Formalisme des processus aléatoires

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Formalisme des processus aléatoires"

Transcription

1 HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel, un signal déerminise es un signal don on peu déerminer la valeur à l'insan +τ, par la connaissance de sa valeur à l'insan. Dans le domaine specral, le specre du signal perme par exemple, de donner une indicaion sur l'énergie conenue dans le signal en foncion de la fréquence. Les signaux déerminises simples son généralemen caracérisés par un pei nombre de paramères. Par exemple, un signal coninu es oalemen déerminé si l'on connaî son ampliude. Un signal sinusoïdal es complèemen déerminé si l'on connaî son ampliude, sa fréquence e sa phase à l'origine... - Signal aléaoire Par opposiion aux signaux déerminises, le brui es un signal aléaoire, c'es à dire que les signaux de brui son liés au hasard. Le brui sera donc modélisé par des foncions aléaoires e raié par les lois de la héorie des probabiliés, aussi bien dans le domaine emporel (disribuion en ampliude) que dans le domaine specral (densiés specrales). Un signal aléaoire ne peu pas êre complèemen déerminé par un nombre fini de paramères. ous monrerons cependan que pour la plupar des signaux aléaoires d'origine physique, une connaissance des propriéés moyennes du signal es plus uile qu'une descripion exace e déaillée de sa variaion en foncion du emps. ous verrons plus ard, que le brui es un processus aléaoire, souven considéré comme saionnaire e ergodique e de valeur moyenne nulle.

2 Formalisme des processus aléaoires. - Variables e foncions aléaoires Les processus aléaoires son décris par des variables aléaoires. Généralemen, en élecronique, ces variables aléaoires dépenden du emps. On parle alors de foncions aléaoires. Lorsque le emps es échanillonné, la foncion aléaoire s'exprime comme un sysème de n variables aléaoires, pouvan présener des crières de dépendance sochasique. Les variables aléaoires ou les foncions aléaoires peuvenr êre réelles ou complexes. Dans la plupar des cas, la connaissance des propriéés moyennes d'un signal aléaoire es plus uile e surou plus accessible que la connaissance exace de sa variaion en foncion du emps... - Moyennes On peu définir deux ypes de moyennes : la moyenne spaiale ; la moyenne emporelle. Prenons pour variable aléaoire (), la variaion de ension du réseau de disribuion basse ension EDF, par rappor à la ension nominale en un poin d'une ville. En poins différens de la ville, nous pouvons considérer des variaions (), 3(),... (). Il es donc possible d'observer aux mêmes insans, différenes variables aléaoires se reporan au même processus aléaoire. La moyenne spaiale ou moyenne d'ensemble es définie par : m lim (.) ( ) i( ) = On obien ainsi une foncion qui varie avec le emps. Pour la gesion du réseau, il es souven plus uile de disposer de la variaion de ension du réseau en un poin donné de la ville, mais en foncion du emps. Il es alors possible de définir la moyenne emporelle. La moyenne emporelle d'un processus aléaoire coninu, es donnée par : + i = lim. i(). d (.) En principe, on peu obenir une bonne esimaion de la moyenne spaiale avec un grand nombre de poins d'observaion, e une bonne esimaion de la moyenne emporelle avec une grande durée d'observaion T. Les moyennes spaiales ou emporelles son souven appelées «momens du premier ordre»

3 Variables e foncions aléaoires Variance, écar ype e valeur efficace La variance d'un ensemble de variables aléaoires es définie comme une moyenne spaiale : var ( ) = lim [ i( ) m( ) ] (.3) La variance représene la moyenne quadraique de «l'écar à la moyenne» des variables aléaoires considérées. On noe égalemen : var =σ (.4) σ : es l'écar ype. ( ) La valeur efficace de la variable i( ), es définie par une moyenne emporelle : + i eff = i = lim [ i() ] T T. d (.5) Les relaions (.5) monre que la valeur efficace es égale à la racine carrée de la moyenne emporelle du carré du signal, que l'on appelle égalemen, «valeur quadraique moyenne» ou «momen du deuxième ordre».3 - Propriéés des variables aléaoires emporelles.3. - Indépendance ou incohérence Deux variables aléaoires emporelles e Y, son indépendanes si la moyenne emporelle de leur produi es égale au produi de leurs moyennes emporelles : Y. =. Y (.6).3. - Saionnarié Un processus aléaoire es saionnaire si ses propriéés saisiques d'ensemble ne dépenden pas de l'insan choisi. La saionnarié au premier ordre se radui au niveau des moyennes par : ( ) ( ) ( ),,... : m = m =... m (.7) i i La saionnarié au deuxième ordre se radui au niveau des variances par : ( ) ( ) ( ),,... : var = var =...var (.8) i i

4 4 Formalisme des processus aléaoires La saionnarié srice es difficile à vérifier. Par conre il es possible de considérer qu'un phénomène es saionnaire si ses propriéés saisiques d'ensemble ne dépenden pas de l'insan choisi sur un inervalle de emps grand devan celui du processus Ergodisme Un processus aléaoire es ergodique, si les moyennes d'ensemble e les moyennes emporelles son ideniques : e k, lim i( ) = lim () k. d Remarquons que l'ergodisme implique la saionnarié. + (.9) A parir d'une observaion insananée sur un grand nombre d'échanillons d'un processus ergodique, il es possible de faire des prédicions sur l'évoluion emporelle de ce processus. Dans le cas d'un processus ergodique, nous pouvons confondre les moyennes d'ensemble e les moyennes emporelles Relaion enre valeur efficace e variance d'un processus ergodique Sur un nombre d'échanillons relaivemen grand, la variance de la variable aléaoire emporelle, () saionnaire e ergodique s'écri sous la forme : Développons la relaion (.) : σ = σ ( ) (.) =.. + (.) En considéran les relaions (.5), (.) e (.9), nous obenons : σ eff m = = (.) Addiion de deux processus indépendans ergodiques onsidérons deux processus aléaoires indépendans ergodiques e Y, de valeurs moyennes nulles : = Y = (.3) Y. =. Y = (.4)

5 Propriéés des variables aléaoires emporelles 5 L'addiion de ces deux processus condui à : 'es à dire : Z = + Y (.5) Z = + Y +.. Y (.6) La valeur efficace, définie comme la valeur quadraique moyenne, condui à : Z = + Y eff eff eff (.7) Z = + Y (.8).4 - Disribuion d'ampliude.4. - Foncion de répariion ou foncion de disribuion La foncion de répariion radui la probabilié F( x) qu'a l'ampliude insananée ( ) d'un signal d'êre inférieure à une valeur de référence x donnée : Fx ( )= Prob < x (.9).4. - Densié de probabilié Dans bon nombre de phénomènes physiques, la probabilié de rouver la variable ( ) inférieure à x es une quanié infiniésimale. Pour cee raison, on préfère lui associer la noion de densié de probabilié définie comme la dérivée de la foncion de répariion par rappor à x : Fx f( x) = d ( ) d x (.) La densié de probabilié caracérise la disribuion d'ampliude en posiion e en dispersion, mais elle ne donne aucune indicaion sur la rapidié des ses variaions emporelles. La densié de probabilié obéi à une condiion de normalisaion : + f ( x ).d x = (.)

6 6 Formalisme des processus aléaoires F(x) f(x) x x x x Fig.. - Exemple de foncion de disribuion e densié specrale associée Momens ous pouvons définir les différens momens à parir de la densié de probabilié Momen du premier ordre ou valeur moyenne La valeur moyenne ou momen du premier ordre ou encore espérance mahémaique d'une variable aléaoire es définie par : [ ] + = = E = x. f( x). dx (.) Momen du deuxième ordre ou moyenne quadraique Le momen du deuxième ordre es défini par : [ ] + = = E = x. f( x). dx (.3) Momen d'ordre n La généralisaion des relaions précédenes condui à : [ ] + n n n n = = E = x. f( x). dx (.4)

7 ovariance e foncion d'auocorrélaion ovariance e foncion d'auocorrélaion.5. - ovariance Définiion onsidérons une foncion aléaoire () e la valeur de deux échanillons ( ) e ( ), aux insans e. La covariance es définie par : (, ) = E ( ). ( ) (.5) Inroduisons le décalage τ enre les insans d'observaion : La covariance s'exprime alors par : τ= (, τ) = E ( ). ( + τ) (.6) (.7) onsidérons mainenan le cas où la foncion aléaoire () es complexe, c'es à dire qu'elle peu s'écrire sous la forme : A () e () () = A () + j. B () (.8) B : son des foncions aléaoires réelles. Dans ce cas, la covariance s'exprime sous la forme : (, τ) = E ( ). ( + τ) (.9) : es le complexe conjugué de la foncion aléaoire Propriéés Si le décalage enre les insans d'observaion s'accroî indéfinimen, les valeurs des deux échanillons deviennen indépendanes. La relaion (.7) se rédui au produi des espérances mahémaiques : ( τ) ( ) [ ] [ ( τ) ] lim, = E. E + (.3) τ Lorsque l'écar de emps enre les deux observaions diminue, la covariance aein sa valeur maximum. 'es ainsi que :.5. - Foncion d'auocorrélaion Définiion (, ) (, ) > τ (.3) La foncion d'auocorrélaion es la covariance d'une foncion aléaoire saionnaire au deuxième ordre :

8 8 Formalisme des processus aléaoires En enan compe de la relaion (.) : ( τ) = E ( ). ( + τ) (.3) + ( τ) = lim. ( ). ( + τ). d (.33) Dans le cas d'une foncion aléaoire complexe, la foncion d'auocorrélaion se dédui de la relaion (.9) : ( τ) = E ( ). ( + τ) (.34) Propriéés Lorsque τ=, les relaions (.3) e (.5) conduisen à : [( ) ] ( ) = E ( ) = = (.35) eff En raison de la saionnarié au deuxième ordre, la foncion d'auocorrélaion par τ, nous obenons : es paire. En remplaçan dans la relaion (.3), ( ) (). ( ).. Soi : E [ + ] = E [ ( ) ( )] = E[ () ( ) ] τ τ τ (.36) ( τ) ( τ) = (.37) ompe enu de la relaion (.8), e dans la cas d'un processus ergodique, nous avons : ( [ ]) ( τ ) E ( ) lim = = m τ [( ) ] eff (.38) ( ) = E ( ) = = = σ + m (.39) () τ σ + m m τ Fig.. - Foncion d'auocorrélaion d'un processus saionnaire e ergodique.

9 Bibliographie Foncions d'inercorrélaion.6. - Définiion La liaison enre deux foncions aléaoires saionnaires () e Y () es caracérisée par les foncions d'inercorrélaion définies par : Y ( τ) = E ( ). Y( + τ) (.4) Y ( τ) = E Y( ). ( + τ) (.4) En enan compe de la relaion (.33), nous avons : Y + ( τ) = lim. ( ). Y ( + τ). d (.4).6. - Propriéés Y Y ( τ) ( τ) = (.43) Y ( τ) ( τ) (.44) Y Bibliographie [] B. PIIBOO, «Inroducion à l'éude des signaux e phénomènes aléaoires» Ed. Dunod, Paris, 97. [] B. DEMOULI, «Processus aléaoires» Les echniques de l'ingénieur, R, p. -3. [3] B. DEMOULI, «Foncions aléaoires» Les echniques de l'ingénieur, R, p. -6.

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Echantillonnage d un signal : principe et conditions à satisfaire.

Echantillonnage d un signal : principe et conditions à satisfaire. Page 1 Echanillonnage d un signal : principe e condiions à saisfaire. I. Inroducion. L acquisiion d une grandeur analogique par l inermédiaire d une care d acquisiion possédan plusieurs enrées analogiques

Plus en détail

Jean-Louis CAYATTE

Jean-Louis CAYATTE Jean-Louis CAYATTE hp://jlcayae.free.fr/ jlcayae@free.fr Chapire 4 La durée du chômage Quand on parle de la durée du chômage, si l on n y prend pas garde, on confond facilemen la durée moyenne du chômage

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3.2 Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Probabilités 5 : Loi normale centée réduite N (0 ; 1)

Probabilités 5 : Loi normale centée réduite N (0 ; 1) «I» : Théorème définiion / Théorème admis Probabiliés 5 : Loi normale cenée réduie N ( ; ) La foncion f définie sur R par f ()= π e es une densié de probabilié sur R Il es clair que f es coninue e posiive

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3. Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation»

Exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation» Exercice du cours Managemen Bancaire : «Calcul de la VaR d une obligaion» L une des préoccupaions des gesionnaires des risques dans les banques es de prendre en compe les caracérisiques des porefeuilles

Plus en détail

GRANDEURS PERIODIQUES

GRANDEURS PERIODIQUES GRANDEURS PERIODIQUES I. GRANDEURS VARIABLES 1. NOAIONS Nous représenons par une lere minuscule la valeur insananée d'une grandeur élecrique variable (inensié de couran i, ension u). La valeur maximale

Plus en détail

Mathématiques Financières

Mathématiques Financières Mahémaiques Financières ------------------------------------------------------- 4 ème parie - Marchés financiers en emps coninu & modélisaion des acions Universié de Picardie Jules Verne Amiens Jean-Paul

Plus en détail

IDENTIFICATION d'un SYSTEME par. UTILISATION des METHODES TEMPS- FREQUENCE. (réponse impulsionnelle, produit de convolution, réponse indicielle)

IDENTIFICATION d'un SYSTEME par. UTILISATION des METHODES TEMPS- FREQUENCE. (réponse impulsionnelle, produit de convolution, réponse indicielle) Dep GEII IUT Bordeaux I IDENTIFICATION d'un SYSTEME par UTILISATION des METHODES TEMPS- FREQUENCE (réponse impulsionnelle, produi de convoluion, réponse indicielle) (Vol. 2) G. Couurier Tel : 5 56 84 57

Plus en détail

Signal 1 Signal et ondes progressives

Signal 1 Signal et ondes progressives Signal Signal e ondes progressives Lycée Jules Viee - Grand Chenois - Physique-Chimie - TSI - 26-27 Conenu du programme officiel : Noions e conenus Eemples de signau, specre. Onde progressive dans le cas

Plus en détail

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI UNIVERSIE PARIS OUES, NANERRE LA DEFENSE UFR SEGMI Année universiaire 202 203 Cours d économérie L3 Economie Cours de Valérie MIGNON D de Benoî CHEZE e David GUERREIRO Exercice : Données en coupe D Inroducion

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonne Maser GSI - Capeurs Chaînes de Mesures 1 Plan du Cours Propriéés générales des capeurs Noion de mesure Noion de capeur: principes, classes, caracérisiques

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

CINEMATIQUE : MOUVEMENTS PARTICULIERS

CINEMATIQUE : MOUVEMENTS PARTICULIERS Cinémaique Analyique CINEMATIQUE : MUVEMENTS PARTICULIERS 1. Mouvemen de ranslaion : Définiions 1.1. Translaion d un solide Tous les poins d'un solide en ranslaion on : - Des rajecoires ideniques - La

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que PROPORTIONNALITE a) Définiion d une proporion a Quare nombres a, b, c e d éan non nuls, on di que c l une des condiions suivanes (équivalenes) es vérifiée : b d es une proporion lorsque Condiion 1 : Les

Plus en détail

La définition naturelle de la transformée de Fourier d une distribution T, devrait

La définition naturelle de la transformée de Fourier d une distribution T, devrait Chapire 12 Transformée de Fourier des disribuions 12.1 Inroducion La définiion naurelle de la ransformée de Fourier d une disribuion T, devrai êre ϕ D, < F(T ), ϕ >= < T, F(ϕ) > Mais il y a un problème

Plus en détail

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant :

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant : Chapire 7 Espérance 7. Inroducion espérance d une variable aléaoire es, lorsqu elle exise, la moyenne des valeurs de cee variable, pondérées par leurs probabiliés de réalisaion. On voi L bien commen raduire

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

SECONDE PARTIE - ELECTRONIQUE -

SECONDE PARTIE - ELECTRONIQUE - ENS de Cachan Concours d enrée en 3 ème année pour la préparaion à l agrégaion de Génie Elecrique Session 2001 SECONDE PARTIE - ELECTRONIUE - Ce problème se propose d éudier le foncionnemen de l élecronique

Plus en détail

CHAPITRE 1 SYSTÈMES LINÉAIRES - SYSTÈMES ASSERVIS

CHAPITRE 1 SYSTÈMES LINÉAIRES - SYSTÈMES ASSERVIS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE SYSTÈMES LINÉAIRES - SYSTÈMES ASSERVIS Les sysèmes - Définiions e exemples Un sysème peu êre défini comme un ensemble d'élémens

Plus en détail

LES ONDULEURS Convertisseurs DC/AC

LES ONDULEURS Convertisseurs DC/AC Chapire VI - Les onduleurs - LES ONDULEURS Converisseurs DC/AC I- Inroducion : L éude va porer sur les onduleurs : monophasés, de ension :Source d enrée (DC) = Source de Tension Source de sorie (AC) =

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

STRATEGIES DE MAINTENANCE LA FIABILITE DES SYSTEMES DE PRODUCTION

STRATEGIES DE MAINTENANCE LA FIABILITE DES SYSTEMES DE PRODUCTION I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Traitement Numérique du Signal. Signaux physiques et modèles théoriques

Traitement Numérique du Signal. Signaux physiques et modèles théoriques Traiemen Numérique du Signal James L. Crowley Deuxième Année ENSIMAG deuxieme semesre 2008/2009 Séance : 6 février 2009 Signaux physiques e modèles héoriques Signal e Informaion...2 Représenaion analogique

Plus en détail

Notion d oscillateur mécanique

Notion d oscillateur mécanique CHAPITRE 11 SYSTÈMES OSCILLANTS 1 Noion d oscillaeur mécanique 1. Définiion On appelle oscillaeur (ou sysème oscillan) un sysème pouvan évoluer, du fai de ses caracérisiques propres, de façon périodique

Plus en détail

Convertisseurs. Figure 1 Figure 2

Convertisseurs. Figure 1 Figure 2 Converisseurs Converisseurs On se propose d éudier expérimenalemen les converisseurs permean de passer d un signal analogique à un signal numérique, e inversemen. Il s agi de mesurer leurs principales

Plus en détail

LA THEORIE DE L'ECHANTILLONNAGE : LE THEOREME DE SHANNON

LA THEORIE DE L'ECHANTILLONNAGE : LE THEOREME DE SHANNON LA HEORIE DE L'ECHANILLONNAGE : LE HEOREME DE SHANNON 5 0 5 0 5 oue communicaion se fai par l inermédiaire de signaux, qui peuven êre acousiques (parole, e sons en général), élecromagnéiques (radio), élecriques

Plus en détail

Les fonctions logiques & l algèbre de Boole

Les fonctions logiques & l algèbre de Boole Les foncions logiques & l algèbre de Boole 1 - Algèbre de Boole Hisorique : Georges BOOLE, philosophe e mahémaicien anglais, publia en 1854 un essai sur les raisonnemens logiques poran sur les proposiions

Plus en détail

MODULATION D'ÉNERGIE, VARIATION DE VITESSE I/ INTRODUCTION, DÉFINITIONS

MODULATION D'ÉNERGIE, VARIATION DE VITESSE I/ INTRODUCTION, DÉFINITIONS Piloage, conrôle e comporemen des sysèmes - n 8 Page 1 MODULAION D'ÉNRGI, VARIAION D VISS I/ INRODUCION, DÉFINIIONS Cerains sysèmes nécessien, en exploiaion, une variaion de puissance. Celle-ci peu êre

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

Série chronologique = Chronique, série temporelle Valeurs successivement prises par une variable statistique au cours du temps

Série chronologique = Chronique, série temporelle Valeurs successivement prises par une variable statistique au cours du temps Série chronologique = Chronique, série emporelle Valeurs successivemen prises par une variable saisique au cours du emps E Série saisique bidimensionnelle (, ) Objecifs de l analyse d une série chronologique

Plus en détail

TD N 5 : Systèmes linéaires Les outils mathématiques

TD N 5 : Systèmes linéaires Les outils mathématiques Sysèmes Elecronique DUT APP 06 / 07 TD N 5 : Sysèmes linéaires Les ouils mahémaiques Chap. : Inroducion aux SA S.POUJOULY @poujouly hp://poujouly.ne Elémens de correcion Exercice n 3 : Modélisaion d'un

Plus en détail

Modèles autorégressifs à changements de régimes markoviens Applications aux séries temporelles de vent

Modèles autorégressifs à changements de régimes markoviens Applications aux séries temporelles de vent Modèles auorégressifs à changemens de régimes markoviens Applicaions aux séries emporelles de ven Pierre Aillio Page 1 Inroducion Moivaions Condiions d éas de mer (ven, vagues) influencen... Evoluion d

Plus en détail

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

Production - Transport et Distribution d Energie

Production - Transport et Distribution d Energie Le Minisère de l'enseignemen Supérieur e de la Recherche Scienifique Universié Viruelle de Tunis Réalisé par : Mme Souad Chebbi Aenion! Ce produi pédagogique numérisé es la propriéé exclusive de l'uvt.

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

Chapitre 7 : Les instruments de musique. Instruments à cordes, à vent, à percussion. Terminale spécialité Thème 2 : son et musique.

Chapitre 7 : Les instruments de musique. Instruments à cordes, à vent, à percussion. Terminale spécialité Thème 2 : son et musique. Chapire 7 : Les insrumens de musique. Insrumens à cordes, à ven, à percussion. Terminale spécialié Thème 2 : son e musique. I. Son émis par un insrumen de musique. 1. D abord, c es quoi un son? Définiion

Plus en détail

DOSSIER TECHNIQUE. FONCTION RETARD ou TEMPORISATION

DOSSIER TECHNIQUE. FONCTION RETARD ou TEMPORISATION DOSSIER TECHNIQUE Foncion FONCTION RETARD ou TEMPORISATION La foncion reard ou emporisaion es une foncion dans laquelle oue ransiion d enrée (commande) se radui par une ransiion reardée de l informaion

Plus en détail

Redressement commandé

Redressement commandé Redressemen commandé Exercice 1 On donne ci-dessous le chronogramme de la ension aux bornes de la charge u C.( 1 V / div ) La fréquence du signal u issue du ransformaeur es de 5 Hz. De plus, on donne E

Plus en détail

. Lorsque V>Vd >>V T, la résistance dynamique peut être approximée par la formule: r d = V

. Lorsque V>Vd >>V T, la résistance dynamique peut être approximée par la formule: r d = V Universié Mohammed Khidher Biskra A.U.: 204/205 Faculé des sciences e de la echnologie nseignan: Bekhouche Khaled Maière: lecronique Fondamenale Chapire 3 : La Diode 3.. Définiion, symbole e caracérisique

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Chapitre 3. Modèles de trafic et Contrôle d admission. 1. Besoins des applications. Source continue. Source continue par intermittence (ex.

Chapitre 3. Modèles de trafic et Contrôle d admission. 1. Besoins des applications. Source continue. Source continue par intermittence (ex. Chapire 3 Modèles de rafic e Conrôle d admission 83 1. Besoins des applicaions Taille de paque Source coninue Taille de paque Source coninue par inermience (ex. la voix) Silence Silence Taille de paque

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

Exercice n HA Corrigé

Exercice n HA Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA 0101 - Corrigé Logo opimisé par J.-D.Bonour,

Plus en détail

Cinétique Chimique. Cinétique simple. Besançon, Pharmacie 1 ère Année. E. Cavalli - UFR SMP - UFC

Cinétique Chimique. Cinétique simple. Besançon, Pharmacie 1 ère Année. E. Cavalli - UFR SMP - UFC Cinéique Chimique Cinéique simple Besançon, Pharmacie ère nnée E. Cavalli - UFR SMP - UFC I - Inroducion Cinéique Chimique - Obje e inérê de la cinéique chimique Cinéique simple E. Cavalli - UFR SMP -

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Approches probabilistes de fiabilité dans le temps

Approches probabilistes de fiabilité dans le temps Chapire 10 Approches probabilises de fiabilié dans le emps 10.1. Inroducion Les approches probabilises en fiabilié des srucures ne fon pas souven apparaîre expliciemen la dimension emporelle. i l on revien

Plus en détail

Produit de Convolution Principe et Propriétés. par Vincent Choqueuse, IUT GEII

Produit de Convolution Principe et Propriétés. par Vincent Choqueuse, IUT GEII Produi de Convoluion Principe e Propriéés par Vincen Choqueuse, IUT GEII . Problémaique Problémaique Conexe : Soi un sysème Linéaire e Invarian dans le Temps (SLIT) défini par sa réponse à une impulsion

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

S 4 : Phénomène d interférence et de battement

S 4 : Phénomène d interférence et de battement : PCSI 016 017 I Inerférence : mise en évidence epérimenale 1. Disposiif epérimenal n dispose deu émeeurs ulrasons (f = 40 khz) que l on va brancher sur le même généraeur e d un récepeur qu on va brancher

Plus en détail

Distribution de l énergie

Distribution de l énergie Disribuion de l énergie S si Cours 1. La foncion «DISTRIBUER» L énergie fournie par l alimenaion, qu elle soi élecrique ou pneumaique, doi êre disribuée aux acionneurs du sysème. Cee disribuion d énergie

Plus en détail

RMN_Chap VIII PARAMETRES D'ACQUISITION ET TRAITEMENT VIII _ LES PARAMETRES D' ACQUISITION ET DE TRAITEMENT EN RMN.

RMN_Chap VIII PARAMETRES D'ACQUISITION ET TRAITEMENT VIII _ LES PARAMETRES D' ACQUISITION ET DE TRAITEMENT EN RMN. PARAMETRES D'ACQUISITION ET TRAITEMENT VIII _ LES PARAMETRES D' ACQUISITION ET DE TRAITEMENT EN RMN. VIII.1 LA TRANSFORMEE DE FOURIER DE L'AIMANTATION. Dans le Chap_I, on a vu que l'aimanaion ransversale(m

Plus en détail

4. Principe de la modélisation des séries temporelles

4. Principe de la modélisation des séries temporelles 4. Principe de la modélisaion des séries emporelles Nous raierons ici, à ire d exemple, la modélisaion des liens enre la polluion amosphérique e les indicaeurs de sané. Mais les méhodes indiquées, comme

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION ANALYSE DES SYSTÈMES ASSERVIS 7. Caracérisaion des sysèmes asservis 7.. Srucure des sysèmes asservis Un sysème asservi linéaire peu se représener par le schéma 7.. On y rerouve, une chaîne d acion qui

Plus en détail

Electro-aimant rotatif DC G DA

Electro-aimant rotatif DC G DA SPÉCIALISTE POUR APPAREILLAGES ELECTROMAGNETIQUES La Qualié depuis 1912 Elecro-aiman roaif DC 6 Groupe de produis G DA Selon DIN VDE 0580 Courbe caracérisique du couple ascendane (pour des faceurs de marche

Plus en détail

Figure 1. Enregistrements et spectres fréquentiels des deux émetteurs sonores

Figure 1. Enregistrements et spectres fréquentiels des deux émetteurs sonores Classe de Terminale S Physique Thème abordé : Ondes sonores Poin Cours Exercice Pour ou l exercice, on considère la célérié v du son dans l air, à 2 C, égale à 34 m.s. Les rois paries de l exercice son

Plus en détail

Les signaux. Page 1/11

Les signaux. Page 1/11 Les signaux numériques e analogiques... 2 Les ypes de signaux... 2 les signaux à variaion coninue ou signaux analogiques... 2 les signaux à variaion disconinue... 2 Représenaion des signaux... 3 en foncion

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

Calcul Analytique et Numérique de la Résistance de Prise de Terre

Calcul Analytique et Numérique de la Résistance de Prise de Terre Quarième Conférence Inernaionale sur le Génie Elecrique CIGE 10, 03-04 Novembre 2010, Universié de Bechar, Calcul Analyique e Numérique de la Résisance de Prise de Terre S. Flazi e A. Benomar, Déparemen

Plus en détail

Diode, thyristor : le redressement

Diode, thyristor : le redressement PAIE 11 FONCIONS 47, hyrisor : le redressemen La conversion d énergie appelée redressemen perme d obenir un couran unidirecionnel à parir d un couran alernaif sinusoïdal ne diode peu assurer cee foncion

Plus en détail

Première E.S. Lycée Desfontaines Melle. Pourcentages

Première E.S. Lycée Desfontaines Melle. Pourcentages Première E.S. Lycée Desfonaines Melle I. Inroducion Pourcenages Définiion : On considère deux quaniés Q e Q de même naure, exprimées dans la même unié. Dire que Q es égale à % de Q revien à dire que Q

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

FIABILITE. Eléments de cours CONCEPTION - RÉALISATION FIABILITÉ DE CONDUITE FIABILITÉ PRÉVISIONNELLE FIABILITÉ FIABILITÉ D'EXPLOITATION

FIABILITE. Eléments de cours CONCEPTION - RÉALISATION FIABILITÉ DE CONDUITE FIABILITÉ PRÉVISIONNELLE FIABILITÉ FIABILITÉ D'EXPLOITATION Ce chapire es le premier, d une série de rois, consacré à ce que l on appelle en mainenance le concep «FMD» ; c es à dire, MAINTENABILITE e DISPONIBILITE. Les objecifs de ce chapire seron de déerminer

Plus en détail

M1 Economie : "colle" d économie industrielle

M1 Economie : colle d économie industrielle M Economie : "colle" d économie indusrielle Armel JACQUES novembre 0 Les calcularices son auorisées ; en revanche les appareils permean de communiquer (éléphone porable ou aures) son inerdis. Concurrence

Plus en détail

CORRECTION des EXERCICES de RADIOACTIVITE

CORRECTION des EXERCICES de RADIOACTIVITE CORRECTIO des EXERCICES de RDIOCTIVITE.1. Désinégraion du carbone 14. On donne Les numéros aomiques suivans : Z 6 pour le carbone (C) e Z 7 pour l azoe (). Pourquoi les noyaux de symboles 1 6 C e 13 6

Plus en détail

Résolution approchée de problèmes de dynamique en régime transitoire par superposition modale F. Louf

Résolution approchée de problèmes de dynamique en régime transitoire par superposition modale F. Louf Résoluion approchée de problèmes de dynamique en régime ransioire par superposiion modale F. Louf Dans cee fiche, on monre commen calculer une soluion approchée à un problème de dynamique ransioire par

Plus en détail

Réglage valeur moyenne

Réglage valeur moyenne P Cours : l insrumenaion élecrique A- Le généraeur de basses fréquences ou G.B.F - Présenaion uilisé : Réglage fréquence Réglage ampliude Réglage valeur moyenne Sweep : Possibilié de créer un signal de

Plus en détail

Généralités sur les signaux

Généralités sur les signaux Cours raiemen de Signal AII Chapire : La ra nsormée de Laplace Généraliés sur les signaux I. Inroducion Le raiemen du signal es une discipline indispensable de nos jours. Il a obje l'élaboraion ou l'inerpréaion

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Un modèle de propagation d un nuage de fumée

Un modèle de propagation d un nuage de fumée Un modèle de propagaion d un nuage de fumée Gabriel Caloz & Grégory Vial 9 février 26 Résumé L obe de ce documen es de présener à l aide d ouils élémenaires le problème de ranspor dans R. Une modélisaion

Plus en détail

Fréquence et signaux

Fréquence et signaux Fréquence e signaux On désigne par signal la variaion, emporelle par exemple, d une grandeur physique comme la empéraure, l éclairemen, la conraine mécanique, l inensié d un son, la ension élecrique ec...

Plus en détail

E4.2 Circuits alimentés en tension alternative

E4.2 Circuits alimentés en tension alternative Manip. Elec. ircuis Elec 4 - Manip. Elec.4 ircuis en ension alernaive E4. Bu de la manipulaion e bu de la manipulaion es l'éude de circuis alimenés en ension alernaive e comprenan des associaions de résisances,

Plus en détail

CHAP. 5 : LES CONDENSATEURS

CHAP. 5 : LES CONDENSATEURS CHAP. 5 : LES CONDENSATEURS I. Descripion e symboles Un condensaeur es un composan consiué par, appelés séparés sur oue l'éendue de leur surface par un milieu nommé. Le es de faible épaisseur e il s exprime

Plus en détail

avec Pour illustrer cette note, je joint des extraits de la documentation technique du constructeur.

avec Pour illustrer cette note, je joint des extraits de la documentation technique du constructeur. Les disjonceurs basse ension son en règle générale équipés de déclencheurs du ype magnéo-hermique. La courbe de déclenchemen d un disjonceur NT8H équipé d un déclencheur Micrologic.A es donnée dans le

Plus en détail

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure TP SdF N 25 Modélisaion e opimisaion de la mainenance prévenive e correcive d un maériel soumis à usure Ce TP complèe le TP N 22 sur la modélisaion e l opimisaion de la mainenance d un maériel réparable

Plus en détail

Facteur d accélération associé à une loi normale ou lognormale

Facteur d accélération associé à une loi normale ou lognormale TP N 39 Faceur d accéléraion associé à une loi normale ou lognormale Uilisés pour diminuer la durée e le coû des essais, les faceurs d accéléraion (Arrhenius, Peck, Basquin, Norris-Landzberg ) son ous

Plus en détail

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan.

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan. Cas du circui I. Un exemple d applicaion d un circui : un composan du sysème d alimenaion en gazole d une ogan. xrai du suje IBAN 2006 a Dacia ogan, conçue par le consruceur français enaul es produie au

Plus en détail

La détection synchrone : application

La détection synchrone : application La déecion synchrone : applicaion (Anglais: lock-in amplifier) La cigale chane U IN () Mais il y a du brui + beaucoup de brui. U OUT () Quelle es l'ampliude du chan de la cigale? Commen exraire le signal

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Plan : : Les méthodes de codage numérique en

Plan : : Les méthodes de codage numérique en Plan : : Les méhodes de codage numérique en 3.1 Inroducion 3.2 Codages binaires 3.2.1 Codage NRZ (Non Reour à Zéro) 3.2.2 Codage biphasé ou (Mancheser) 3.2.3 Codage CMI (Code Mark Inversion) 3.3 Codages

Plus en détail

Problème d'examen (Représentation triangulaire, ACP et élections)

Problème d'examen (Représentation triangulaire, ACP et élections) ISFA 2 année 2-21 Problème d'examen (Représenaion riangulaire, ACP e élecions) D. Chessel Les exercices (17-2) son indépendans du problème (1-16). 1. Quesions On considère la marice A à n = 14 lignes e

Plus en détail

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque?

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque? Nom : Prénom : Conrôle de mahémaiques, Le mercredi 30 mai 2012 Exercice 1. [3 poins] 1) Parmi les cinq premières figures numéroées de a) à e) recopie sur a copie le numéro de celles qui son des polygones

Plus en détail

LA LOGIQUE SEQUENTIELLE

LA LOGIQUE SEQUENTIELLE Auomaique e Informaique Indusrielle LA LOGIQUE SEQUENTIELLE SOMMAIRE Tire Page I. Définiion (rappel) : Sysème séqueniel 2 II. Prise en compe du emps 2 a) foncion mémoire 2 b) foncion(s) reard(s), emporisaion

Plus en détail

B. OSCILLATIONS, ONDES ET LUMIERE. 1. Introduction. ! Importance des phénomènes périodiques

B. OSCILLATIONS, ONDES ET LUMIERE. 1. Introduction. ! Importance des phénomènes périodiques B. OSCILLATIONS, ONDES ET LUMIERE 1. Inroducion Un oscillaeur es un sysème qui effecue des mouvemens d aller-reour de par e d aure d une posiion moyenne, par un mouvemen plus ou moins régulier. Si les

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

Unité 6 : La proportionnalité numérique 3 ème ESO

Unité 6 : La proportionnalité numérique 3 ème ESO UITÉ 6 : LA PROPORTIOALITÉ UMÉRIQUE POUR DÉBUTER Il fau rappeler - Définiion de grandeur : Une grandeur es une caracérisique qui es mesurée, e la valeur es exprimée par un nombre. Le concep de grandeur

Plus en détail