. L'ensemble des diviseurs communs à a 1. est fini et admet donc un plus grand élément.

Dimension: px
Commencer à balayer dès la page:

Download ". L'ensemble des diviseurs communs à a 1. est fini et admet donc un plus grand élément."

Transcription

1 PGCD, PPCM ds Z Théorème de Bézout - Applctos PGCD, PPCM DANS Z THEOREME DE BEZOUT APPLICATIONS PGCD Proposto Soet,,, L'esemble des dvseurs commus à,, est f et dmet doc u plus grd élémet Démostrto Soet,,, {,,,, } Sot = { } D x x D / O cr D S x D, lors x et doc x D est doc ue prte o vde et mjorée de doc D dmet u plus grd élémet Défto Soet,,, S D désge l'esemble des dvseurs commus à,,, l proposto motre que D dmet u plus grd élémet Ce plus grd élémet est ppelé PGCD de,,, oté PGCD (,, ) S =, o ote = PGCD( ; ) Coséquece : Notos δ = PGCD (,, ) S d D, lors d δ 3 Théorème Les sous groupes de (, + ) sot de l forme k, vec k Démostrto Sot k Alors ( k, + ) est u groupe (fcle à vérfer) Sot G u sous groupe de (, + ) Alors G O/ S { 0} G =, lors 0 exste G, vec 0 S > 0, lors G S < 0, lors G G, + est u groupe) et > 0 doc G (cr ( ) G est doc ue prte o vde de G = S G { 0} doc dmet u plus pett élémet, oté k, lors l Motros qu'lors G = k O motre pr ue récurrece mmédte que pour tout, k G, pus que pour tout, k G Pr coséquet, k G S DUCHET wwwepslo000frst /

2 PGCD, PPCM ds Z Théorème de Bézout - Applctos Sot x G r, tel que x = k + r, vec 0 r < k x G et k G doc ( x k) G, c'est-à-dre r G S r 0, lors r G et r < k, ce qu cotredt l défto de k Doc r = 0 et doc x = k Doc x k et doc G k o effectue l dvso eucldee de x pr k : l exste ( ) 4 Proposto Soet,,,, δ = PGCD(,, ) Alors δ = Démostrto Sot x Il exste x,, x tels que x = x δ = PGCD (,, ) doc δ dvse tous les Pour tout {,, } Doc x = δδx Comme Doc = δ δx δ x, l e résulte que x δ δ, l exste δ tel que δδ = Motros qu'l exste d tel que = d :, + est u sous groupe de (, + ) doc l exste d tel que théorème 3 d 0 cr {} 0 pusque les sot o uls = d (d'près le Comme d d, o e dédut que d δ = d d doc d δ Il exste doc d ' tel que d = δ d' δ et d dvset les doc 0 < d δ, c'est-à-dre 0 < δ d ' δ E dvst pr δ, o obtet 0 < d ' d ' doc d ' = et doc d = δ Doc = δ 5 Proposto Soet, λ,,, Alors λ λ λ PGCD (,, ) = PGCD(,, ) S DUCHET wwwepslo000frst /

3 PGCD, PPCM ds Z Théorème de Bézout - Applctos Démostrto Soet, λ,,, Soet δ = PGCD (,, ) et d = PGCD( λ, λ ) D'près l proposto 4, Doc d = ( λδ ) et doc d = λδ λ = d Or λ = λ = λ( δ ) = ( λδ) d et δ étt des ombres postfs, l vet d = λ δ 6 Proposto Soet,,,, δ = PGCD(,, ) Démostrto Alors : { },, δ Supposos que pour tout { } Alors pour tout {,, } Doc cr (, + ),,,, doc est u groupe O e dédut que δ et doc que δ Supposos mtet que δ, c'est-à-dre que δ Doc δ, c'est-à-dre {,, }, doc et doc 7 Proposto Soet ( b, ) l exste u uque couple (, ) eucldee) Alors PGCD (, b) = PGCD ( b, r) = bq+ r qr tel que 0 r < b (dvso Démostrto S c et cb, lors c ( bq), c'est-à-dre cr Doc s c dvse et b, lors c dvse b et r S cb et cr, lors c ( bq+ r), c'est-à-dre c Doc s c dvse b et r, lors c dvse et b Pr coséquet, les dvseurs de et b sot les dvseurs de b et r Doc PGCD (, b) = PGCD ( b, r) 8 Algorthme d'euclde L'lgorthme d'euclde permet de clculer le PGCD de deux eters turels, e utlst le résultt de l proposto 7 Soet b,, vec b q quotet de l dvso eucldee de pr b r reste de l dvso eucldee de pr b S r = 0 lors PGCD ( ; b) = b S DUCHET wwwepslo000frst 3/

4 so tt que r 0 b b r q quotet de l dvso eucldee de pr b r reste de l dvso eucldee de pr b f tt que PGCD = b PGCD, PPCM ds Z Théorème de Bézout - Applctos S o ote r, r l sute des restes obteus e effectut les dvsos eucldees successves, o : b> r > r > 0 L'lgorthme s'rrête doc et l exste = bq+ r 0 < r < b b= rq + r 0 < r < r = r q + r r 0 < r < r et r r tel que : Exemple : clcul de PGCD (900 ;848) : 900 = = = = doc PGCD (900 ;848) = PGCD (848 ;708) = PGCD (708 ;40) = PGCD (40 ; 8) = 8 Nombres premers etre eux Défto Soet,,, O dt que,, sot premers etre eux ds leur esemble s PGCD ( ;; ) = O dt que,, sot deux à deux premers etre eux s pour tous, j,, tels que j, PGCD ( ; ) = { } j Remrque : s,, sot deux à deux premers etre eux, lors,, sot premers etre eux ds leur esemble cr PGCD ( ;; ) = PGCD ( ; 3 ;; ) = PGCD (; ; ; ) = L récproque est fusse : PGCD (6 ;0 ;5) = ms PGCD (0 ; 5) Proposto ( ) bc,,, b= etcb c= Démostrto Soet bc,, S DUCHET wwwepslo000frst 4/

5 PGCD, PPCM ds Z Théorème de Bézout - Applctos Supposos que b= et cb Sot d u dvseur ds commu à et c dc doc db Doc d est u dvseur commu à et b Doc d = (cr b= ) Pr coséquet, le seul dvseur commu à et c ds est 3 Théorème de Bézout Soet,,, Alors,, sot premers etre eux ds leur esemble s et seulemet s l exste u,, u tels que u = Démostrto Soet,,, Supposos que,, sot premers etre eux ds leur esemble lors PGCD ( ; ; ) = et doc = doc pr coséquet, l exste u,, u tels que u = Supposos mtet qu'l exste u,, u tels que doc u = Notos δ = PGCD ( ; ; ) δ l exste lors d tel que = δ d Cette églté mpose δ = d = δ étt postf, l vet δ = Doc PGCD ( ;; ) = (c'est-à-dre,, sot premers etre eux ds leur esemble) 4 Théorème de Guss Soet bc,, S bc et s b =, lors c Démostrto Soet bc,, Supposos que bc et b= b= doc d'près le théorème de Bézout, l exste uv, tels que u + bv = Alors cu + bcv = c cu et bcv (cr bc) doc ( cu+ bcv), c'est-à-dre c 5 Proposto Soet { },,,,,, = = ( ) S DUCHET wwwepslo000frst 5/

6 PGCD, PPCM ds Z Théorème de Bézout - Applctos Démostrto Notos P() l proprété suvte : ( {,, }, = ) = Pour = : P() est évdete : = =! Pour = : o suppose que = et = D'près le théorème de Bézout, l exste u, v tels que u+ v = De même, l exste u v tels que u + v = E multplt membre à membre les deux égltés, o obtet :, ( u + v )( u + v ) =, ce qu s'écrt ecore ( uu uv vu ) ( vv ) = comme uu + uv + vu et vv, d'près le théorème de Bézout, o e dédut que ( ) = Doc P() est vre Sot, Supposos que P() est vre Supposos que {,, + }, = {,, }, = doc = d'près P() = et = doc + + = cr P() est vre + Doc =, et doc P(+) est vre Doc pour tout, P() est vre Supposos mtet que = Comme pour tout {,, }, l proposto ), l e résulte que pour tout {,, }, = (d'près 3 PPCM 3 Proposto Soet,,, l'esemble des multples commus de,, dmet u plus pett élémet Démostrto Soet,,, Sot = { } {,,,, } M x x S DUCHET wwwepslo000frst 6/

7 PGCD, PPCM ds Z Théorème de Bézout - Applctos M / O cr élémet M M est doc ue prte o vde de Pr coséquet m dmet u plus pett 3 Défto Soet,,, S M désge l'esemble des multples commus de,,, l proposto 3 motre que M dmet u plus pett élémet Ce plus pett élémet est ppelé PPCM (plus pett multple commu) de,,, oté PPCM ( ;; ) S =, o ote = PPCM ( ; ) Coséquece : Notos µ = PPCM ( ;; ) S m M, lors µ m 33 Proposto Soet,,,, µ = PPCM ( ;; ) Alors µ = Démostrto Soet,,,, µ = PPCM ( ;; ) Sot x µ,, x est u multple de µ Pour tout { } {,, } µ, x est u multple de, c'est-à-dre, + est u sous groupe de (, + ) D'près le théorème 3, l exste m tel que à motrer que µ = m µ µ = mz et z cr = m doc µ m µ, m m, µ est u multple de doc pour tout x Doc x Pr coséquet, cr c'est u tersecto fe de sous groupes de (, + ) = m Les étt o uls, m 0 l reste, et doc µ m Il exste lors z tel que doc m est u multple commu de,, µ étt le plus pett multple commu de,,, o : µ m, c'est-à-dre 0 < mz m E dvst l derère églté pr m, o obtet : 0< z Doc z = et doc µ = m 34 proposto Soet, λ,,, Alors PPCM ( λ ;; λ ) λ PPCM ( ;; ) = S DUCHET wwwepslo000frst 7/

8 PGCD, PPCM ds Z Théorème de Bézout - Applctos Démostrto Soet, λ,,, Soet µ = PPCM ( ;; ) et m = PPCM ( λ ;; λ ) = µ et λ = m Or, λ = λ Doc m = λµ m et µ étt postfs, l vet m = λ µ doc m = λ ( µ ) = ( λµ ) 35 Proposto,,,,, m = PPCM,, Soet ( ) { } Démostrto,,,,, m = PPCM,, Soet ( ) Supposos que pour tout {,, } Supposos mtet que m Alors m, c'est-à-dre {,, },,, c'est-à-dre pour tout {,, },,, m Alors m et doc m,, c'est-à-dre pour tout 36 Proposto Soet,,, S,, (,, ) PPCM = sot premers etre eux deux à deux, lors Démostrto Soet,,, O suppose que,, sot premers etre eux deux à deux Sot µ = PPCM (,, ) est u multple commu de,, Motros que ps µ (d'près l proposto doc µ dvse µ S ce 'étt ps le cs, l exstert {,, } tel que e dvse 37 Proposto Soet b, Alors ( )( ) b b = b S DUCHET wwwepslo000frst 8/

9 PGCD, PPCM ds Z Théorème de Bézout - Applctos Démostrto Soet, b, δ = b, µ = b δ = b Il exste doc ', b' tels que le PGCD de et b) b= ( δ ') ( δb') ( ' b' ) = δ = δ b ' ' d'près l proposto 36 Doc δ ( b) = δ ' b' = b = δ ' et b= δb', et ' b' = (so δ e sert ps 4 Applctos 4 Théorème Soet,, x x est versble ds / s et seulemet s x = Démostrto Soet,, x Supposos x versble ds / Il exste y / tel que x y =, ou ecore x y ( ) l exste lors q tel que x y = q O e dédut que xy + ( q) = D'près le théorème de Bézout, l e résulte que x = Supposos mtet que x = D'près le théorème de Bézout, l exste x u+ v = x u+ v = x u+ v = x u+ v = x u = cr = 0 doc x est versble ds / (, ) uv tel que : 4 Corollre Sot p Démostrto Sot p / p est u corps s et seulemet s p est u ombre premer (,, ) k k p k p= p premer S / p est u corps lors tout élémet o ul de / p est versble doc pour tout k vérft k p, k p= p est doc premer S DUCHET wwwepslo000frst 9/

10 PGCD, PPCM ds Z Théorème de Bézout - Applctos S p est u ombre premer lors pour tout k vérft k p (c'est-à-dre tout élémet o ul de / p ), k p= Doc k est versble 43 Théorème de Wlso U eter p est premer s et seulemet s ( p )! ( p) Démostrto Sot p, p Supposos p premer p ( p )! = k k = Tous les eters tervet ds ce produt sot versbles ds / p cr / p est u corps cr p est premer p Ds le produt k, o peut regrouper les termes deux à deux (chque terme vec so verse), k = pus les termes qu sot leur propre verse p Le produt k est lors égl u produt des termes qu sot leur propre verse k = x / p est so propre verse s = p p Doc k = = et doc ( p )! ( p) k = Supposos ( p )! ( p) p Sot d u dvseur de p, dfféret de Sot q = d ( p )! ( p) doc d( p )! d ( p) p d( p )! = dq k 0 ( p) cr dq = p 0 ( p) k = k q x =, c'est-à-dre ( x )( x ) d est lors u multple de p d est à l fos u multple de p et u dvseur de p dfféret de doc d = p p ' doc que deux dvseurs : et p p est doc u ombre premer + = 0 l y deux termes : et 44 Idcteur d'euler Sot, o ote ( ) focto ϕ est ppelée dcteur d'euler () S p est u ombre premer, lors ϕ ( p) = p ; () S p est u ombre premer et s ϕ le ombre d'élémets de l'esemble { k, k, k = }, lors ϕ ( p ) ( p ) p = ; l S DUCHET wwwepslo000frst 0/

11 () S m,, m=, lors ϕ( m) = ϕ( m) ϕ( ) PGCD, PPCM ds Z Théorème de Bézout - Applctos Démostrto () Sot p u ombre premer Alors pour tout k, vec k p, k p= Doc ϕ ( p) = p () Sot p u ombre premer et u eter turel o ul, k k p, k p = p étt premer, les seuls eters k O s'téresse à l'esemble { } cocerés sot ceux qu e dvset ps ϕ( p ) = p p = ( p ) p p Il y p dvseurs de p doc () Soet pq, tels que p q= D'près le théorème Chos, / pq est somorphe à / p / q Notos φ l focto défe u prgrphe Erreur! Source du revo trouvble Notos : pq E = x / pq, x pq= pq p { } p { /, } p { /, } E = x p x p= E = x q x q= q Motros que φ est ue bjecto de E pq ds Ep Eq Sot pq x Epq Alors x pq= D'près le théorème de Bézout, l exste ( r; s) tel que rx + spq = De cette églté, l résulte que x p= et x q = (toujours d'près le théorème de Bézout) f E E E Doc ( ) Sot ( p q ; ) pq p q x y E E p q x p= doc l exste ( r; s) tel que xr+ ps = y q= doc l exste ( r ; s) tel que yr + qs = pq Il exste z / pq tel que φ ( z) = ( x; y) cr φ est bjectve p p z = x Doc q q z = y Doc z x p Il exste k tel que x = z+ k p De même, z y q Il exste k tel que y = z+ kq Des égltés xr+ ps = et x = z+ k p, o dédut : ( z+ kp) r+ ps = Des égltés yr + qs = et y = z+ kq, o dédut : ( z+ kq) r + qs = E multplt membre à membre les deux derères égltés obteue, o obtet : ( zr+ pu)( zr + qu) =, vec u = kr+ s et u = kr + s ( ) z zrr rqu pur pquu Doc z pq= = S DUCHET wwwepslo000frst /

12 φ E = E E Doc ( ) pq p q E pq est doc e bjecto vec Ep Eq ( pq ) = ( p q ) ( pq ) ( p ) ( q ) crd E crd E E PGCD, PPCM ds Z Théorème de Bézout - Applctos Ces esembles sot fs doc ls ot le même crdl : crd E = crd E crd E, c'est-à-dre ϕ( pq) = ϕ( p) ϕ( q) S DUCHET wwwepslo000frst /

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure. TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. L agrégato des préféreces...2 I. Le système de vote à la majorté...2 I.2 Vote par classemet...3 I.3 Codtos de décso socale et théorème d

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

e x dx = e x dx + e x dx + e x dx.

e x dx = e x dx + e x dx + e x dx. Chtr Foctos Gmm t foctos d Bssl Chtr Focto Gmm t foctos d Bssl Détrmto d l focto Gmm L focto Gmm st très sml à dédur à rtr d l tégrl d'eulr: Ctt tégrl st u focto d rmètr ; ll st rrésté r l symbol () t

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0.

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0. Corrgé du problème de Mathématques générales 2010 - Parte I - 1(a. Sot X S A. La matrce A est un polynôme en X donc commute avec X. 1(b. On a : 0 = m A (A = m A (X n ; le polynôme m A (x n est annulateur

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Estimation des incertitudes sur les erreurs de mesure.

Estimation des incertitudes sur les erreurs de mesure. Estmto des certtdes sr les errers de mesre. I. Itrodcto : E sceces epérmetles, l este ps de mesres ectes. Celle-c e pevet être q etchées d errers pls o mos mporttes selo le protocole chos, l qlté des strmets

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

OBLIGATION DU SECTEUR PRIVE : EVALUATION ET OUTIL DE GESTION DU RISQUE DE TAUX D INTERET

OBLIGATION DU SECTEUR PRIVE : EVALUATION ET OUTIL DE GESTION DU RISQUE DE TAUX D INTERET Jea-Claude AUGROS Professeur à l Uversté Claude Berard LYON I et à l Isttut de Scece Facère et d Assuraces ISFA Mchel QUERUEL Docteur e Gesto Igéeur de Marché Socété de Bourse AUREL Résumé : Cet artcle

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Incertitudes expérimentales

Incertitudes expérimentales U N I O N D E S P R O F E S S E U R S D E P H Y S I Q U E E T D E C H I M I E 995 Icerttudes érmetales par Fraços-Xaver BALLY Lcée Le Corbuser - 93300 Aubervllers et Jea-Marc BERROIR École ormale supéreure

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

A11 : La représentation chaînée (1ère partie)

A11 : La représentation chaînée (1ère partie) A11 : L représettio chîée (1ère prtie) - Défiitio et schéms de cosulttio - Schéms de mise à jour (isertio, suppressio) - Exemples J-P. Peyri - L représettio chîée (première prtie) 0 Pricipe de l représettio

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Cours d arithmétique Première partie

Cours d arithmétique Première partie Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

INTENTION LES PROCESSUS MATHÉMATIQUES

INTENTION LES PROCESSUS MATHÉMATIQUES INTENTION Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 telles que reflétées ds le documet Mthémtiques M-9 : Progrmme d études de l Albert (2007) Le coteu du documet Mthémtiques M-9 :

Plus en détail

RDV E-commerce 2013 Mercredi 6 Mars, Technopark

RDV E-commerce 2013 Mercredi 6 Mars, Technopark RDV E-mm 2013 Md 6 M, Thpk Smm 1 P q E 2 Q x p? 3 Q v? 4 d é d 2 0 1 5 p 2 0 1 3 6 h g 7 d f é 1 Pq E-mm? Pq S E-Cmm? D d d Md IT XCOM gé dp 2009 phé E-mm.m F à mhé p, XCOM h d déd E-mm, Pm éq, E-Mkg Chff

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

a g c d n d e s e s m b

a g c d n d e s e s m b PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Calendrier des collectes 2015

Calendrier des collectes 2015 N j t t hgé? O! g! Tz, t f! C t 2015 O mégè, mbg, mbt, éht t, t txt, éhtt D pt ptq Ctt bh t p m m tmt à, m pté q j pét tt q m jt hgé mt t. L tâh q m t fé t mpt mx hbtt t pépt mj t pmt é. E t ff à m té

Plus en détail

Chapitre 3: TESTS DE SPECIFICATION

Chapitre 3: TESTS DE SPECIFICATION Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o

Plus en détail

Mathématiques Algèbre et géométrie

Mathématiques Algèbre et géométrie Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches

Plus en détail

COURS DE MATHEMATIQUE FINANCIERE A COURT ET LONG TERME Promotion : Première année de graduat

COURS DE MATHEMATIQUE FINANCIERE A COURT ET LONG TERME Promotion : Première année de graduat P R O F E S REPUBLIQUE DEMOCRATIQUE DU CONGO ENSEIGNEMENT SUPEREIEUR ET UNIVERSITAIRE INSTITUT SUPERIEUR DE GESTION INFORMATIQUE DE GOMA /I.S.I.G-GOMA DEVELOPPEMENT ISIG M A T I O N COURS DE MATHEMATIQUE

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

ECO ECO. Probablement le chauffe-eau solaire le plus évolué du monde. Eco 200 / Eco 250 / Eco 300 / Eco 450 ENERGIE CATALOGUE 13

ECO ECO. Probablement le chauffe-eau solaire le plus évolué du monde. Eco 200 / Eco 250 / Eco 300 / Eco 450 ENERGIE CATALOGUE 13 co 00 / co 0 / co 00 / co 0 NR TOU O Probabement e chauffe-eau soaire e pus évoué du monde isponibe avec des capacités de 00 à 0 itres. Versions avec un ou deu panneau soaires, avec ou sans serpentin suppémentaire.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse page 8 AGREGATIN de MATHEMATIQUES: 1991 1/5 externeanalyse concours externe de recrutement de professeurs agreg6s composition d analyse NTATINS ET DGFINITINS Dans tout le problème, R+ désigne l intervalle

Plus en détail

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema «À l utomne 97 le présdent Non nnoncé que le tu d ugmentton de l nflton dmnué C étt l premère fos qu un présdent en eercce utlst l dérvée terce pour ssurer s réélecton» Hugo Ross, mtémtcen, à propos d

Plus en détail

Premiers exercices d Algèbre. Anne-Marie Simon

Premiers exercices d Algèbre. Anne-Marie Simon Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail