Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k"

Transcription

1 SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette série est oté u ou plus simplemet u s il y a pas ambiguïté sur le premier terme. Pour 0, S est appelée somme partielle de rag de cette série. Remarque. Ue série est doc u cas particulier de suite. Exemple. O appelle série arithmétique toute série dot le terme gééral est le terme gééral d ue suite arithmétique. Par exemple, est ue série arithmétique. Sa somme partielle de rag est (+) 2. 0 Exemple.2 O appelle série géométrique toute série dot le terme gééral est le terme gééral d ue suite géométrique. Par exemple, 0 2 est ue série géométrique. Sa somme partielle de rag est 2. Exemple.3 O appelle série harmoique la série. Exemple.4 O appelle série télescopique toute série dot le terme gééral est de la forme u = v v. La somme partielle de rag de la série u est v v 0. Remarque. La suite des sommes partielles de la série u est croissate (resp. décroissate) si et seulemet si la suite (u ) 0 + est positive (resp. égative).

2 .2 Nature et somme d ue série Défiitio.2 Covergece et divergece O dit qu ue série coverge (resp. diverge) si la suite de ses sommes partielles coverge (resp. diverge). Remarque. La covergece d ue série e déped pas du premier rag i.e. les séries de même ature. Défiitio.3 Somme d ue série Si la série otée u. u et u sot u coverge, la limite de la suite des sommes partielles est appelée somme de la série et est Remarque. O a doc u = lim + u k. Remarque. Aussi surpreat cela puisse-t-il paraître, ue somme ifiie de termes, fusset-ils tous positifs peut se révéler être fiie. Attetio! La otatio u a de ses que si la série covergece de la série avat d employer cette otatio. u coverge. Il faut doc prouver la Propositio. Lie suite/série La série (u u ) et la suite (u ) sot de même ature (i.e. elles coverget toutes les deux ou elles diverget toutes les deux). De plus, si (u ) coverge vers ue limite l, u u = l u 0. Exercice. Nature et somme de la série ( + ). Exercice.2 Taylor-Lagrage A l aide de l iégalité de Taylor-Lagrage prouver la covergece et détermier la somme des séries suivates x.! pour x R ; 0 ( ) x 2 2. et ( ) x 2+ (2)! (2 + )! N N ( ) x 3. pour x [0, ]. pour x R. 2

3 .3 Divergece grossière Propositio.2 Soit u ue série covergete. Alors la suite (u ) coverge vers 0. Attetio! La réciproque est absolumet fausse. Par exemple, la suite de terme gééral tadis que la série harmoique diverge. coverge vers 0 Propositio.3 Nature d ue série géométrique Soit q C. La série géométrique q coverge si et seulemet si q <. Das ce cas, =0 q = q. Exercice.3 Nature et somme de la série N q. Défiitio.4 Divergece grossière Ue série u est dite grossièremet divergete lorsque la suite (u ) e coverge pas vers 0. Exemple.5 Si q, la série q diverge grossièremet. La série e diverge pas grossièremet..4 Reste d ue série covergete Défiitio.5 Reste d ue série covergete Soit u ue série covergete. Pour tout 0, la série u k est covergete et o appelle sa k + somme le reste de rag de la série u. Autremet dit, le reste de rag de la série u est k=+ u k. Propositio.4 Soit u ue série covergete. Alors pour tout 0 u k = u k + k=+ u k 3

4 Remarque. Si o ote S la somme partielle de rag, R le reste de rag et S la somme de la série, o a doc S + R = S pour tout 0. Exemple.6 Lorsque q <, le reste de rag de la série N q est q+ q. Corollaire. La suite des restes d ue série covergete coverge vers 0..5 Opératios sur les séries La propositio suivate est qu ue coséquece de la liéarité de la limite. Propositio.5 Liéarité de la somme Soiet u et v deux séries umériques covergetes et (λ, µ) K 2. Alors la série (λu + µv ) coverge et (λu + µv ) = λ u + µ v Remarque. E termes plus savats, les séries umériques covergetes formet u K-espace vectoriel et l applicatio qui à ue série covergete associe sa somme est ue forme liéaire sur cet espace vectoriel. Attetio! La réciproque est fausse e gééral. Par exemple, si (u + v ) coverge, o e peut rie dire de u et v (predre par exemple, u = v = 2 ). O évitera à tout prix d écrire des égalités du type la covergece des séries u et v. (u + v ) = u + v avat d avoir prouvé Propositio.6 Soit u ue série complexe. Alors u coverge si et seulemet si Re(u ) et Im(u ) coverget et das ce cas u = Re(u ) + i Im(u ) E particulier ( + ) ( + ) Re u = Re(u ) Im u = Im(u ) 4

5 Exercice.4 Soit x R. Motrer que la série (ix) coverge et a pour somme e ix. E déduire la covergece des séries! N ( ) x 2 et ( ) x 2+ et leurs sommes. (2)! (2 + )! N N Propositio.7 Cojugaiso Soit u ue série umérique. Alors les séries E cas de covergece, u = u. u et u sot de même ature. 5

6 2 Comparaiso à ue itégrale Méthode Comparaiso à ue itégrale O cosidère ue série 0 f() où f est ue foctio cotiue et mootoe sur R +. O peut comparer les sommes partielles S à ue itégrale pour détermier la ature de la série. Si, par exemple, f est croissate, o e déduit que pour tout k N et t [k, k + ] : Puis par itégratio sur [k, k + ], f(k) f(k) f(t) f(k + ) k+ k f(t)dt f(k + ) Efi, e sommat l iégalité de gauche pour 0 k et celle de droite pour 0 k, o obtiet via la relatio de Chasles 0 f(t) dt + f(0) S + 0 f(t) dt O a des résultats aalogues lorsque f est décroissate. Les ecadremets obteus permettet évetuellemet de détermier u équivalet de la suite des sommes partielles. E modifiat légèremet la techique, o peut égalemet obteir u équivalet de la suite des restes (e cas de covergece). Graphiquemet, la méthode correspod à ecadrer l itégrale de f sur u itervalle par ue somme d aires de rectagles d où le om de méthode des rectagles. Cas d ue foctio croissate Cas d ue foctio décroissate Remarque. Il e s agit pas de reteir des formules par cœur mais de reteir la méthode permettat d obteir des ecadremets des sommes partielles et des restes. 6

7 Exemple 2. Équivalet de la série harmoique La foctio t t est décroissate sur R +. O e déduit que pour tout k N et tout t [k, k + ], k + t k Par itégratio, k+ k + dt k t k E sommat coveablemet, o obtiet pour tout N ou ecore + dt t l( + ) k= k= k + dt t + l() k L iégalité de gauche permet de coclure que la série harmoique diverge. L ecadremet permet même d affirmer que doer u équivalet des sommes partielles k= l. k Propositio 2. Séries de Riema Soit α R. La série coverge si et seulemet si α >. α Remarque. Si α 0, la série diverge grossièremet. α Remarque. Pour α <, o ote ζ(α) = =. La foctio ζ est appelée foctio ζ de Riema. α 7

8 Exemple 2.2 Équivalet du reste de la série 2 La foctio t t 2 est décroissate sur R +. O e déduit que pour tout k N et tout t [k, k + ], (k + ) 2 t 2 k 2 Mais e sommat l ecadremet précédet, o a égalemet pour N > ou ecore Par passage à la limite N+ + dt t 2 + N + + N k=+ + k=+ N k=+ N k 2 dt t 2 k 2 N k 2 O obtiet aisi u équivalet de la suite des restes de la série 2. k=+ k 2 + Exercice 2. Détermier u équivalet de la somme partielle de la série lorsque α >. lorsque α < et u équivalet de so reste α 3 Séries à termes positifs Ue série u est dite à termes positifs si les u sot positifs. 3. Résultats gééraux Le théorème de la limite mootoe permet d éocer le résultat suivat. Propositio 3. Ue série à termes positifs coverge si et seulemet si la suite de ses sommes partielles est majorée. Das le cas cotraire, elle diverge vers +. Corollaire 3. Soit u et v deux séries réelles telles que 0 u v à partir d u certai rag. (i) Si v coverge, alors u coverge. (ii) Si u diverge, alors u diverge. 8

9 Remarque. E cas de covergece et si u v pour N, alors u =N =N v. Exemple 3. La série arcta 2 coverge. La série l diverge. 3.2 Absolue covergece Défiitio 3. Absolue covergece Ue série umérique (réelle ou complexe) u est dite absolumet covergete si u coverge. Théorème 3. Ue série absolumet covergete est covergete. Das ce cas, =0 u =0 u. Attetio! La réciproque est fausse. La série ( ) + coverge tadis que la série diverge. Exemple 3.2 La série si 2 coverge absolumet. Exercice 3. Sommatio d Abel Soiet (a ) 0 et (B ) 0 deux suites complexes. O défiit deux suites (A ) 0 et (b ) 0 de la maière suivate : 0, A = a k, b = B + B. Motrer que a k B k = A B A k b k pour tout Utiliser la questio précédete pour étudier la covergece de si. 3. De maière géérale, motrer que si (B ) coverge vers 0, si (A ) est borée et si covergete, alors a B est covergete. b est absolumet 9

10 3.3 Relatios de comparaiso Propositio 3.2 Soiet u et v deux séries umériques. O suppose v à termes positifs à partir d u certai rag. Si u = O (v ) et si v coverge, alors u coverge (absolumet). Remarque. Les résultats restet vrais si o remplace le O par u o puisque la égligabilité implique la domiatio. Attetio! Ecore ue fois, il est essetielle que la série v soit à termes positifs. Posos u = et v = ( ). La série v coverge et u = O (v ) mais u diverge. Propositio 3.3 Soiet u et v deux séries umériques dot l ue des deux est à termes positifs à partir d u certai rag. Si u v, alors u et v sot de même ature. Remarque. Si u v, u et v sot de même sige à partir d u certai rag. Exemple 3.3 La série e coverge. La série l diverge. La série si est covergete. Attetio! Il est essetiel que les des deux séries soit à termes positifs (du mois à partir d u certai rag). Par exemple, e posat u = ( ) v diverge. et v = ( ) +, o a bie u v mais u coverge tadis que Exercice 3.2 Règle de d Alembert Soit N u ue série à termes strictemet positifs.. Motrer que si la suite de terme gééral u + u admet ue limite l <, alors N u coverge. 2. Motrer que si la suite de terme gééral u + u admet ue limite l >, alors N u diverge. 3. Motrer à l aide de deux exemples que l o e peut pas coclure si la suite de terme gééral u + u admet pour limite. 4. Étudier la ature de la série N!. 0

11 4 Développemet décimal d u réel Propositio 4. Développemet décimal d u réel Soit x R. Il existe ue uique suite (x ) N telle que x 0 Z ; x 0, 9 pour tout N ; la suite (x ) N est pas statioaire e 9 (i.e. est pas costate égale à 9 à partir d u certai rag) ; x = =0 x 0. Cette écriture s appelle le développemet décimal propre du réel x. Remarque. L etier x 0 est la partie etière de x et la suite (x ) N est la suite des décimales de x. Remarque. Si o impose plus à la suite (x ) de e pas être costate égale à 9 à partir d u certai rag, tout ombre décimal admet deux développemets décimaux. Par exemple 0, = 0, La secode écriture s appelle u développemet décimal impropre. Le développemet décimal d u réel o décimal est toujours propre : la coditio de o statioarité e 0 est doc superflue pour garatir l uicité du développemet décimal propre das ce cas. Remarque. Soit N N. Le réel de x à 0 N près. O peut remarquer que N = N = x 0 N 0 = x 0 N. x s appelle la trocature de x à N décimales. C est ue approximatio 0 Exercice 4. Soit x R. Motrer que x est ratioel si et seulemet si so développemet décimal est périodique à partir d u certai rag. Algorithme Développemet décimal Doées : u réel x u etier aturel N Résultat : ue liste L coteat la partie etière suivie des N premières décimales de x L L L, x a x x Pour variat de à N Faire L L, 0a a 0a 0a Fi Pour O peut proposer l algorithme suivat e Pytho.

12 from math import floor def decimal(x,n): L=[floor(x)] a=x floor(x) for i rage(n): L.apped(floor(0 a)) a=0 a floor(0 a) retur L Implémetatio de l algorithme e Pytho Remarque. Tout ce qui précède a été établi e base 0 mais reste vrai, mutatis mutadis, e base quelcoque. 2

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Cours de mathématiques P.S.I.*

Cours de mathématiques P.S.I.* Cours de mathématiques PSI* D'après les cours de M Guillaumie Heriet Queti Séries umériques Das tout le chapitre, K désige le corps R ou C, et o désige par u ue suite de K Gééralités Vocabulaire Défiitio

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI Ξ 2 Suites umériques 2016-2017 Résumé du cours de MPSI I/ Défiitio, propriétés globales 1/ Défiitio Ue suite de complexes u est ue applicatio de N das C Notatios : L'image d'u etier par u se ote u( ou

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Cours de Mathématiques Séries numériques ou vectorielles Sommaire

Cours de Mathématiques Séries numériques ou vectorielles Sommaire Sommaire Sommaire I Gééralités sur les séries......................... 2 I. Espace vectoriel des séries, Sous-espace des Séries covergetes.... 2 I.2 Critère de Cauchy. Espace des séries ormalemet covergetes....

Plus en détail

Feuille d Exercices : Suites, suite!

Feuille d Exercices : Suites, suite! ECS 1 Dupuy de Lôme Semaie du 6 décembre 004 Feuille d Exercices : Suites, suite! Exercice 1 : Pour tout etier, o défiit u = 1. Motrez que u est mootoe.. Motrez que v est géométrique. k= 3. E déduire l

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

Chapitre : Séries numériques.

Chapitre : Séries numériques. ESI. Math. 009/00. Chapitre : Séries umériques. Itroductio géérale: Le but de ce chapitre est de défiir ce qu est ue série umérique et ce que veut dire qu elle coverge, o doera otamet u ses à ue somme

Plus en détail

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition.

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition. CHAPITRE II Séries umériques I II - Défiitios et propriétés géérales - Séries à termes réels positifs ou uls III-Séries - à termes quelcoques I-Défiitios et propriétés géérales Défiitio. Soit (u N ue suite

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

Exercices corrigés sur les séries de fonctions

Exercices corrigés sur les séries de fonctions Eercices corrigés sur les séries de foctios Eocés Eercice Motrer que la série ( ) est uiformémet covergete mais o ormalemet covergete sur [, ] Eercice 2 Étudier la covergece sur R + de la série de foctios

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

1. Convergence des Séries Numériques

1. Convergence des Séries Numériques Séries umériques 8 - Sommaire. Covergece des Séries Numériques.. Nature d ue série umérique.......2. Séries géométriques............ 2.3. Coditio élémetaire de covergece. 2.4. Suite et série des différeces.......

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Séries à termes positifs

Séries à termes positifs UFR SFA, Licece 2 e aée, MATH326 Séries à termes positifs Das ce chapitre, u Ø 0, pour tout, et o étudie q u. O a S S = u Ø 0 : (S ) est croissate!. Gééralités. Propositio. Soit (u ) Ø0 ue suite de réels

Plus en détail

S n = u u n. S = u k. k=0

S n = u u n. S = u k. k=0 Chapitre 3 Séries umériques 3. Défiitios et exemples 3.. Défiitios Défiitio 3.. Soit (u ) ue suite réelle. O lui associe (S ) ue ouvelle suite défiie par S = u 0 + + u. O appelle série de terme gééral

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Corrigé du problème: autour de la fonction zeta alternée de Riemann

Corrigé du problème: autour de la fonction zeta alternée de Riemann Corrigé du problème: autour de la foctio zeta alterée de Riema I Gééralités Pour x >, la suite décroît vers, doc la série coverge par le critère spécial des séries alterées Pour x, e ted pas vers, ce qui

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

Feuille 2 : Séries numériques.

Feuille 2 : Séries numériques. Feuille 2 : Séries umériques. Master Eseigemet Spécialité Maths Coseils O accordera ue importace toute particulière aux démostratios des théorèmes du cours. Certais exercices de cette feuille sot ispirés

Plus en détail

Séries numériques. 1 q n+1 1 q. si q 1 ; n + 1 si q = 1. q k = k=0. , posons U n = k. α. k=1

Séries numériques. 1 q n+1 1 q. si q 1 ; n + 1 si q = 1. q k = k=0. , posons U n = k. α. k=1 Séries umériques Défiitios et premières propriétés. Défiitios Défiitio (Série umérique) Soit () N ue suite complexe. Pour tout N o pose : U = ( ème somme partielle). La suite (U ) N est alors appelée la

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1 [http://mp.cpgedupuydelome.fr] édité le 8 décembre 6 Eocés Séries umériques Nature de séries umériques Exercice [ ] [Correctio] Détermier la ature des séries dot les termes gééraux sot les suivats : a

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

1. Limite d'une suite... p2. Suites convergentes

1. Limite d'une suite... p2. Suites convergentes Suites covergetes 1.... p2 4. Cas particuliers... p9 2. Limites et comparaiso... p6 5. Suites mootoes... p11. Opératios sur les limites... p7 1. Limite d'ue suite 1.1. Limite ifiie a) Défiitios O dit que

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1 SESSION 2005 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES PREMIER EXERCICE a. T (x + y dxdy = = ( y= (x + y dy y= x dx = ((x + 2 ( x2 + x2 2 dx = T (x + y dxdy = 4 3. [xy +

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

L2 - Math4 Exercices corrigés sur les suites numériques

L2 - Math4 Exercices corrigés sur les suites numériques L2 - Math4 Exercices corrigés sur les suites umériques Eocés Exercice Les assertios suivates sot-elles vraies ou fausses? Doer ue démostratio de chaque assertio vraie, et doer u cotre-exemple de chaque

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

Séries Numériques. Chapitre Suites Numériques Définitions

Séries Numériques. Chapitre Suites Numériques Définitions Chapitre Séries Numériques Suites Numériques Défiitios Ue suite umérique est ue applicatio de N (ou d ue partie de N) à valeurs das R ou das C O la ote u(), ou u, et o désige la suite (c est-à-dire l applicatio)

Plus en détail

Synthèse de cours PanaMaths (TS) Suites numériques

Synthèse de cours PanaMaths (TS) Suites numériques Sythèse de cours PaaMaths (TS) Suites umériques Das ce chapitre, le terme «suite» désige ue suite umérique (c'est-à-dire, das le cadre du programme de Termiale S, ue suite de réels). Ue telle suite sera

Plus en détail

Séries entières. Plan de cours

Séries entières. Plan de cours 5 Séries etières «U mathématicie qui est pas aussi quelque peu poète e sera jamais u mathématicie complet.» Extrait d ue lettre de Karl Weierstrass à Sophie Kowalevski (883) Pla de cours I Rayo de covergece

Plus en détail

SÉRIES. Cette question spécifique appelle des résultats spécifiques qui sont l objet du chapitre. u k (n ème reste de la série), alors : lim.

SÉRIES. Cette question spécifique appelle des résultats spécifiques qui sont l objet du chapitre. u k (n ème reste de la série), alors : lim. Christophe Bertault Mathématiques e MPSI SÉRIES INTRODUCTION AUX SÉRIES. SÉRIE, SOMME, PREMIERS EXEMPLES Défiitio (Série, sommes partielles) Soit(u ). Pour tout, o pose : U partielle). La suite(u ) est

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

Comportement asymptotique des suites

Comportement asymptotique des suites Comportemet asymptotique des suites Table des matières 1 Itroductio 2 2 Limite d ue suite 2 2.1 Limite fiie d ue suite........................................... 2 2.2 Limite ifiie d ue suite..........................................

Plus en détail

230. Séries numériques. Comportement des restes ou sommes partielles. Exemples.

230. Séries numériques. Comportement des restes ou sommes partielles. Exemples. 23. Séries umériques. Comportemet des restes ou sommes partielles. Exemples. Pierre Lissy December 8, 29 Das tout ce qui suit, K désige R ou C Covergece d'ue série. Déitio et modes de covergece[3] Déitio.

Plus en détail

Limites de suites, cours, terminale S

Limites de suites, cours, terminale S Limites de suites, cours, termiale S Covergece de suites Déitio : Soit (u ) ue suite. O dit que (u ) coverge vers u réel l ou a pour limite l lorsque tout itervalle ouvert A coteat l, cotiet tous les termes

Plus en détail

Suites réelles ou complexes

Suites réelles ou complexes 3 Suites réelles ou complexes 3. Prérequis L esemble R des ombres réels est supposé costruit avec les propriétés suivates : c est u corps commutatif totalemet ordoé ; il cotiet l esemble Q des ombres ratioels

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

Séries numériques. n 3. 6) a n ) 1 + ( 1)n n. 1! + 2! n!. (n + 2)! 12) 15) n + ( 1) (ln n)n n ln n. 18) 1. ( 1) n + n α, ( ) a et.

Séries numériques. n 3. 6) a n ) 1 + ( 1)n n. 1! + 2! n!. (n + 2)! 12) 15) n + ( 1) (ln n)n n ln n. 18) 1. ( 1) n + n α, ( ) a et. Séries umériques Exercice. Étude de covergece Étudier la covergece des séries de terme gééral : + e. ch α sh α. 3 l 3 + 3 l +. 4 +. 5 arccos 3 + 3. 6 a + + a. 7 +. 8 l. 9 +. 0 3.4.6.... l + siπ/3. 4 6

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail

M1 MEEF PRÉPARATION À L ÉCRIT DU CAPES DE MATHÉMATIQUES ANALYSE

M1 MEEF PRÉPARATION À L ÉCRIT DU CAPES DE MATHÉMATIQUES ANALYSE M1 MEEF PRÉPARATION À L ÉCRIT DU CAPES DE MATHÉMATIQUES ANALYSE Matthieu Fradelizi Uiversité Paris-Est Mare-la-Vallée 2015-16 2 Table des matières 1 Les esembles N, Q et R 5 1.1 Propriété fodametale de

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

Analyse mathématique II

Analyse mathématique II UNIVERSITÉ IBN ZOHR Faculté des Scieces Juridiques Écoomiques et Sociales Corrigés des QCM Aalyse mathématique II FILIÈRE SCIENCES ÉCONOMIQUES ET GESTION PREMIERE ANNÉE Sessio ormale 03/04 40 questios

Plus en détail

C.C.P TSI Mathématiques 1

C.C.P TSI Mathématiques 1 CCP TSI Mathématiques Eercice -) L'éocé e dit pas que f est défiie sur IR O pourrait doc cosidérer que f est défiie sur IR πz et, das ce cas, f() et f(π) 'eisteraiet pas Si f est défiie sur IR, par imparité

Plus en détail

Chapitre 8 : Séries. Introduction. 1 Dénitions. ECE3 Lycée Carnot. 2 décembre 2010

Chapitre 8 : Séries. Introduction. 1 Dénitions. ECE3 Lycée Carnot. 2 décembre 2010 Chapitre 8 : Séries ECE3 Lycée Carot 2 décembre 200 Itroductio Reveos pour itroduire ce chapitre quelques siècles e arrière, au temps de Zéo d'élée, philosophe grec du ciquième siècle avat J-C. Celui-ci

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Les suites récurrentes à convergence lente

Les suites récurrentes à convergence lente Les suites récurretes à covergece lete Daiel PERRIN 0. Itroductio. Je me propose d écrire ue sorte de bila sur la covergece des suites u + = f(u ), avec f de classe C au mois, vers u poit fixe α, das le

Plus en détail

Feuille d exercices 4

Feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 2009/200 MIME 22 LM5-Suites et Itégrales Groupe 22 Feuille d exercices Suites Covergece de suites Exercice Ecrire l éocé qui traduit : (u ) N est pas croissate Cet

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Convergence et limite de suites numériques

Convergence et limite de suites numériques Covergece et limite de sites mériqes 1. Covergece d e site 1.1. Défiitio Ue site de ombres réels est covergete et admet comme limite ombre réel l si, qelqe soit le ombre ε > 0 assi petit soit-il, il existe

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Support de Cours d Analyse 3. avec Exercices Corrigés

Support de Cours d Analyse 3. avec Exercices Corrigés République Algériee Démocratique et Populaire Miistère de l Eseigemet Supérieur et de la Recherche Scietifique Uiversité de Béjaia Faculté des Scieces Exactes Départemet de Recherche Opératioelle Support

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

II Exemples 2 II.A Série géométrique... 2 II.B Série exponentielle... 3 II.C Série harmonique... 4 II.D Série harmonique alternée...

II Exemples 2 II.A Série géométrique... 2 II.B Série exponentielle... 3 II.C Série harmonique... 4 II.D Série harmonique alternée... Séries umériques I Défiitios et otatios II Exemples 2 II.A Série géométrique....................................... 2 II.B Série expoetielle...................................... 3 II.C Série harmoique.......................................

Plus en détail

TD1 - Suites numériques

TD1 - Suites numériques IUFM du Limousi 2008-09 PLC1 Mathématiques S. Viatier Exercices TD1 - Suites umériques Exercice 1 Soit α > 0, étudier la covergece des suites déies par u = ( ) 1 + si α, v = 3 + cos α ( ) 1 + α. 3 + Idicatio

Plus en détail

Cours I : SUITES NUMERIQUES. I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels Agrocampus Ouest ENIHP ère aée p. Cours I : SUITES NUMERIQUES / Défiitio I Quelques rappels Défiitio : Ue suite u est ue applicatio de l esemble N ou ue partie de N das R qui à chaque élémet de N associe

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Université de Rennes 2 Licence MASS 2 Année 2006/2007 Premier Semestre. Suites & Séries. Arnaud Guyader

Université de Rennes 2 Licence MASS 2 Année 2006/2007 Premier Semestre. Suites & Séries. Arnaud Guyader Uiversité de Rees 2 Licece MASS 2 Aée 26/27 Premier Semestre Suites & Séries Araud Guyader Table des matières Séries umériques. Suites umériques : rappels et complémets........................ Gééralités......................................2

Plus en détail

Feuille d exercices 11

Feuille d exercices 11 Mathématiques Aalyse I M. Samy Modeliar Feuille d eercices Itégratio Correctio Eercice Détermier, si elle eiste, la ite e + de la suite de terme gééral si ( π + ) d + Correctio. Pour tout etier, la foctio

Plus en détail

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ).

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ). Colle PC Semaie 3 0-03 Séries Etières Voir : http://www.mimaths.et/img/pdf/s5.pdf http://www.mimaths.et/img/pdf/sem5.pdf EXERCICE :. Doer u exemple de série etière de rayo de covergece π.. Détermier le

Plus en détail

Suites et séries réelles

Suites et séries réelles Suites et séries réelles Ue suite umérique est ue famille de ombres réels ou complexes idicées par les etiers aturels. O ote ue suite u idifféremmet (u ) N, ou (u ) 0, ou simplemet (u ). L esemble des

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Corrigé feuille d exercices 4

Corrigé feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 008/009 MIME LM5-Suites et Itégrales Groupes Corrigé feuille d exercices Suites Covergece de suites Exercice Ue suite u N est pas croissate, si o N, u + u est vérifiée

Plus en détail

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si :

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si : Sites mootoes Sites adjacetes Approximatios d réel Développemet décimal Pré reqis Axiome de la bore spériere Limite d e site Partie etière d réel Divisio eclidiee Sites mootoes Défiitios : O dit d e site

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u + 2 2 Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v

Plus en détail

Exercices d Analyse (suite)

Exercices d Analyse (suite) Uiversité de Poitiers Aée 202-203 M EFM Eercices d Aalyse (suite) Eercice Soiet (u ) 2 défiie par u =. Motrer que (u ) 2 est covergete. cos( π 2 k) et v = u si( π 2 ). 2. Motrer que (v ) 2 est ue suite

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1 SOLUTIONS AUX EXERCICES DE LA FEUILLE. Exercice. Ue suite de réels positifs qui coverge vers 0 est décroissate à partir d u certai rag. C est faux. Pour costruire u cotre-exemple, o pourrait cosidérer

Plus en détail

24 novembre Séries numériques 3

24 novembre Séries numériques 3 Séries umériques MP 24 ovembre 203 Table des matières Séries umériques 3. Gééralités.................................... 3.2 Critère de Cauchy, séries absolumet covergetes.............. 4.3 Quelques exemples

Plus en détail