CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine."

Transcription

1 CHAPITRE 5 Foncion linéaire. Proporionnalié. Foncion affine. (Voir : 4 ème, chapire 5 ; 3 ème, chapires 3, 13.) I) Foncion linéaire A) Définiion a désigne un nombre relaif connu e fié. Définiions : La foncion qui à ou nombre relaif associe le produi de par a, c es-à-dire le nombre a, s appelle la foncion linéaire de coefficien a. Le nombre a es appelé coefficien de linéarié de la foncion. Si f désigne cee foncion, on noe «f : a» ou «f() = a». C es une «machine à muliplier» (opéraeur muliplicaif) : " Anécéden " " Foncion " " Image " a a Si f es une foncion linéaire de coefficien a, on a : f(0) = 0 e f(1) = a. Eemples : 1. La foncion f qui, à un nombre, fai correspondre son double es la foncion linéaire de coefficien 2, noée f : 2 ou f() = 2. L image de 5 par f es : f( 5) = 2 ( 5) = ? L anécéden de 8 par f es : le nombre el que f() = 8 c es-à-dire 2 = 8 d où = 8? 2 e = La foncion f : 3 es la foncion linéaire de coefficien ( 3) f ( ) Le ableau de valeurs ci-dessus es un ableau de proporionnalié. Le coefficien de proporionnalié 3, es le coefficien de linéarié de f. L image de 2 par la foncion f es f(2) = 3 2 = 6. f(6) = f(2+4) = f(2) + f(4) = 6 + ( 12) = 18. f(6) = f(3 2) = 3 f(2) = 3 ( 6) = 18. Propriéé : f es une foncion linéaire de coefficien a avec a 0. Par cee foncion linéaire, ou nombre adme un e un seul anécéden easymahs.free.fr Page 1 sur 7

2 Propriéé : Toue siuaion de proporionnalié peu se raduire mahémaiquemen par une foncion linéaire don le coefficien es le coefficien de proporionnalié. On di que l on modélise la siuaion. Dire qu une foncion es linéaire revien à dire que les images son proporionnelles au anécédens. B) Déerminaion Méhode : Pour déerminer l epression algébrique d une foncion linéaire à parir de la donnée d un nombre non nul e de son image, on calcule son coefficien de la façon suivane : a = image du nombre / ce nombre Si f désigne cee foncion e si 0, a = f()/. On considère la foncion linéaire f elle que f(6) = 15. 6? 15 La forme générale des foncions linéaires es f() = a. On a ainsi f(6) = a 6. Or f(6) = 15. f( 6) -15 Donc on résou l équaion a 6 = 15 d où a = = 6 6 = 2,5. La foncion linéaire f es donc définie par l epression algébrique f() = 2,5. C) Pourcenages 5 Prendre les 5 % de, c es muliplier par ou 0,05. D où la foncion linéaire correspondane : 0,05. Propriéé : Augmener un nombre de %, c es le muliplier par le nombre 1 +. Diminuer un nombre de %, c es le muliplier par le nombre 1. Conséquence : Une augmenaion de % d une grandeur posiive se radui par la foncion linéaire : (1 + ) ( 0 e 0) Une diminuion de % d une grandeur posiive se modélise par la foncion linéaire : (1 ) ( 0 e 0) Eemples : easymahs.free.fr Page 2 sur 7

3 Augmener 132 de 5 % c es muliplier 132 par 1,05 : = (1 + 5 ) 132 = 1, = 138,6 La foncion linéaire f qui modélise cee siuaion es : f() = 1,05. Diminuer 132 de 5 % c es muliplier 132 par 0,95 : = (1 5 ) 132 = 0, = 125,4 La foncion linéaire associée es : 0,95. D) Représenaion graphique Le plan es muni d un repère (O, I, J). Propriéés : La représenaion graphique de la foncion linéaire de coefficien a dans un repère es l ensemble des poins de coordonnées ( ; a). C es la droie passan par l origine du repère e, en pariculier, par le poin de coordonnées (1 ; a). Définiions : Les coordonnées ( ; y) des poins de la droie son liées par la relaion y = a. On di que cee relaion es une équaion de la droie qui représene graphiquemen la foncion linéaire de coefficien a. Le coefficien de linéarié a de la foncion linéaire es appelé le coefficien direceur de la droie. (C es le nombre qui indique la direcion de la droie.) Représener graphiquemen la foncion linéaire f : 0,5. La représenaion graphique de la foncion f es la droie (d) d équaion y = 0,5 passan par le poin O(0 ; 0). Pour consruire (d), il suffi de calculer les coordonnées d un 2 ème poin. Par eemple, f(2) = 0,5 2 = 1 donc le poin A(2 ; 1) (d). y Images (d) 4 1 A y =0,5 Anécédens O Pour que le racé d une droie soi précis, on a inérê à la consruire avec 2 poins assez éloignés! Pour conrôler le racé, on peu vérifier graphiquemen la cohérence du coefficien direceur avec le dessin. C es l ordonnée du poin d abscisse 1. On li ainsi que l image de 1 es 0,5, d où a = 0,5. On peu lire graphiquemen le nombre ayan pour image 2. On li que 2 es l image du nombre 4. ( 4 2) easymahs.free.fr Page 3 sur 7

4 On peu vérifier que f( 4) = 0,5 ( 4) = 2. Inerpréaion graphique du coefficien direceur : L inclinaison de la droie (d) par rappor à l ae des abscisses varie avec le nombre a. Si a > 0, alors la droie «mone». Si a = 0, alors la droie es confondue avec l ae des abscisses. Si a < 0, alors la droie «descend». Propriéé : (réciproque) Toue droie passan par l origine du repère e non confondue avec l ae des ordonnées es la représenaion graphique d une foncion linéaire. Elle a une équaion de la forme y = a. Déerminer graphiquemen l équaion de la droie représenée. y M 3 1 O 1 4 La droie passe par l origine O du repère, c es donc la représenaion graphique d une foncion linéaire. Son équaion es donc de la forme y = a. La droie passe par le poin M(4 ; 3), donc 3 = a 4, d où a = 3/4. Cee représenaion graphique es donc celle de la foncion linéaire 0,75. II) Foncion affine A) Définiion a e b désignen des nombres relaifs donnés. Définiions : Le processus qui à ou nombre relaif fai correspondre le nombre a + b, s appelle foncion affine de coefficiens a e b. Le nombre a + b es appelé l image de par la foncion. " Foncion " " Anécéden " " Image " a a + b a + b (On muliplie par a, puis on ajoue b) Noaions : Si f désigne cee foncion, on noe : f() = a + b ou f : a + b. Remarques : Le nombre b es l image de 0 par cee foncion. Si b = 0 alors on a la foncion linéaire f() = a easymahs.free.fr Page 4 sur 7

5 Une foncion linéaire es donc une foncion affine pariculière. Si a = 0, alors on a la foncion consane f() = b. Tous les nombres on la même image b. Une foncion consane es donc une foncion affine pariculière. La foncion f qui, à un nombre, associe son riple augmené de 5 es une foncion affine. On la noe f : ou f() = L image de 8 par f es f( 8) = 3 ( 8) + 5 = 19. f(0) = 5. L anécéden de 11 par f es le nombre el que f() = 11 c es-à-dire = 11 d où 3 = 6 e = 2.. B) Proporionnalié des accroissemens Un ableau de valeurs d une foncion affine f() = a + b n es pas en général un ableau de proporionnalié (sauf si b = 0). En revanche, il y a oujours proporionnalié des écars. Propriéés : Pour une foncion affine f : a + b, les accroissemens des valeurs de f() son proporionnels au accroissemens de la variable. Le coefficien de proporionnalié des accroissemens es le nombre a. f( 2) f( 1) = a ( 1 2 ) 2 1 Pour la foncion affine f() = 3 + 5, on a : f(7) - f(2) f( 4) f(9) = = 3 ou encore = = 3. f ( ) Si f es une foncion linéaire, f(0) = 0 donc, pour ou nombre 0, = a. C) Déerminaion Méhodes : Pour déerminer une foncion affine à parir de la donnée de deu nombres e de leurs images, on peu : Résoudre un sysème de deu équaions à deu inconnues. Appliquer la propriéé de la proporionnalié des accroissemens. On considère la foncion affine f elle que f( 8) = 19 e f(2) = 11. Déerminer l epression algébrique de la foncion f. On connaî la forme générale des foncions affines : f() = a + b. Une méhode : f ( 8) = 19 a ( 8) + b = 19 8a + b = 19 donc d où f (2) = 11 a 2+ b = 11 2a + b = 11 La résoluion du sysème (ch. 9) condui à a = 3 e b = easymahs.free.fr Page 5 sur 7

6 Une aure méhode : f( 8) f(2) a = = = = 3 d où f() = 3 + b or f(2) = b e f(2) = 11 donc 6 + b = 11 e b = 5. La foncion affine f es donc définie par f() = D) Représenaion graphique Le plan es muni d un repère (O, I, J). Propriéés : La représenaion graphique de la foncion affine f : a + b es la droie passan par le poin de coordonnées (0 ; b). Elle es parallèle à la droie qui représene la foncion linéaire associée a ; c es son image par la ranslaion de veceur de coordonnées (0 ; b). Définiions : On di que la représenaion graphique de la foncion affine f : a + b es la droie d équaion y = a + b. Le coefficien a es appelé le coefficien direceur de la droie e le coefficien b l ordonnée à l origine. Représener graphiquemen la foncion affine f : 2. La représenaion graphique de la foncion f es la droie d d équaion y = 2. Elle passe par le poin B(0 ; 2) e es parallèle à la droie y = 2. Son coefficien direceur es 1 e son ordonnée à l origine es 2. Pour consruire (d), il suffi de calculer les coordonnées d un 2 ème poin. Par eemple, f( 6) = ( 6) 2 = 4 donc le poin A( 6 ; 4) (d). y = 2 y A O 1 B 2 y = Pour conrôler le racé, on peu vérifier graphiquemen la cohérence du coefficien direceur avec le dessin. On avance de 1 e on descend de 1 donc a = 1. On peu lire graphiquemen que l image de 2 es 4. On peu lire graphiquemen que l anécéden de 3 es 5. Remarques : L ordonnée à l origine indique l ordonnée du poin d inersecion de la droie avec l ae des ordonnées easymahs.free.fr Page 6 sur 7

7 Le coefficien direceur indique l accroissemen de y pour un accroissemen de égal à 1. Lorsque le repère es orhonormé, le coefficien direceur es appelé pene de la droie. Inerpréaion graphique du coefficien direceur : L inclinaison de la droie par rappor à l ae des abscisses varie avec le nombre a. Si a > 0, alors la droie «mone». Si a < 0, alors la droie «descend». Si a = 0, alors la droie es horizonale. b b b Propriéé : (réciproque) Toue droie non parallèle à l ae des ordonnées es la représenaion d une foncion affine. Elle a une équaion de la forme y = a + b. La représenaion graphique d une foncion consane es une droie parallèle à l ae des abscisses, passan par le poin de coordonnées (0 ; b) easymahs.free.fr Page 7 sur 7

Fonctions numériques Proportionnalité

Fonctions numériques Proportionnalité Foncions numériques Proporionnalié I Foncions numériques 1 ) Définiion e noaions Définir une foncion f qui à x associe y c es donner une formule mahémaique qui perme pour oue valeur donnée de x soi de

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

Equations différentielles

Equations différentielles Equaions différenielles Généraliés Une équaion différenielle es une relaion enre une variable réelle (par eemple ), une foncion qui dépend de cee variable (par eemple y) e un cerain nombre de ses dérivées

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

1 Proportionnalité et représentation graphique

1 Proportionnalité et représentation graphique 1 Proporionnalié 1 Proporionnalié e représenaion graphique 1 a) proporionnalié e conséquences On di qu il y a proporionnalié dans un ableau lorsque l on peu passer d une ligne à l aure en muliplian par

Plus en détail

Chapitre I Grandeur scalaires, grandeurs vectorielles, différentielles, différentielles vectorielles et équations différentielles

Chapitre I Grandeur scalaires, grandeurs vectorielles, différentielles, différentielles vectorielles et équations différentielles Chapire I Grandeur scalaires, grandeurs vecorielles, différenielles, différenielles vecorielles e équaions différenielles I. Inroducion Une affirmaion scienifique es une affirmaion adhéré, prouvée comme

Plus en détail

Unité 6 : La proportionnalité numérique 3 ème ESO

Unité 6 : La proportionnalité numérique 3 ème ESO UITÉ 6 : LA PROPORTIOALITÉ UMÉRIQUE POUR DÉBUTER Il fau rappeler - Définiion de grandeur : Une grandeur es une caracérisique qui es mesurée, e la valeur es exprimée par un nombre. Le concep de grandeur

Plus en détail

( ) = 20 + 10 e x. x x x 1 2. lim 10e = 0. 2. Étudier les variations de la fonction f et dresser son tableau de variations.

( ) = 20 + 10 e x. x x x 1 2. lim 10e = 0. 2. Étudier les variations de la fonction f et dresser son tableau de variations. Corrigé Parie A La foncion f es définie sur l inervalle [ ; + [ par f ( ) ( ) = + e On noe C la courbe représenaive de la foncion f dans un repère orhonomal ( Oi,, j) cm) (unié graphique Éudier la limie

Plus en détail

Graphiquement, les deux grandeurs sont directement proportionnelles car le

Graphiquement, les deux grandeurs sont directement proportionnelles car le 1 1. Acivié 1 : Allongemen du ressor Exercice 1 L Variaion de ll'allongemen du en ressor foncion en foncion du poids du poids (cm) allongemen (cm) 1 9 8 7 6 5 4 3 2 1 D après les informaions fournies par

Plus en détail

Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 2007 2008

Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 2007 2008 Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 La ligne droite fait partie de notre environnement naturel, mais comme tout objet mathématique, elle nécessite une définition.

Plus en détail

RESOUDRE UNE EQUATION

RESOUDRE UNE EQUATION THEME 0 : EGALITES EQUATIONS() RESOUDRE UNE EQUATION. ACTIVITE : «Egaliés e opéraions : quelles son les règles?» 0 0 0 fig. fig. fig. fig. : On ne change pas l égalié lorsque l on ajoue un même obje sur

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; (S) M 1. O y (S) O y. Mécanique Cinématique Cinématique C2

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; (S) M 1. O y (S) O y. Mécanique Cinématique Cinématique C2 écanique Cinémaique Cinémaique C bjecif : Définir, décrire e calculer la iesse ou l accéléraion d un poin d un solide. 1. Viesse CINEATIQUE C Viesse e accéléraion 1.1. Noion de iesse Soi un solide en mouemen

Plus en détail

Chapitre 1.3 La vitesse instantanée

Chapitre 1.3 La vitesse instantanée Chapire.3 La iesse insananée La iesse dans un graphique de posiion On peu obenir une iesse moyenne en foncion du emps en effecuan un calcul de pene. Puisqu une pene es une rappor enre une ariaion selon

Plus en détail

Introduction de la loi normale centrée réduite

Introduction de la loi normale centrée réduite Ce documen de formaion es desiné au enseignans. Il se conforme au insrucions du programme de mahémaiques des classes de Terminales (2). Sa lecure nécessie la connaissance des variables aléaoires discrèes,

Plus en détail

Une fonction linéaire f de coefficient a est une fonction qui, à tout nombre x, associe le nombre ax.

Une fonction linéaire f de coefficient a est une fonction qui, à tout nombre x, associe le nombre ax. COURS ÈME FONCTIONS LINÉAIRE ET AFFINE PAGE /7 I. FONCTION LINÉAIRE : Une fonction linéaire f de coefficient a est une fonction qui, à tout nombre x, associe le nombre ax. On la note : On dit que : f :

Plus en détail

Intégrales Généralisées

Intégrales Généralisées Inégrales Généralisées Eercice. Monrer la convergence e calculer la valeur des inégrales : I = 3 e d ; I = + d ln() ; I 3 = ( + ) d Allez à : Correcion eercice Eercice. Les inégrales généralisées suivanes

Plus en détail

Chapitre 4. Série de Fourier. 4.1 Série de Fourier

Chapitre 4. Série de Fourier. 4.1 Série de Fourier Chapire 4 Série de Fourier On a vu commen analyser des circuis don l enrée es une source sinusoïdale. Mais commen faire si la source n es pas sinusoïdale? Es-ce qu on peu quand même uiliser la foncion

Plus en détail

Chapitre 2. Cinématique. 2.1 Introduction. 2.2 Référentiel et repère. 2.2.1 Référentiel

Chapitre 2. Cinématique. 2.1 Introduction. 2.2 Référentiel et repère. 2.2.1 Référentiel Chapire 2 Cinémaique 2.1 Inroducion La cinémaique es l éude du mouvemen des corps. Nous ne considérerons que des corps de faibles dimensions de sore qu ils seron oujours assimilés à des poins appelés mobiles.

Plus en détail

Chapitre V : Torsion simple.

Chapitre V : Torsion simple. Torsion simple. Cours RD / A.U : 2012-2013 Chapire V : Torsion simple. Objecifs Pré-requis Elémens de conenu Déerminer la répariion des conraines dans une secion de poure solliciée à la orsion. Vérifier

Plus en détail

1 ère L Les pourcentages

1 ère L Les pourcentages 1 ère L Les pourcenages Ce chapire se place dans le cadre de l informaion chiffrée. III. Calculer une valeur après un pourcenage d augmenaion e de diminuion (opéraeur associé à un pourcenage d évoluion)

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

LES FONCTIONS AFFINES

LES FONCTIONS AFFINES LES FNCTINS FFINES 1. PRESENTTIN a. Définition Soit a et b deu réels. La fonction f telle que f ( ) = a+ b est appelée fonction affine. Son ensemble de définition est Df = ] ; + [ = b. Représentation graphique.

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

Chapitre 1. La cinématique. 1.1 Définitions

Chapitre 1. La cinématique. 1.1 Définitions Chapire 1 La cinémaique La cinémaique es la descripion mahémaique du mouvemen, souven considérée comme la base de la physique. Le mouvemen le plus fondamenal auquel on puisse penser es la chue libre. Expérimenée

Plus en détail

Thème N 1 : NOMBRES RELATIFS ET DECIMAUX

Thème N 1 : NOMBRES RELATIFS ET DECIMAUX Thème N : NOMBRES RELATIFS ET DECIMAUX SENS ET CALCULS () ACITIVITES GRAPHIQUES () A la fin du thème, tu dois savoir : Introduire la notion de nombre relatif. Ranger des nombres relatifs courants en écriture

Plus en détail

RELATIONS FONCTIONNELLES. I Généralités

RELATIONS FONCTIONNELLES. I Généralités Universié d'angers : LSEN relaions foncionnelles p. Parie A : Proporionnalié RELATIONS FONCTIONNELLES I Généraliés / Définiion : Soien deux suies de nombres réels : (x ;x ;x ;x 4 ) e (y ;y ;y ;y 4 ). Ces

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Voir des propriétés sur la calculette et de les démontrer par des calculs : ensemble de définition solutions d'équations et d'inéquations croissance et décroissance symétries

Plus en détail

2 Compléter un tableau de proportionnalité

2 Compléter un tableau de proportionnalité 1 Reconnaire un ableau de proporionnalié OJECTIF 1 DÉFINITION Il y a proporionnalié dans un ableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s obiennen en muliplian ceux de la première

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

Les droites. On considère le plan muni d un repère orthonormé (O ; I, J).

Les droites. On considère le plan muni d un repère orthonormé (O ; I, J). Chapitre 2 1ère STMG Les droites 1. Coefficient directeur ; ordonnée à l origine On considère le plan muni d un repère orthonormé (O ; I, J). 1.1) Droites non parallèles à l'axe des ordonnées Définition

Plus en détail

Première STG Chapitre 4 : taux d'évolution. page n

Première STG Chapitre 4 : taux d'évolution. page n Première STG Chapire 4 : aux d'évoluion. page n 1 On peu lire dans un journal : " Le prix de la able basse, qui es passé de 500 à 502, n'a praiquemen pas bougé. " e plus loin : " Hausse impressionnane

Plus en détail

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que PROPORTIONNALITE a) Définiion d une proporion a Quare nombres a, b, c e d éan non nuls, on di que c l une des condiions suivanes (équivalenes) es vérifiée : b d es une proporion lorsque Condiion 1 : Les

Plus en détail

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur REGIME TRANSITOIRE Inroducion Lorsqu on ferme un circui pour le mere en foncion, les courans e les ensions meen un cerain emps à s éablir. C es le régime ransioire. Ce chapire fai l éude des composans

Plus en détail

CHAPITRE 16 : CALCUL INTEGRAL

CHAPITRE 16 : CALCUL INTEGRAL Clcul inégrl Cours CHAPITRE 6 : CALCUL INTEGRAL L noion d inégrle éé définie u chpire 9. Rppelons que l on oujours. Propriéés de l inégrle.. Relion de Chsles Soi f coninue sur I, rois réels, e c quelconques

Plus en détail

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation INGOD Charloe MEYE Anne DAEAU Mayeul 22 GESSET omain éponse Temporelle d'un circui C dégradé en régime quelconque : foncions inégraion e dérivaion Philippe GUY 23-24 INGOD Charloe MEYE Anne DAEAU Mayeul

Plus en détail

BIBLIOGRAPHIE. J.L. Caubarrere, H. Djellouah, J. Fourny, F.Z. Khelladi : Introduction à la mécanique.

BIBLIOGRAPHIE. J.L. Caubarrere, H. Djellouah, J. Fourny, F.Z. Khelladi : Introduction à la mécanique. INTRODUCTION Conforme au programmes du LMD, ce fascicule s adresse au éudians de première année de l universié dans le domaine des Sciences de la Maière. Il es conçu de façon à aplanir au mieu les difficulés

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

MQ22 TP n 3 : Essai de torsion

MQ22 TP n 3 : Essai de torsion TP n 3: Essai de orsion MQ TP n 3 : Essai de orsion Bu : Le bu de ce TP es de déerminer le module d élasicié ransversale de Coulomb (G). Pré-requis : On effecue une coupe de l éprouvee. On éudie ensuie

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

I) A quoi sert une fonction affine?

I) A quoi sert une fonction affine? FICHE METHODE sur les FONCTIONS AFFINES I) A quoi sert une fonction affine? a). Il a actuellement 3 euros d économies et en ajoute 5 par semaine! Comment varient ses économies en fonction du nombre x de

Plus en détail

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES Sommaire I- Equaions différenielles du premier ordre I-1- Résoluion des équaions du ype : a f () + f() = g() I-- Exemple de résoluion

Plus en détail

Géométrie analytique et équation de droite

Géométrie analytique et équation de droite Géométrie analtique et équation de droite ) Géométrie analtique.. Généralités. Définitions : Dire que ( ; ) sont les coordonnées du point M dans le repère (O ; i ; j ) signifie que : OM = i + j et on note

Plus en détail

Chapitre 3 : Vecteurs. Géométrie analytique

Chapitre 3 : Vecteurs. Géométrie analytique I. Vecteurs Chapitre 3 : Vecteurs. Géométrie analytique Un vecteur permet de caractériser un déplacement : Il est défini par une direction, un sens sur cette direction et une longueur. E F Il n'est en

Plus en détail

Elec 3 : Circuit RLC

Elec 3 : Circuit RLC Travaux Praiques de physique Elec 3 : ircui R Version du 8/3/6 Plan Rappels Théoriques ircuis R e R ircui «idéal» ircui R en ension coninue ircui R en ension sinusoïdale, résonance Applicaions Manipulaion

Plus en détail

Problème de contrôle optimal en temps minimal pour un avion contraint en phase de montée

Problème de contrôle optimal en temps minimal pour un avion contraint en phase de montée Problème de conrôle opimal en emps minimal pour un avion conrain en phase de monée D.Goubina, en collaboraion avec O.Cos, J.Gergaud Journées SMAI-MODE 2016 23-25 mars, Toulouse Sommaire Conexe Éude géomérique

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

POURCENTAGES. 1 ) x = L'alumine représentant 24% de la bauxite, 5 250kg de bauxite permettront d'obtenir 1260 kg d'alumine.

POURCENTAGES. 1 ) x = L'alumine représentant 24% de la bauxite, 5 250kg de bauxite permettront d'obtenir 1260 kg d'alumine. POURCENTAGES Pourcenage de proporion Exercice 1 La bauxie es un minerai renferman de l'alumine dans la proporion de 24%. Par élecrolyse de l'alumine, on obien de l'aluminium dans la proporion de 53%. 1

Plus en détail

CUEEP Département Mathématiques E910 : Second degré : interprétation graphique p1/6

CUEEP Département Mathématiques E910 : Second degré : interprétation graphique p1/6 Second degré : Interprétation graphique Préliminaire A chaque epression du second degré de formule générale a b c on peut associer une équation du second degré a b c, mais aussi associer une courbe, c'est-à-dire

Plus en détail

Coordonnées Équation de droites

Coordonnées Équation de droites Coordonnées Équation de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Coordonnées dans le plan 2 1.1 Repères coordonnées d un point.................................... 2 1.2

Plus en détail

Vecteurs et droites du plan

Vecteurs et droites du plan Vecteurs et droites du plan I Rappel sur les vecteurs dans le plan 1. Définitions Un bipoint est un ensemble de 2 points. Le "bipoint " est noté (, ). Deu bipoints (, ) et (C, D) sont équipollents si les

Plus en détail

Courbes de Bézier. Chapitre 16. Section technicien supérieur Cours de mathématiques

Courbes de Bézier. Chapitre 16. Section technicien supérieur Cours de mathématiques Secion echnicien supérieur Cours de mahémaiques Chapire 16 Courbes de Bézier Les courbes de Bézier son uilisées dans de rès nombreuses applicaions : commandes de machines numériques ; programmes de dessin

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Fiche méthode : équations de droites

Fiche méthode : équations de droites Table des matières 1 Coefficient directeur 2 11 Cas général 2 12 Calcul du coefficient directeur connaissant deux points de la droite 2 13 Lecture graphique du coefficient directeur 2 2 Equation réduite

Plus en détail

Repérage dans le plan

Repérage dans le plan Repérage dans le plan GÉOMÉTRIE 1 ACTIVITÉ 1 Coordonnées dans un repère CHERCHER : Changer de registre On considère le repère (P, I, J) où P désigne Paris. On a de plus PI = PJ et (PI) perpendiculaire

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU SECOND ORDRE (EXOS)

ÉQUATIONS DIFFÉRENTIELLES DU SECOND ORDRE (EXOS) Fiche professeur second ordre () ÉQUATIONS DIFFÉRENTIELLES DU SECOND ORDRE (EXOS) TI-Nspire CAS 1. Objectifs Résoudre à la main et à l aide de la calculatrice les équations différentielles linéaires du

Plus en détail

Organisation et gestion de données, fonctions :

Organisation et gestion de données, fonctions : Organisation et gestion de données, fonctions : «Un des objectifs est de faire émerger progressivement sur des exemples la notion de «fonction en tant que processus faisant correspondre un nombre à un

Plus en détail

Généralités sur les signaux

Généralités sur les signaux Cours raiemen de Signal AII Chapire : La ra nsormée de Laplace Généraliés sur les signaux I. Inroducion Le raiemen du signal es une discipline indispensable de nos jours. Il a obje l'élaboraion ou l'inerpréaion

Plus en détail

Le classement des nombres réels

Le classement des nombres réels UNITÉ 1 : DES NOMBRES RÉELS Le classemen des nombres réels naurels N 0,1,2,3,4,5,6,7... eniersrelaifs Z naurelsnégaifs 1, 2, 3... 3 raionnelsq décimaux 3.25, 0.06,,4.25, 2.7, 10.35... 2 réels R 1 complexesc

Plus en détail

FONCTIONS DE RÉFÉRENCE

FONCTIONS DE RÉFÉRENCE Fonctions affines Fonctions de référence Seconde Fonctions affines. Activité Trois tais T, T et T proposent les tarifs suivants : T : de prise en charge, puis 0,0 du kilomètre ; T : de prise en charge,

Plus en détail

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque?

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque? Nom : Prénom : Conrôle de mahémaiques, Le mercredi 30 mai 2012 Exercice 1. [3 poins] 1) Parmi les cinq premières figures numéroées de a) à e) recopie sur a copie le numéro de celles qui son des polygones

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 9 septembre 2015

Corrigé du baccalauréat S Métropole La Réunion 9 septembre 2015 Corrigé du baccalauréat S Métropole La Réunion 9 septembre 215 A. P. M. E. P. Eercice 1 Commun à tous les candidats 5 points Question 1 On considère l arbre de probabilités ci-contre :,6 A A,2,3 B B B

Plus en détail

b) Equation du second degré Lorsque l équation ax² + bx + c = 0 admet des solutions, celles-ci sont appelées racines du trinôme ax² + bx + c.

b) Equation du second degré Lorsque l équation ax² + bx + c = 0 admet des solutions, celles-ci sont appelées racines du trinôme ax² + bx + c. Chapitre I : Révisions I. Le second degré a) fonction trinôme La représentation graphique d une fonction f définie sur par f() = a² + b + c (a non nul) est une parabole. La fonction f est appelée fonction

Plus en détail

ETUDE D'UNE ALIMENTATION A DECOUPAGE. I ) MONTAGE REDRESSEUR TRIPHASE A DIODES (figure n 2)

ETUDE D'UNE ALIMENTATION A DECOUPAGE. I ) MONTAGE REDRESSEUR TRIPHASE A DIODES (figure n 2) GCJIPH BTS ELECTROTECHNIQUE Session 1997 PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 ETUDE D'UNE ALIMENTATION A DECOUPAGE Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

Le transistor bipolaire

Le transistor bipolaire Le ransisor bipolaire onsiuion- Symbole 2 1. aracérisiques Foncionnemen 2 1.1. aracérisiques d enrée I =f(v E ) 2 1.2. aracérisiques de Transfer I =f(i ) 3 aracérisiques de sorie I =f(v E ) 4 1.4. Résumé

Plus en détail

EXERCICES SUR LES FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako. 12 ) lim 2 ; 4 ) + 7. x + ; 11 ) ; 14 ) lim.

EXERCICES SUR LES FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako. 12 ) lim 2 ; 4 ) + 7. x + ; 11 ) ; 14 ) lim. EXERCICE :01 EXERCICES SUR LES FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako Calculer les ites suivantes : + 1 + 1 1 ) ; ) ; ) 5 + + + + 5 ) ; 6 ) + + 6 + 6 + 9 ) ( + ) ; 10

Plus en détail

ETUDES DE FONCTIONS. = +. On a : a = -1, b = 4 et c = 0.

ETUDES DE FONCTIONS. = +. On a : a = -1, b = 4 et c = 0. 1 sur 9 ETUDES DE FONCTIONS I. Fonctions polynômes de degré 1. Définition Une fonction polynôme de degré f est définie sur R par f () = a + b + c, où a, b et c sont des nombres réels donnés et a 0. Eemples

Plus en détail

NOM : DELAIS :.. PRENOM :... :.. CLASSE : :.. EQUATIONS DU 1 er DEGRE AUTOEVALUATION

NOM : DELAIS :.. PRENOM :... :.. CLASSE : :.. EQUATIONS DU 1 er DEGRE AUTOEVALUATION NOM : DELAIS :.. PRENOM :... :.. CLASSE : :.. CTM N 9 EQUATIONS DU 1 er DEGRE AUTOEVALUATION TRAVAIL J ai toujours mon CTM au complet avec moi Je me munis du matériel nécessaire à la réalisation de la

Plus en détail

Géométrie analytique dans le plan. Notes de cours

Géométrie analytique dans le plan. Notes de cours Géométrie analytique dans le plan Notes de cours Le plan affine est muni d'un repère point. ; x désigne l'abscisse d'un point, et y l'ordonnée de ce Droite Une droite affine (c'est-à-dire une droite au

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

, on considère les points A( 2; 3) et B(1; 2). y= 5 3 x 1 3., on considère les points A( 3; 1) et B( 3; 4). ( x+3. x= 3

, on considère les points A( 2; 3) et B(1; 2). y= 5 3 x 1 3., on considère les points A( 3; 1) et B( 3; 4). ( x+3. x= 3 I INTRODUCTION Dans le plan muni d un repère O; i, j, on cherche à établir une relation entre les coordonnées (x;) des points du plan appartenant à une droite D. EXEMPLE 1 Dans le plan muni d un repère

Plus en détail

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps.

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps. Modélisaion des sysèmes mécaniques LA CINÉMATIQUE DU POINT Dae : Inroducion : La cinémaique es la parie de la mécanique qui éudie le mouvemen des corps, indépendammen des effors qui les produisen. Les

Plus en détail

Repères et coordonnées dans le plan

Repères et coordonnées dans le plan A Repères et coordonnées dans le plan Repères et coordonnées dans le plan A-1 Définir un repère et les coordonnées d un point Dans un plan (P), on considère 3 points non alignés O, I, J. les droites (OI)

Plus en détail

Code_Aster. Résolution d'une équation différentielle du second ordre par la méthode de NIGAM

Code_Aster. Résolution d'une équation différentielle du second ordre par la méthode de NIGAM Tire : Résoluion d'une équaion différenielle du second[...] Dae : 21/09/2009 Page : 1/6 Résoluion d'une équaion différenielle du second ordre par la méhode de NIGAM Résumé : Nous présenons dans ce documen,

Plus en détail

FONCTION AFFINE a et b étant deux nombres fixés, on appelle fonction affine tout processus opératoire qui au nombre x associe le nombre ax + b :

FONCTION AFFINE a et b étant deux nombres fixés, on appelle fonction affine tout processus opératoire qui au nombre x associe le nombre ax + b : ONCTIONS AINES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ONCTION LINEAIRE Soit a un nombre fié. On appelle fonction linéaire de coefficient a le processus

Plus en détail

5 VECTEURS DU PLAN. 1 Définitions AB. 1.1 Translation. 1.2 Vecteur

5 VECTEURS DU PLAN. 1 Définitions AB. 1.1 Translation. 1.2 Vecteur ours 5 VETEURS U PLN 1 éfinitions 11 Translation éfinition 1 Étant donnés trois points du plan, et M, on dit que M est l image de M par la translation qui transforme en si les segments [M ] et [ M] ont

Plus en détail

LES APPREILS DE MESURE EN COURANT ALTERNATIF

LES APPREILS DE MESURE EN COURANT ALTERNATIF Chapire 4 LES APPEILS DE MESUE EN COUAN ALENAIF I- PAAMEES CAACEISIQUES D UN SIGNAL ALENAIF : Un signal alernaif es caracérisé par sa forme ( sinus, carré, den de scie, ), sa période ( fréquence ou pulsaion

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Généralités sur les fonctions numériques. Rappels sur les fonctions.. Généralités Définition : On appelle fonction f un procédé qui à tout nombre réel tente d'associer un unique nombre réel f(), appelé

Plus en détail

Géométrie analytique ( En seconde )

Géométrie analytique ( En seconde ) Géométrie analytique ( En seconde ) Dernière mise à jour : Dimanche 31 Octobre 2010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) Lycée Stendhal, Grenoble ( Document de : Vincent

Plus en détail

Chapitre 6 Géométrie vectorielle

Chapitre 6 Géométrie vectorielle 6. Translation et vecteurs 6.. Définition DÉFINITIN n considère et deux points distincts du plan. hapitre 6 Géométrie vectorielle. n appelle translation qui transforme en la transformation qui à tout point

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui

Plus en détail

Etude des dipôles R, L et C en régime transitoire

Etude des dipôles R, L et C en régime transitoire Eude des dipôles, L e C en régime ransioire I Présenaion des dipôles L e C e du régime ransioire 1) Condensaeur d u e u d C ( )² i C du e P Cu du E() C u e d d Propriéés : La ension aux bornes d un ondensaeur

Plus en détail

GEOMETRIE DANS L ESPACE

GEOMETRIE DANS L ESPACE GEOMETRIE DNS L ESPCE I. RPPELS SUR LE PRODUIT SCLIRE DNS LE PLN a) Différentes expressions du produit scalaire Soient u et v deux vecteurs du plan. Si l un des vecteurs est nul alors le produit scalaire

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5. Le réel x, associé au point M, est appelé abscisse du point M dans le repère O, I.

Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5. Le réel x, associé au point M, est appelé abscisse du point M dans le repère O, I. Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5 I) Rappels sur les configurations du plan COURS pages 248 et 249 du manuel Exercice 2 page 268 (utiliser la rotation de centre C et d angle 60 ) Exercices

Plus en détail

Introduction. In 1938, Claude Shannon, a montré l utilisation de l algèbre de Boole dans l étude des circuits à base de relais.

Introduction. In 1938, Claude Shannon, a montré l utilisation de l algèbre de Boole dans l étude des circuits à base de relais. Inroducion. Les circuis numériques (digiau, logiques) de la parie maérielle de la machine à informaion son conçus e leurs comporemens analysés en uilisan une branche des mahémaiques appelée Algèbre de

Plus en détail

Système de deux équations à deux inconnues

Système de deux équations à deux inconnues Système de deux équations à deux inconnues I) Système de deux équations à deux inconnues 1) définitions Définition 1 : Un système de deux équations à deux inconnues est de la forme : où a, b, c, a, b et

Plus en détail

Appliquer un pourcentage de t %, c'est multiplier par 100. c'est-à-dire 0,24 ; 53% c'est

Appliquer un pourcentage de t %, c'est multiplier par 100. c'est-à-dire 0,24 ; 53% c'est Première L Pourcenages : cours 1. Pourcenage de proporion Exercice 1 La bauxie es un minerai renferman de l'alumine dans la proporion de 24%. Par élecrolyse de l'alumine, on obien de l'aluminium dans la

Plus en détail

Vecteurs du plan. Seconde 5 2010/2011 L.F.B. Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21

Vecteurs du plan. Seconde 5 2010/2011 L.F.B. Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21 Vecteurs du plan Seconde 5 L.F.B. 2010/2011 Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21 Définitions Translation Définition 1 Étant donnés trois points du plan A, B et M, on dit que M est l image

Plus en détail

Suites : Résumé de cours et méthodes

Suites : Résumé de cours et méthodes Suites : Résumé de cours et méthodes Généralités ne suite numérique est une liste de nombres, rangés et numérotés : à l entier 0 correspond le nombre noté 0 à l entier correspond le nombre noté à l entier

Plus en détail

Equation cartésienne d un plan Géométrie dans l espace Exercices corrigés

Equation cartésienne d un plan Géométrie dans l espace Exercices corrigés Equation cartésienne d un plan Géométrie dans l espace Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : vecteur normal à un plan Exercice 2

Plus en détail

Fréquence et signaux

Fréquence et signaux Fréquence e signaux On désigne par signal la variaion, emporelle par exemple, d une grandeur physique comme la empéraure, l éclairemen, la conraine mécanique, l inensié d un son, la ension élecrique ec...

Plus en détail

Fonctions exponentielles de base q et logarithme décimal

Fonctions exponentielles de base q et logarithme décimal Fonctions eponentielles de base q et logarithme décimal I) Fonctions eponentielles de base q : 1) Définition : q étant un nombre strictement positif différent de 1 Toute fonction qui à tout nombre réel

Plus en détail

Chapitre 1 : Géométrie repérée dans le plan

Chapitre 1 : Géométrie repérée dans le plan Chapitre 1 : Géométrie repérée dans le plan I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ ]. On appelle médiatrice du segment [ ] la droite perpendiculaire en I à ( ). Propriétés

Plus en détail

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID I NOMBRE DÉRIVÉ DÉFINITION Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. f() f(a) Lorsque le rapport admet une

Plus en détail

Vecteurs, cours pour la classe de seconde

Vecteurs, cours pour la classe de seconde F.Gaudon 2 septembre 2009 Table des matières 1 Notions de translation et de vecteurs 2 2 Somme de vecteurs 3 3 Coordonnées de vecteurs 5 1 1 Notions de translation et de vecteurs Soient A et B deux points

Plus en détail

Chapitre 11 Fonctions homographiques. Table des matières. Chapitre 11 Fonctions homographiques TABLE DES MATIÈRES page -1

Chapitre 11 Fonctions homographiques. Table des matières. Chapitre 11 Fonctions homographiques TABLE DES MATIÈRES page -1 Chapitre Fonctions homographiques TABLE DES MATIÈRES page - Chapitre Fonctions homographiques Table des matières I Exercices I-................................................ I-................................................

Plus en détail

Réactions nucléaires spontanées : radioactivité

Réactions nucléaires spontanées : radioactivité a) - b) - c) - LP 12 Réacions nucléaires sponanées : radioacivié I / oyau aomique 1. Consiuion : rappels Un aome es représené par son symbole : Z X où : Z = numéro aomique = nombre de proons dans le noyau

Plus en détail