. L'ensemble des diviseurs communs à a 1. est fini et admet donc un plus grand élément.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download ". L'ensemble des diviseurs communs à a 1. est fini et admet donc un plus grand élément."

Transcription

1 PGCD, PPCM ds Z Théorème de Bézout - Applctos PGCD, PPCM DANS Z THEOREME DE BEZOUT APPLICATIONS PGCD Proposto Soet,,, L'esemble des dvseurs commus à,, est f et dmet doc u plus grd élémet Démostrto Soet,,, {,,,, } Sot = { } D x x D / O cr D S x D, lors x et doc x D est doc ue prte o vde et mjorée de doc D dmet u plus grd élémet Défto Soet,,, S D désge l'esemble des dvseurs commus à,,, l proposto motre que D dmet u plus grd élémet Ce plus grd élémet est ppelé PGCD de,,, oté PGCD (,, ) S =, o ote = PGCD( ; ) Coséquece : Notos δ = PGCD (,, ) S d D, lors d δ 3 Théorème Les sous groupes de (, + ) sot de l forme k, vec k Démostrto Sot k Alors ( k, + ) est u groupe (fcle à vérfer) Sot G u sous groupe de (, + ) Alors G O/ S { 0} G =, lors 0 exste G, vec 0 S > 0, lors G S < 0, lors G G, + est u groupe) et > 0 doc G (cr ( ) G est doc ue prte o vde de G = S G { 0} doc dmet u plus pett élémet, oté k, lors l Motros qu'lors G = k O motre pr ue récurrece mmédte que pour tout, k G, pus que pour tout, k G Pr coséquet, k G S DUCHET wwwepslo000frst /

2 PGCD, PPCM ds Z Théorème de Bézout - Applctos Sot x G r, tel que x = k + r, vec 0 r < k x G et k G doc ( x k) G, c'est-à-dre r G S r 0, lors r G et r < k, ce qu cotredt l défto de k Doc r = 0 et doc x = k Doc x k et doc G k o effectue l dvso eucldee de x pr k : l exste ( ) 4 Proposto Soet,,,, δ = PGCD(,, ) Alors δ = Démostrto Sot x Il exste x,, x tels que x = x δ = PGCD (,, ) doc δ dvse tous les Pour tout {,, } Doc x = δδx Comme Doc = δ δx δ x, l e résulte que x δ δ, l exste δ tel que δδ = Motros qu'l exste d tel que = d :, + est u sous groupe de (, + ) doc l exste d tel que théorème 3 d 0 cr {} 0 pusque les sot o uls = d (d'près le Comme d d, o e dédut que d δ = d d doc d δ Il exste doc d ' tel que d = δ d' δ et d dvset les doc 0 < d δ, c'est-à-dre 0 < δ d ' δ E dvst pr δ, o obtet 0 < d ' d ' doc d ' = et doc d = δ Doc = δ 5 Proposto Soet, λ,,, Alors λ λ λ PGCD (,, ) = PGCD(,, ) S DUCHET wwwepslo000frst /

3 PGCD, PPCM ds Z Théorème de Bézout - Applctos Démostrto Soet, λ,,, Soet δ = PGCD (,, ) et d = PGCD( λ, λ ) D'près l proposto 4, Doc d = ( λδ ) et doc d = λδ λ = d Or λ = λ = λ( δ ) = ( λδ) d et δ étt des ombres postfs, l vet d = λ δ 6 Proposto Soet,,,, δ = PGCD(,, ) Démostrto Alors : { },, δ Supposos que pour tout { } Alors pour tout {,, } Doc cr (, + ),,,, doc est u groupe O e dédut que δ et doc que δ Supposos mtet que δ, c'est-à-dre que δ Doc δ, c'est-à-dre {,, }, doc et doc 7 Proposto Soet ( b, ) l exste u uque couple (, ) eucldee) Alors PGCD (, b) = PGCD ( b, r) = bq+ r qr tel que 0 r < b (dvso Démostrto S c et cb, lors c ( bq), c'est-à-dre cr Doc s c dvse et b, lors c dvse b et r S cb et cr, lors c ( bq+ r), c'est-à-dre c Doc s c dvse b et r, lors c dvse et b Pr coséquet, les dvseurs de et b sot les dvseurs de b et r Doc PGCD (, b) = PGCD ( b, r) 8 Algorthme d'euclde L'lgorthme d'euclde permet de clculer le PGCD de deux eters turels, e utlst le résultt de l proposto 7 Soet b,, vec b q quotet de l dvso eucldee de pr b r reste de l dvso eucldee de pr b S r = 0 lors PGCD ( ; b) = b S DUCHET wwwepslo000frst 3/

4 so tt que r 0 b b r q quotet de l dvso eucldee de pr b r reste de l dvso eucldee de pr b f tt que PGCD = b PGCD, PPCM ds Z Théorème de Bézout - Applctos S o ote r, r l sute des restes obteus e effectut les dvsos eucldees successves, o : b> r > r > 0 L'lgorthme s'rrête doc et l exste = bq+ r 0 < r < b b= rq + r 0 < r < r = r q + r r 0 < r < r et r r tel que : Exemple : clcul de PGCD (900 ;848) : 900 = = = = doc PGCD (900 ;848) = PGCD (848 ;708) = PGCD (708 ;40) = PGCD (40 ; 8) = 8 Nombres premers etre eux Défto Soet,,, O dt que,, sot premers etre eux ds leur esemble s PGCD ( ;; ) = O dt que,, sot deux à deux premers etre eux s pour tous, j,, tels que j, PGCD ( ; ) = { } j Remrque : s,, sot deux à deux premers etre eux, lors,, sot premers etre eux ds leur esemble cr PGCD ( ;; ) = PGCD ( ; 3 ;; ) = PGCD (; ; ; ) = L récproque est fusse : PGCD (6 ;0 ;5) = ms PGCD (0 ; 5) Proposto ( ) bc,,, b= etcb c= Démostrto Soet bc,, S DUCHET wwwepslo000frst 4/

5 PGCD, PPCM ds Z Théorème de Bézout - Applctos Supposos que b= et cb Sot d u dvseur ds commu à et c dc doc db Doc d est u dvseur commu à et b Doc d = (cr b= ) Pr coséquet, le seul dvseur commu à et c ds est 3 Théorème de Bézout Soet,,, Alors,, sot premers etre eux ds leur esemble s et seulemet s l exste u,, u tels que u = Démostrto Soet,,, Supposos que,, sot premers etre eux ds leur esemble lors PGCD ( ; ; ) = et doc = doc pr coséquet, l exste u,, u tels que u = Supposos mtet qu'l exste u,, u tels que doc u = Notos δ = PGCD ( ; ; ) δ l exste lors d tel que = δ d Cette églté mpose δ = d = δ étt postf, l vet δ = Doc PGCD ( ;; ) = (c'est-à-dre,, sot premers etre eux ds leur esemble) 4 Théorème de Guss Soet bc,, S bc et s b =, lors c Démostrto Soet bc,, Supposos que bc et b= b= doc d'près le théorème de Bézout, l exste uv, tels que u + bv = Alors cu + bcv = c cu et bcv (cr bc) doc ( cu+ bcv), c'est-à-dre c 5 Proposto Soet { },,,,,, = = ( ) S DUCHET wwwepslo000frst 5/

6 PGCD, PPCM ds Z Théorème de Bézout - Applctos Démostrto Notos P() l proprété suvte : ( {,, }, = ) = Pour = : P() est évdete : = =! Pour = : o suppose que = et = D'près le théorème de Bézout, l exste u, v tels que u+ v = De même, l exste u v tels que u + v = E multplt membre à membre les deux égltés, o obtet :, ( u + v )( u + v ) =, ce qu s'écrt ecore ( uu uv vu ) ( vv ) = comme uu + uv + vu et vv, d'près le théorème de Bézout, o e dédut que ( ) = Doc P() est vre Sot, Supposos que P() est vre Supposos que {,, + }, = {,, }, = doc = d'près P() = et = doc + + = cr P() est vre + Doc =, et doc P(+) est vre Doc pour tout, P() est vre Supposos mtet que = Comme pour tout {,, }, l proposto ), l e résulte que pour tout {,, }, = (d'près 3 PPCM 3 Proposto Soet,,, l'esemble des multples commus de,, dmet u plus pett élémet Démostrto Soet,,, Sot = { } {,,,, } M x x S DUCHET wwwepslo000frst 6/

7 PGCD, PPCM ds Z Théorème de Bézout - Applctos M / O cr élémet M M est doc ue prte o vde de Pr coséquet m dmet u plus pett 3 Défto Soet,,, S M désge l'esemble des multples commus de,,, l proposto 3 motre que M dmet u plus pett élémet Ce plus pett élémet est ppelé PPCM (plus pett multple commu) de,,, oté PPCM ( ;; ) S =, o ote = PPCM ( ; ) Coséquece : Notos µ = PPCM ( ;; ) S m M, lors µ m 33 Proposto Soet,,,, µ = PPCM ( ;; ) Alors µ = Démostrto Soet,,,, µ = PPCM ( ;; ) Sot x µ,, x est u multple de µ Pour tout { } {,, } µ, x est u multple de, c'est-à-dre, + est u sous groupe de (, + ) D'près le théorème 3, l exste m tel que à motrer que µ = m µ µ = mz et z cr = m doc µ m µ, m m, µ est u multple de doc pour tout x Doc x Pr coséquet, cr c'est u tersecto fe de sous groupes de (, + ) = m Les étt o uls, m 0 l reste, et doc µ m Il exste lors z tel que doc m est u multple commu de,, µ étt le plus pett multple commu de,,, o : µ m, c'est-à-dre 0 < mz m E dvst l derère églté pr m, o obtet : 0< z Doc z = et doc µ = m 34 proposto Soet, λ,,, Alors PPCM ( λ ;; λ ) λ PPCM ( ;; ) = S DUCHET wwwepslo000frst 7/

8 PGCD, PPCM ds Z Théorème de Bézout - Applctos Démostrto Soet, λ,,, Soet µ = PPCM ( ;; ) et m = PPCM ( λ ;; λ ) = µ et λ = m Or, λ = λ Doc m = λµ m et µ étt postfs, l vet m = λ µ doc m = λ ( µ ) = ( λµ ) 35 Proposto,,,,, m = PPCM,, Soet ( ) { } Démostrto,,,,, m = PPCM,, Soet ( ) Supposos que pour tout {,, } Supposos mtet que m Alors m, c'est-à-dre {,, },,, c'est-à-dre pour tout {,, },,, m Alors m et doc m,, c'est-à-dre pour tout 36 Proposto Soet,,, S,, (,, ) PPCM = sot premers etre eux deux à deux, lors Démostrto Soet,,, O suppose que,, sot premers etre eux deux à deux Sot µ = PPCM (,, ) est u multple commu de,, Motros que ps µ (d'près l proposto doc µ dvse µ S ce 'étt ps le cs, l exstert {,, } tel que e dvse 37 Proposto Soet b, Alors ( )( ) b b = b S DUCHET wwwepslo000frst 8/

9 PGCD, PPCM ds Z Théorème de Bézout - Applctos Démostrto Soet, b, δ = b, µ = b δ = b Il exste doc ', b' tels que le PGCD de et b) b= ( δ ') ( δb') ( ' b' ) = δ = δ b ' ' d'près l proposto 36 Doc δ ( b) = δ ' b' = b = δ ' et b= δb', et ' b' = (so δ e sert ps 4 Applctos 4 Théorème Soet,, x x est versble ds / s et seulemet s x = Démostrto Soet,, x Supposos x versble ds / Il exste y / tel que x y =, ou ecore x y ( ) l exste lors q tel que x y = q O e dédut que xy + ( q) = D'près le théorème de Bézout, l e résulte que x = Supposos mtet que x = D'près le théorème de Bézout, l exste x u+ v = x u+ v = x u+ v = x u+ v = x u = cr = 0 doc x est versble ds / (, ) uv tel que : 4 Corollre Sot p Démostrto Sot p / p est u corps s et seulemet s p est u ombre premer (,, ) k k p k p= p premer S / p est u corps lors tout élémet o ul de / p est versble doc pour tout k vérft k p, k p= p est doc premer S DUCHET wwwepslo000frst 9/

10 PGCD, PPCM ds Z Théorème de Bézout - Applctos S p est u ombre premer lors pour tout k vérft k p (c'est-à-dre tout élémet o ul de / p ), k p= Doc k est versble 43 Théorème de Wlso U eter p est premer s et seulemet s ( p )! ( p) Démostrto Sot p, p Supposos p premer p ( p )! = k k = Tous les eters tervet ds ce produt sot versbles ds / p cr / p est u corps cr p est premer p Ds le produt k, o peut regrouper les termes deux à deux (chque terme vec so verse), k = pus les termes qu sot leur propre verse p Le produt k est lors égl u produt des termes qu sot leur propre verse k = x / p est so propre verse s = p p Doc k = = et doc ( p )! ( p) k = Supposos ( p )! ( p) p Sot d u dvseur de p, dfféret de Sot q = d ( p )! ( p) doc d( p )! d ( p) p d( p )! = dq k 0 ( p) cr dq = p 0 ( p) k = k q x =, c'est-à-dre ( x )( x ) d est lors u multple de p d est à l fos u multple de p et u dvseur de p dfféret de doc d = p p ' doc que deux dvseurs : et p p est doc u ombre premer + = 0 l y deux termes : et 44 Idcteur d'euler Sot, o ote ( ) focto ϕ est ppelée dcteur d'euler () S p est u ombre premer, lors ϕ ( p) = p ; () S p est u ombre premer et s ϕ le ombre d'élémets de l'esemble { k, k, k = }, lors ϕ ( p ) ( p ) p = ; l S DUCHET wwwepslo000frst 0/

11 () S m,, m=, lors ϕ( m) = ϕ( m) ϕ( ) PGCD, PPCM ds Z Théorème de Bézout - Applctos Démostrto () Sot p u ombre premer Alors pour tout k, vec k p, k p= Doc ϕ ( p) = p () Sot p u ombre premer et u eter turel o ul, k k p, k p = p étt premer, les seuls eters k O s'téresse à l'esemble { } cocerés sot ceux qu e dvset ps ϕ( p ) = p p = ( p ) p p Il y p dvseurs de p doc () Soet pq, tels que p q= D'près le théorème Chos, / pq est somorphe à / p / q Notos φ l focto défe u prgrphe Erreur! Source du revo trouvble Notos : pq E = x / pq, x pq= pq p { } p { /, } p { /, } E = x p x p= E = x q x q= q Motros que φ est ue bjecto de E pq ds Ep Eq Sot pq x Epq Alors x pq= D'près le théorème de Bézout, l exste ( r; s) tel que rx + spq = De cette églté, l résulte que x p= et x q = (toujours d'près le théorème de Bézout) f E E E Doc ( ) Sot ( p q ; ) pq p q x y E E p q x p= doc l exste ( r; s) tel que xr+ ps = y q= doc l exste ( r ; s) tel que yr + qs = pq Il exste z / pq tel que φ ( z) = ( x; y) cr φ est bjectve p p z = x Doc q q z = y Doc z x p Il exste k tel que x = z+ k p De même, z y q Il exste k tel que y = z+ kq Des égltés xr+ ps = et x = z+ k p, o dédut : ( z+ kp) r+ ps = Des égltés yr + qs = et y = z+ kq, o dédut : ( z+ kq) r + qs = E multplt membre à membre les deux derères égltés obteue, o obtet : ( zr+ pu)( zr + qu) =, vec u = kr+ s et u = kr + s ( ) z zrr rqu pur pquu Doc z pq= = S DUCHET wwwepslo000frst /

12 φ E = E E Doc ( ) pq p q E pq est doc e bjecto vec Ep Eq ( pq ) = ( p q ) ( pq ) ( p ) ( q ) crd E crd E E PGCD, PPCM ds Z Théorème de Bézout - Applctos Ces esembles sot fs doc ls ot le même crdl : crd E = crd E crd E, c'est-à-dre ϕ( pq) = ϕ( p) ϕ( q) S DUCHET wwwepslo000frst /

N - ANNEAUX EUCLIDIENS

N - ANNEAUX EUCLIDIENS N - ANNEAUX EUCLIDIENS Dans ce qu sut A est un anneau untare, mun de deux opératons notées addtvement et multplcatvement. Le neutre de l addton est noté 0, celu de la multplcaton est noté e. On pose A

Plus en détail

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES SOMMAIRE. Normes sur u espace vectorel E 2.. Défto d'ue orme. Cter l'égalté tragulare reversée. 2.2. Normes usuelles

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i)

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i) Esaces vecorels eucldes Groue orhogoal ESPACES VECTORIELS EUCLIDIENS GROUPE ORTHOGONAL Produ scalare Défo O aelle esace euclde ou coule ( E, φ, où E es u esace vecorel réel de dmeso fe e φ ue forme bléare

Plus en détail

«Dans l'arithmétique de l'amour, un plus un égal l'infini,

«Dans l'arithmétique de l'amour, un plus un égal l'infini, 1 Niveau : Terminale S Spé Maths Titre Cours : Etude de et (Partie II) PGCD-PPCM Année : 2014-2015 (Etienne BEZOUT 1730-1883) «Dans l'arithmétique de l'amour, un plus un égal l'infini, et deux moins un

Plus en détail

f(t) g(t)dt f²(t)dt g²(t) dt a a a

f(t) g(t)dt f²(t)dt g²(t) dt a a a PCSI Chatre 4 : Produts scalares-résumé Das ce chatre E est u -ev. Produts scalares. Défto et exemles de référeces Def: O aelle rodut scalare sur E toute alcato de E² das est bléare. est symétrque: x,ye,

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Cours (Terminale S) Limite d une fonction

Cours (Terminale S) Limite d une fonction Cours (Termile S) Limite d ue octio Limite d ue octio e + ou Foctio déiie u voisige de + (resp ) Soit ue octio d esemble de déiitio D O dir que «l octio est déiie u voisige de + (resp )» s il eiste u réel

Plus en détail

Calcul des pertes du distributeur

Calcul des pertes du distributeur Clcul des pertes du dstrbuteur Jver 007 Clcul des pertes du dstrbuteur Tros étpes : Clcul des pertes techques pr tpe d ouvrge Modélsto des pertes o techques (PNT) Modélsto d ue courbe de tpe P²+bP+c ou

Plus en détail

Chapitre 2 LES EMPRUNTS INDIVIS

Chapitre 2 LES EMPRUNTS INDIVIS Chptre LES EMPRUNTS INDIVIS.1 Actulsto de flux Actvté.1.1 : O dspose de chffres cocert l évoluto du chffre d ffres de l socété FLORIS depus 1985. E 1985, le Chffre d ffres étt de 1 Mllo de Frcs, e 1990

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

2 Exercice 15 : les intégrales de Wallis

2 Exercice 15 : les intégrales de Wallis Exercice sur les itégrles Exercice 5 : les itégrles de Wllis O pose si xdx ) Clculer I et I ) Motrer que l suite ( ) coverge 3) Etblir ue formule de récurrece etre et 4) Motrer que le produit ( + ) + est

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

1 Convergence simple et convergence uniforme

1 Convergence simple et convergence uniforme Mster Métiers de l Eseigemet, Mthémtiques - ULCO, L Mi-Voi, 0/03 ANALYSE Fiche de Mthémtiques 5 - Suites et séries de foctios Soiet E et F deu espces métriques quelcoques et (f ) ue suite d pplictios de

Plus en détail

ALGORITHMIQUE & CALCUL NUMÉRIQUE Travaux pratiques résolus Programmation avec les logiciels Scilab et Python

ALGORITHMIQUE & CALCUL NUMÉRIQUE Travaux pratiques résolus Programmation avec les logiciels Scilab et Python ALGORITHMIQUE & CALCUL NUMÉRIQUE Trvux prtques résolus Progrmmto vec les logcels Sclb et Pytho Lcece Préprto ux cocours José OUIN Igéeur INSA Toulouse Professeur grégé de Gée cvl Professeur grégé de Mthémtques

Plus en détail

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral...

Chapitre 1 Calculs algébriques dans... 3. Chapitre 2 Logique... 27. Chapitre 3 Fonctions numériques... 41. Chapitre 4 Calcul intégral... Avt-propos Cet ouvrge est coçu pour permettre u étudits des clsses préprtoires ECE d order leur première ée ds les meilleures coditios e fcilitt l trsitio vec l eseigemet secodire Aisi, l ojectif est i

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Centrale PSI 1 un corrigé

Centrale PSI 1 un corrigé Cetrle PSI u corrigé L foctio Γ. I.A. f : t t e t est cotiue sur R + ; les seuls problèmes d itégrbilité sot u voisiges de et de +. - Au voisige de, f (t) t est itégrble si et seulemet si < (foctios de

Plus en détail

Produit scalaire. Chap. 11 : cours complet. 1. Produit scalaire réel.

Produit scalaire. Chap. 11 : cours complet. 1. Produit scalaire réel. Produ scalare Chap : cours comple Produ scalare réel Défo : produ scalare sur u -espace vecorel, espace préhlbere réel Théorème : eemples classques Théorème : égalé de Cauchy-Schwarz Défo : forme bléare

Plus en détail

CNAM-UPMC MASTER 2010-2011 Recherche Opérationnelle MODELES DE LOCALISATION ET APPLICATIONS Marie-Christine Costa

CNAM-UPMC MASTER 2010-2011 Recherche Opérationnelle MODELES DE LOCALISATION ET APPLICATIONS Marie-Christine Costa CNAM-UPMC MASTER 200-20 Recherche Opératoelle MODELES DE LOCALISATION ET APPLICATIONS Mare-Chrste Costa I INTRODUCTION Avertssemet: ce polycopé e cotet que les résultats prcpau. Les démostratos et complémets

Plus en détail

Equivalence entre mesures de similarité floues : Application à la recherche d images par le contenu

Equivalence entre mesures de similarité floues : Application à la recherche d images par le contenu Equvlece etre mesures de smlrté floues : Applcto à l recherche d mges pr le coteu Je-Frços Omhover, Berdette Boucho-Meuer LIP6 Pôle IA, Uversté Perre et Mre Cure Prs VI cotct : e-frcos.omhover@lp6.fr Résumé

Plus en détail

Exercices d oraux de la banque CCP 2014-2015 - Corrigés BANQUE ALGÈBRE

Exercices d oraux de la banque CCP 2014-2015 - Corrigés BANQUE ALGÈBRE Exercices d orux de l bque CCP 4-5 - Corrigés BANQUE ALGÈBRE EXERCICE 59 extbf Si P, degfp degp P degp et e prticulier, fp Pr cotrpositio, P E, [fp P ] Doc le oyu de l edomorphisme f est {} Pr suite f

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

Simulation d un réseau simple avec le programme d affectation de transport en commun du LVMT

Simulation d un réseau simple avec le programme d affectation de transport en commun du LVMT Smulto d u réseu smple vec le progrmme d ectto de trsport e commu du LVMT Itroducto Le progrmme de smulto d ectto du trc sur u réseu de trsport e commu du LVMT sert à tester et vlder les modèles d ecttos

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

Fiche 2 : les fonctions

Fiche 2 : les fonctions Nº : 300 Fice : les foctios Pl de l fice I - Limites, comportemet symptotique II - Dérivtio III - Cotiuité I - Limites, comportemet symptotique Défiitios Ue foctio f pour ite e lorsque : l foctio f est

Plus en détail

Au sommaire : Des généralités. Polynôme d'endomorphisme. Polynômes minimal d'un endomorphisme. Valeur et vecteur propres. Sous-espace propre.

Au sommaire : Des généralités. Polynôme d'endomorphisme. Polynômes minimal d'un endomorphisme. Valeur et vecteur propres. Sous-espace propre. - De la réducto des edomorphsmes - Ce cours a été rédgé e ovembre 994 alors que e préparas l'agrégato de mathématques et ms à our e u et ullet 2. Das le cas où l comporterat des erreurs, merc de me les

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

IREM Section Martinique Groupe Lycée. QCM pour la classe de Terminale S

IREM Section Martinique Groupe Lycée. QCM pour la classe de Terminale S IREM Secto Matque Goupe Lycée QCM pou la classe de Temale S QCM : Calculatce o autosée Pou chaque questo, seules ou popostos sot vaes. Recope la ou les popostos vaes. Sot f la focto défe su IR pa f ( )

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

sont distincts 2 à 2.

sont distincts 2 à 2. Lycée Thers CORRIGÉ TP PYTHON - 09 L algorthme des k-meas pour partager u uage de pots e u ombre doé de classes peu dspersées 1 - La méthode de Forgy [Qu. 1] 1) Cette double somme comporte termes pusque

Plus en détail

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique MECANIQUE QUANTIQUE Cpitre 6 : Oscillteur Hroique Qutique Pr. M. ABD-LEFDIL Uiversité Moed V- Agdl Fculté des Scieces Déprteet de Pysique Aée uiversitire 6-7 Filières SM-SMI Itroductio L'oscillteur roique

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

Calculs en chromatographie

Calculs en chromatographie Calculs e chroatographe éthode de la oralsato tere... 1 Coeffcet de répose assque relatf... 1 Calcul des pourcetages assques... 2 Calcul des pourcetages olares... 3 xeple d aalyse CG d ue substtuto copéttve

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

Équations différentielles - Cours no 6 Approximation numérique

Équations différentielles - Cours no 6 Approximation numérique Équatios différetielles - Cours o 6 Approximatio umérique 1 Itroductio De très ombreux problèmes scietifiques sot mis e équatio à l aide d u système d équatios différetielles ẋt) = ft, xt)) voir par exemple

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S exercices 1 Exercices de base 1 1 Divisio Euclidiee - 1 (c) 1 Divisio Euclidiee- 1 3 Divisio Euclidiee-3 (c) 1 4 Multiples - 1 1 5 PGCD - 1 (c) 3 1 6 PPCM et PGCD - 1 7 PPCM et PGCD - 3 3 3

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Terminale S. 1. Divers

Terminale S. 1. Divers Termiale S 1 Divers Bézout 3 Quadratique 4 Divisibilité 5 Equatio diophatiee 6 Equatio diophatiee (, Caracas 01_04) 7 Base de umératio 8 Base de umératio 3 9 Somme des cubes 10 PGCD 11 Somme des diviseurs

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

4. Puissances et racines

4. Puissances et racines PUISSANCES ET RACINES 4. Puissces et rcies 4.. Puissces à exposts etiers Défiitio L puissce ième d'u ombre réel est u produit de fcteurs tous égux à : =, =, etc. O dit que est l bse de l puissce et l'expost.

Plus en détail

Cours élémentaire d arithmétique. Valentin Vinoles

Cours élémentaire d arithmétique. Valentin Vinoles Cours élémentaire d arithmétique Valentin Vinoles décembre 2009 Introduction «Wir müssen wissen. Wir werden wissen.» (Nous devons savoir. Nous saurons.) David Hilbert Voici un document présentant les principales

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Les nombres premiers ( Spécialité Maths) Terminale S

Les nombres premiers ( Spécialité Maths) Terminale S Les nombres premers ( Spécalté Maths) Termnale S Dernère mse à jour : Mercred 23 Avrl 2008 Vncent OBATON, Ensegnant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document de

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne Exo7 Arithmétique Vidéo partie 1. Division euclidienne et pgcd Vidéo partie 2. Théorème de Bézout Vidéo partie 3. Nombres premiers Vidéo partie 4. Congruences Exercices Arithmétique dans Z Préambule Une

Plus en détail

1. Limites. Les limites dans la vie courante. Vitesse instantanée. Pente d'une courbe en un point LIMITES

1. Limites. Les limites dans la vie courante. Vitesse instantanée. Pente d'une courbe en un point LIMITES LIMITES. Limites.. Les ites ds l vie courte Vitesse isttée L otio de vitesse, et e prticulier l vitesse d'u objet à u istt précis, est, étommet, subtile et difficile à défiir précisémet. Cosidérez cette

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

COURS DE SPÉCIALITÉ MATHÉMATIQUES Terminale S

COURS DE SPÉCIALITÉ MATHÉMATIQUES Terminale S COURS DE SPÉCIALITÉ MATHÉMATIQUES Terminale S Valère BONNET (postmaster@mathsaulycee.info) 1 er novembre 2006 Lycée PONTUS DE TYARD 13 rue des Gaillardons 71100 CHALON SUR SAÔNE Tél. : (33) 03 85 46 85

Plus en détail

Nombres ayant même reste dans la division euclidienne par un entier non nul notion de congruence - Compatibilité avec les opérations usuelles.

Nombres ayant même reste dans la division euclidienne par un entier non nul notion de congruence - Compatibilité avec les opérations usuelles. ARITHMETIQUE Partie des mathématiques étudiant les propriétés élémentaires des nombres entiers. Introduction : Le développement de l informatique et plus généralement de ce qu on appelle «le numérique»,

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

( ) ( 2) = x +. La fonction est la somme d une fonction linéaire (dérivable pour tout réel) et de la. 2x². 1 :lim. Bac blanc n 1 TS : correction :

( ) ( 2) = x +. La fonction est la somme d une fonction linéaire (dérivable pour tout réel) et de la. 2x². 1 :lim. Bac blanc n 1 TS : correction : Bc lc TS : corrcto : E : octo st l somm d octo lér dérl por tot rél t d l octo rs dérl s doc st dérl sr ] ; [ mértr st polôm s scod dgré q por rcs rélls : t sl post st l scod t : s O ott doc l tl st :

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

STRUCTURES ALGÉBRIQUES FONDAMENTALES

STRUCTURES ALGÉBRIQUES FONDAMENTALES STRUCTURES ALGÉBRIQUES FONDAMENTALES A. BOUARICH 1. Notion de relations binaires 1.1. Relation binaire d équivalence sur un ensemble. Définition 1. Soit A un ensemble non vide. Une fonction propositionnelle

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure. TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. L agrégato des préféreces...2 I. Le système de vote à la majorté...2 I.2 Vote par classemet...3 I.3 Codtos de décso socale et théorème d

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Filière de Sciences Économiques et de Gestion. Semestre : S 3 Module : M 12 (Méthodes Quantitatives III) Matière : Algèbre I.

Filière de Sciences Économiques et de Gestion. Semestre : S 3 Module : M 12 (Méthodes Quantitatives III) Matière : Algèbre I. Uirsité ohmmd V gdl Fculté ds Scics Juridiqus Ecoomiqus t socils RT http://www.ssr.c.m ا اآال آ ام ا واد وا اا! ط Filièr d Scics Écoomiqus t d Gstio Smstr : S odul : éthods Qutittis III tièr : lgèbr I

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

ANALYSE DES CORRESPONDANCES SIMPLES

ANALYSE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez MESURE DE LIAISON ENTRE DEUX VARIABLES QUALITATIVES KHI-DEUX Mesure de la laso etre deux varables qualtatves

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Chapitre 7: Calculs approchés d intégrale

Chapitre 7: Calculs approchés d intégrale Lycée Mssé Chpitre 7: Clculs pprochés d itégrle 1 Itroductio Les foctios usuelles qu o mipule possèdet souvet des primitives que l o peut exprimer à l ide des foctios usuelles. Cepedt, ce est ps le cs

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

e x dx = e x dx + e x dx + e x dx.

e x dx = e x dx + e x dx + e x dx. Chtr Foctos Gmm t foctos d Bssl Chtr Focto Gmm t foctos d Bssl Détrmto d l focto Gmm L focto Gmm st très sml à dédur à rtr d l tégrl d'eulr: Ctt tégrl st u focto d rmètr ; ll st rrésté r l symbol () t

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

Exercices sur la géométrie plane

Exercices sur la géométrie plane Eercces sur la géoétre plane Sot un trangle équlatéral et M un pont ntéreur au trangle n note H, K, L les projetés orthogonau respectfs de M sur les tros côtés éontrer que la soe MH + MK + ML est constante

Plus en détail

1) ANALYSE Si le couple q, r existe, 0 r a bq b, donc bq a bq 1, d où. q 1 et q est la partie entière de a/b et r a bq : fin de l analyse.

1) ANALYSE Si le couple q, r existe, 0 r a bq b, donc bq a bq 1, d où. q 1 et q est la partie entière de a/b et r a bq : fin de l analyse. DÉMONSTRATIONS D ARITHMÉTIQUE D1 (Théorème de la division euclidienne) Données a, b entiers, b 0 (donc b 1. 1) ANALYSE Si le couple q, r existe, 0 r a bq b, donc bq a bq 1, d où q a b q 1 et q est la partie

Plus en détail

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques IFT393 Qualté du logcel et métrques Chaptre 7 Collecte et aalyse des métrques Pla du cours Itroducto Qualté du logcel Théore de la mesure Mesure du produt logcel Mesure de la qualté du logcel Études emprques

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Augmentation de capital - Comptabilisation

Augmentation de capital - Comptabilisation Ctluppi & Hug AG Softwre d Augmettio de cpitl - Comptbilistio Descriptio Ue ugmettio de cpitl est ue ugmettio du cpitl ctio d'ue société oyme pr émissio de ouvelles ctios. Il existe différetes formes d'ugmettio

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES www.tfwt.co Fculté de rot et de Scece écooques ANNEE 4 5 LMSE -S5 MATHEMATIQUES FINANIERES Jule Froger e-l : jule.froger@c-tes.fr web : www.uv-les.fr/~d59 www.tfwt.co Mthétques fcères, rs 5 htre Les térêts

Plus en détail

Les puissances à exposants négatifs

Les puissances à exposants négatifs CHAPITRE Les puissces à exposts égtifs. Itroductio : les puissces de Nous coissos bie l ottio où est u etier positif : E géérl : ( ) 0 8 6 N... fcteurs Rerquos qu'il y ue reltio évidete etre deux puissces

Plus en détail