIONS AUX EXERCICES DE LA FEUILLE. Exercice. Ue suite de réels positifs qui coverge vers 0 est décroissate à partir d u certai rag. C est faux. Pour costruire u cotre-exemple, o pourrait cosidérer

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Suites numériques : définition générale.

Suites numériques : définition générale. 1 Suites arithmétiques Suites umériques : défiitio géérale.... Le pricipe de récurrece... 3 Suites arithmétiques... 4 Formule 1 des suites arithmétiques... 5 Appreos à compter... 6 Formule des suites arithmétiques...

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES ENIHP Equatios différetielles p. I Défiitio et otatio EQUATIONS DIFFERENTIELLES Défiitio : O appelle dérivée secode de f (x) la dérivée de f (x), elle même dérivée de f(x). O défiit aisi la dérivée d ordre

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Exercices corrigés sur les séries entières

Exercices corrigés sur les séries entières Exercices corrigés sur les séries etières Eocés Exercice Détermier le rayo de covergece des séries etières a z suivates : a l, a l, a, a e /3, a +!, a arcsi + π 4. Exercice Détermier le rayo de covergece

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Compléments sur les suites Suites adjacentes

Compléments sur les suites Suites adjacentes DERNIÈRE IMPRESSION LE 7 février 07 à 6:3 Complémets sur les suites Suites adjacetes I Ecadremet d ue suite EXERCICE ) Motrer que pour tout k N et pour tout x [k ; k+], o a : k+ k+ k x dx k ) O pose u

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

1. Limite d'une suite... p2. Suites convergentes

1. Limite d'une suite... p2. Suites convergentes Suites covergetes 1.... p2 4. Cas particuliers... p9 2. Limites et comparaiso... p6 5. Suites mootoes... p11. Opératios sur les limites... p7 1. Limite d'ue suite 1.1. Limite ifiie a) Défiitios O dit que

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES

CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES Dérivatio des octios composées Cours CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES. DERIVATION d ue FONCTION COMPOSEE.. Dérivée d ue octio composée Théorème Soit ue octio dérivable

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

Problème 1 : continuité uniforme

Problème 1 : continuité uniforme SESSION 0 CAPES EXTERNE MATHÉMATIQUES Problème : cotiuité uiforme f est pas uiformémet cotiue sur I si et seulemet si ε > 0/ η > 0, x,y I / x y η et fx fy > ε Soit f ue foctio -lipschitziee sur I avec

Plus en détail

Limites de suites, cours, terminale S

Limites de suites, cours, terminale S Limites de suites, cours, termiale S Covergece de suites Déitio : Soit (u ) ue suite. O dit que (u ) coverge vers u réel l ou a pour limite l lorsque tout itervalle ouvert A coteat l, cotiet tous les termes

Plus en détail

Planche n o 6. Séries numériques. Corrigé

Planche n o 6. Séries numériques. Corrigé Plache o 6 Séries umériques Corrigé Exercice o Pour, o pose u l ère solutio u l ++, u existe + + + l + +O +O O Comme la série de terme gééral,, coverge série de Riema d exposat α >, la série de terme gééral

Plus en détail

Chap2 Les suites : Raisonnement par récurrence limites de suites

Chap2 Les suites : Raisonnement par récurrence limites de suites I Rappels de première Chap2 Les suites : Raisoemet par récurrece limites de suites II Suites majorées, miorées, borées Défiitios : O dit qu ue suite ( u ) est majorée lorsqu il existe u réel M tel que

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

TD n 3 : quelques exercices sur la récurrence

TD n 3 : quelques exercices sur la récurrence Éocé TD 3 : quelques exercices sur la récurrece Exercice 1 Soit (a ) 0 ue suite de ombres réels ou complexes. O pose b 0 = 1 et b = (1 a k ) pour 1. Motrer que b +1 = 1 Exercice O défiit ue suite (u )

Plus en détail

Suites de réels. Contents. 1 Retenez au moins ça 3

Suites de réels. Contents. 1 Retenez au moins ça 3 Suites de réels Cotets 1 Reteez au mois ça 3 Bore supérieure 3.1 Déitios.......................................... 3.1.1 Relatio d'ordre sur u esemble E....................... 3.1. Ordre total.....................................

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Convergence et limite de suites numériques

Convergence et limite de suites numériques Covergece et limite de sites mériqes 1. Covergece d e site 1.1. Défiitio Ue site de ombres réels est covergete et admet comme limite ombre réel l si, qelqe soit le ombre ε > 0 assi petit soit-il, il existe

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Exo7. Calculs d intégrales. 1 Utilisation de la définition. Exercice 1 Soit f la fonction définie sur [0,3] par. 1 si 0 < x < 1

Exo7. Calculs d intégrales. 1 Utilisation de la définition. Exercice 1 Soit f la fonction définie sur [0,3] par. 1 si 0 < x < 1 Eo7 Calculs d itégrales Utilisatio de la défiitio Eercice Soit f la foctio défiie sur [,3] par si = si < < f () = 3 si = si < 4 si < 3.. Calculer 3 f (t)dt.. Soit [,3], calculer F() = f (t)dt. 3. Motrer

Plus en détail

L2 - Math4 Exercices corrigés sur les suites numériques

L2 - Math4 Exercices corrigés sur les suites numériques L2 - Math4 Exercices corrigés sur les suites umériques Eocés Exercice Les assertios suivates sot-elles vraies ou fausses? Doer ue démostratio de chaque assertio vraie, et doer u cotre-exemple de chaque

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

Terminales S BAC BLANC Mathématiques Sujet

Terminales S BAC BLANC Mathématiques Sujet Sujet Durée 4 heures. La calculatrice graphique est autorisée. Le barème est fouri à titre idicatif. Eercice 1 (commu) [5 poits] 3 Soit la foctio f défiie sur + par f ( ) =. O appelle C, la courbe représetative

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

Exercices sur les suites de fonctions

Exercices sur les suites de fonctions ercices sur les suites de foctios océs ercice Étudier la covergece simple et uiforme des suites de foctios de R das R suivates : f ) = ), g ) = si, ϕ ) = e si, ψ ) = e cos. ercice 2 Étudier la covergece

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mpcpgedupuydelomefr] édité le 3 ovembre 07 Eocés Calcul de limites Exercice [ 054 ] [Correctio] Détermier la limite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = +

Plus en détail

Corrigé du problème: autour de la fonction zeta alternée de Riemann

Corrigé du problème: autour de la fonction zeta alternée de Riemann Corrigé du problème: autour de la foctio zeta alterée de Riema I Gééralités Pour x >, la suite décroît vers, doc la série coverge par le critère spécial des séries alterées Pour x, e ted pas vers, ce qui

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques Cocours commu Mies-Pots 2 Corrigé de la secode épreuve de mathématiques.a Nous pouvos appliquer le critère de d Alembert : doc le rayo R est égal à /4. C2+2 + 2 + 22 + C2 = + 4, 2 +.b O sait que h est

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances Frace métropolitaie Jui 200 Série S Exercice Restitutio orgaisée de coaissaces Démotrer, à l aide de la défiitio et des deux propriétés cidessous que si ( u ) et ( v ) sot deux suites adjacetes, alors

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Comparaiso des suites Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

Chapitre 3 RÉGRESSION CORRÉLATION

Chapitre 3 RÉGRESSION CORRÉLATION Chapitre 3 RÉGRESSION CORRÉLATION Les doées se présetet sous la forme d ue suite de couples de valeurs umériques(x i, y i ), umérotés de à i =. O ote m x, s x ², m y, s y ² les moyees et les variaces des

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

TD1 - Suites numériques

TD1 - Suites numériques IUFM du Limousi 2008-09 PLC1 Mathématiques S. Viatier Exercices TD1 - Suites umériques Exercice 1 Soit α > 0, étudier la covergece des suites déies par u = ( ) 1 + si α, v = 3 + cos α ( ) 1 + α. 3 + Idicatio

Plus en détail

TS Limites de suites (3)

TS Limites de suites (3) TS Limites de suites (3) I. Rappels sur les suites majorées, miorées, borées ) Défiitio (suite majorée, miorée, borée) 5 ) Propriété Si u réel M est u majorat d ue suite u, alors tous les réels supérieurs

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Calcul d'intégrales 2

Calcul d'intégrales 2 de même largeur égale à 5 de même largeur égale à 5 Mr ABIDI Farid Termiales Calcul d'itégrales Activité : méthode des rectagles I Résultats prélimiaires Démotrer par récurrece que, pour tout etier aturel,

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Suites T.S. I.Suites : Le Best of du programme de 1S...1. II.Le raisonnement par récurrence...8. III.Limite d'une suite...10

Suites T.S. I.Suites : Le Best of du programme de 1S...1. II.Le raisonnement par récurrence...8. III.Limite d'une suite...10 Table des matières Suites T.S. I.Suites : Le Best of du programme de 1S...1 A.Pourquoi les suites? qu'est-ce que c'est?...1 B.Défiitio et otatios...1 C.Deux faços de défiir ue suite :...2 D.Représetatio

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

Exercices corrigés sur les séries de fonctions

Exercices corrigés sur les séries de fonctions Eercices corrigés sur les séries de foctios Eocés Eercice Motrer que la série ( ) est uiformémet covergete mais o ormalemet covergete sur [, ] Eercice 2 Étudier la covergece sur R + de la série de foctios

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Feuille d exercices n o 1 Révisions de topologie et d analyse fonctionnelle

Feuille d exercices n o 1 Révisions de topologie et d analyse fonctionnelle Distributios-Aalyse foctioelle 1 Maîtrise de Mathématiques Feuille d exercices o 1 Révisios de topologie et d aalyse foctioelle 1. Quelle est la différece etre C(Ω), C(Ω) et C(Ω)? 2. Soit H u espace préhilbertie

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1 SESSION 22 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE MP MATHEMATIQUES EXERCICE : ormes équivaletes. Soit f E. f est de classe C sur [,]. Doc la foctio f est cotiue sur le segmet [,] et par suite la foctio

Plus en détail

Exercice 1 (10 points)

Exercice 1 (10 points) Devoir surveillé 2 L usage de la calculatrice est autorisé La qualité de la présetatio et de la rédactio de la copie sera prise e compte das so évaluatio Sauf metio du cotraire, toute répose doit être

Plus en détail

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u + 2 2 Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v

Plus en détail

Suites et limites. Chapitre Exercices. 1. Calcul des limites I. (r) Calculer. sin 1 2 n. (l) Calculer lim n( n 4 + 4n + 5 n 2 ).

Suites et limites. Chapitre Exercices. 1. Calcul des limites I. (r) Calculer. sin 1 2 n. (l) Calculer lim n( n 4 + 4n + 5 n 2 ). Chapitre Suites et ites Exercices Calcul des ites I (a) Calculer (b) Calculer (c) Calculer (d) Calculer (e) Calculer (f) Calculer (g) Calculer (h) Calculer (i) Calculer (j) Calculer (k) Calculer + + 4

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail