CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ"

Transcription

1 CHAPITRE Les carrés das (Z/Z Das ce chatre o s téresse à l esemble des carrés das le cors Z/Z, mas auss das certas aeaux Z/Z avec o remer O todut le symbole de Legedre qu caractérse les carrés O trodut auss le symbole de Jacob déf sur Z/Z avec eter mar o écessaremet remer Le symbole de Jacob e ermet as de dstguer les carrés des o-carrés Il est ceedat u outl dsesable our le calcul des symboles de Legedre Sas utlsato du symbole de Jacob l est ratquemet mossble de calculer u symbole de Legedre das Z/Z avec remer grad (quelques cetaes de chffres décmaux 1 Carrés et o carrés das le cors Z/Z Commeços ar u exemle smle Dressos la table des carrés das Z/Z, avec 7 x x mod Parm les 6 élémets o uls, 3 sot des carrés Les 3 autres e sot as des carrés De lus, chaque carré o ul a deux races carrées : 1 ±1, ±3, 4 ± Théorème 1 Sot remer et g u géérateur de (Z/Z L élémet a (Z/Z est u carré s et seulemet s so logarthme e base g est ar Parm les 1 élémets o uls de (Z/Z, la moté exactemet sot des carrés Chaque carré o ul a races carrées Preuve : Sot a das (Z/Z et k so logarthme e base g S k l est ar a (g l est u carré Récroquemet s a est le carré de g t, a g t, so logarthme dscret est le reste de la dvso de t ar 1 qu est ar, car 1 est ar S a est u carré o ul, a b, l élémet b est ue race du olyôme x a, dstcte de la race b Le olyôme x a de F [x] état de degré, l admet as d autre race Théorème (Le crtère d Euler Pour que a remer avec sot u carré modulo l faut et l sufft que a 1 1 (mod 17

2 Cours de crytograhe CHAPITRE LES CARRÉS DANS (Z/NZ Preuve : O calcule das Z/Z Sot g u géérateur de (Z/Z S a est u carré t 1 a g t, o a a ( 1/ a g ( 1t 1 S a g t+1 est as u carré, o a a ( 1/ g ( 1t g ( 1/ 1 ( 1 1 Car g ( 1/ est ue race de x 1 0 dfférete de 1, c est doc 1 Symbole de Legedre Défto 3 Sot a Z, et remer mar O déft le symbole de Legedre ar ( a +1 s a est u carré o ul das (Z/Z 1 s a est as u carré das (Z/Z 0 so Théorème 4 Le symbole de Legedre satsfat les rorétés suvates : Pour tous a et b eters, et q remers mars, ( a Crtère d Euler : a 1 (mod ( ( a + λ a Pérodcté : ( ( ( ab a b Multlcatvté : ( 1 Caractère quadratque de 1 : ( 1 1 ( { +1 s ±1 mod 8 Caractère quadratque de : ( 1 s ( ±3 mod 8 Lo de récrocté quadratque : ( 1 1 q 1 q q Nous e démotreros as ce théorème Les ots 1,,3,4 sot facles Le ot 5 (caractère quadratque de modulo, et surtout le ot 6, sot lus délcats La lo de récrocté quadratque est u résultat remarquable, dû à Gauss, dot l exste de tres ombreuses démostratos Exemle 1 : Calcul de ( 71 La lo de récrocté quadratque, us la érodcté, doet ( ( ( ( ( Isuffsace du symbole de Legedre Sachat ( que le ombre 39 est remer, roosos ous de calculer le symbole de 143 Legedre : Pour alquer la lo de récrocté quadratque, l faudrat que le 39 ( 39 symbole de Legedre sot déf doc que 143 sot remer Ce est as le cas 143 M Deléglse 18 Master Pro CCS

3 Cours de crytograhe 3 INSUFFISANCE DU SYMBOLE DE LEGENDRE car Le seul moye d avacer das le calcul est d utlser cette factorsato, et la multlcatvté du symbole de Legedre O écrt ( ( ( La lo de récrocté quadratque s alque mateat aux deux symboles ( et car 11 et 13 sot remers, et cela codut à ( us ( ( ( ( ( ( ( ( , ( ( 143 ( ( 3 [1 ( 1 ( 1] Le calcul est c très smle car la factorsato ( de 143 est évdete Das le cas gééral le calcul du symbole de Legedre a lorsque a est o remer ous ramèe au roblème de la factorsato de a qu est u roblème dffcle Le symbole de Jacob surme cette dffculté Défto 5 Sot u eter ostf mar, dot la décomosto e facteurs remers est α 1 1 α α k k Le symbole de Jacob ( m est déf ar ( m ( m α1 ( m α ( m αk 1 k Théorème 6 Les rorétés essetelles du symbole de Jacob sot ( a 1 L équato 1 e caractérse as les carrés versbles de Z/Z Le symbole de Jacob e vérfe as le crtère d Euler : e gééral, ( a a ( 1/ ( a + λ ( a 3 Pérodcté : ( ab ( a ( b 4 Multlcatvté : ( 1 5 ( 1 1 ( { 6 ( s ±1 mod 8 1 s ±3 mod 8 7 Lo de récrocté quadratque : ( m Pour tous m et mars, (mod ( ( 1 m 1 1 m Les deux remères rorétés motret que le symbole de Jacob a a as de sgfcato mathématque téressate, cotraremet au symbole de Legedre qu ermet M Deléglse 19 Master Pro CCS

4 Cours de crytograhe CHAPITRE LES CARRÉS DANS (Z/NZ de recoatre les carrés das (Z/Z Mas c est u outl de calcul dsesable Rereos l exemle du calcul de ( O commece ar alquer la lo de récrocté quadratque, sas se oser la questo de la rmalté de 143, et o écrt successvemet ( ( ( ( ( 4 ( ( ( ( ( Il est lus ecessare de factorser les eters, sauf our sortr les facteurs lorsque l argumet fgurat au umérateur est ar O utlse essetellemet la lo de récrocté, et la érodcté Le calcul du symbole de Jacob ( a b est semblable au calcul du gcd de a et b ar l algorthme d Euclde Le calcul d u symbole de Legedre e utlsat les symboles de Jacob e écesste que O(log b dvsos 4 Les carrés das (Z/qZ Avat de ous téresser à l étude des carrés das (Z/Z our eter quelcoque, commeços ar le cas artculer, d u eter q, rodut de ombres remers dstcts, et q Ce cas est très fréquet e crytograhe De ombreux rotocoles utlset u eter de ce tye, avec et q deux grads ombres remers Pour , la table des carrés des élémets de (Z/Z est x x mod Il y a que carrés, 1 et 4, et chacu d eux a 4 races carrées : 1 ±1, ±4, 4 ±, ±7 Théorème 7 Sot q, avec, q remers mars Le ombre de carrés versbles modulo est 1 ( 1(q 1 ϕ( Chaque carré admet 4 races carrées 4 4 dstctes Preuve : Notos C l esemble des carrés des élémets de (Z/Z Sot a C et α ue race carrée de a modulo Pusque q avec (, q 1, o a x a (mod x α (mod { x ±α (mod x ±α (mod q car, das les cors Z/Z et das Z/qZ, α a exactemet deux races carrées qu sot ±α Et chacu des 4 systèmes chos admet ue uque soluto modulo q L alcato (Z/Z C : x x est surjectve, et, vu le calcul récédet l mage récroque de tout élémet de C, est de cardal 4 Il e résulte C 1 (Z/Z ( 1(q M Deléglse 0 Master Pro CCS

5 Cours de crytograhe 5 LES CARRÉS DANS (Z/P α Z 5 Les carrés das (Z/ α Z Le théorème récédet ramèe l étude des carrés das (Z/Z à l étude des carrés das (Z/ α Z, avec remer, et α eter 1 Il faut mettre à art le ombre remer Commeços ar le cas d u remer mar Théorème 8 Sot remer mar, α eter 1, et a Z, remer avec, doc auss avec α 1 Alors a est u carré das (Z/ α Z s et seulemet s a est u carré ( modulo, c est à dre s et seulemet s le symbole de Legedre de a vérfe a 1 Chaque carré o ul de (Z/ α Z a exactemet races carrées 3 S x 1 est ue race carrée de a modulo, l exste, our tout eter 1, u eter x, uque modulo, qu vérfe x x 1 (mod, x a (mod Les x se costruset ar récurrece, e cherchat x +1 sous la forme x +1 x + u où u est ue coue etère à détermer Preuve : La démostrato est ue alcato de la méthode de Hesel qu, artat d ue soluto modulo d ue équato, costrut ue soluto modulo α de la même équato Sot a u carré modulo Z La cogruece a x (mod mlque la cogruece a x (mod Il e résulte que a est auss u carré modulo Comme l équato x a (mod admet exactemet deux solutos, l sufft de démotrer le ot 3 our coclure Le résultat est vra our 1 Suosos le vra à l ordre S x +1 est soluto de x +1 x 1 (mod, x +1 a (mod +1, l est évdemmet soluto de x +1 x 1 (mod et x +1 a (mod, et, ar hyothèse de récurrece (ucté modulo, x +1 est de la forme avec u eter O a alors x +1 x + u, x +1 (x + u x + x u + u us x +1 x + x u (mod +1 Par hyothèse l exste v eter tel que x a + v Pour que x +1 a (mod +1 l est doc écessare et suffsat que u sot soluto de v + x u 0 (mod +1 Arès smlfcato ar, l faut et l sufft our cela que u vérfe v + xu 0 (mod M Deléglse 1 Master Pro CCS

6 Cours de crytograhe CHAPITRE LES CARRÉS DANS (Z/NZ Comme est mar, et x remer avec, cette équato e u a ue soluto uque modulo Il e résulte l exstece, et l ucté modulo +1, de x +1 Pour la méthode de Hesel e foctoe as O a ceedat le résultat suvat Théorème 9 1 L uque élémet 1 de (Z/Z est so rore carré (Z/4Z { 1, 3 } Parm ces deux élémets l u est u carré, 1, et l admet deux races carrées, 1 et Sot x (Z/ Z, avec 3 Alors a est u carré s et seulemet s a est u carré modulo 8, c est à dre s et seulemet s a 1 (mod 8 Das ce cas, chaque carré a exactemet 4 races carrées, et exactemet u quart des élémets de (Z/ Z sot des carrés 4 Pour 3, o calcule les races carrées de a modulo, ar récurrece sur, e utlsat la rorété suvate : Sot x ue race quarrée de a modulo Alors, (a Les autres races carrées de a modulo sot les élémets de l esemble { ±x, ±(x + 1 } (b S x est as ue race carrée de a modulo +1, x + 1 est ue race carrée de a modulo +1 Preuve : Les ots 1 et sot évdets Pour 3 o vérfe mmédatemet que das (Z/8Z { 1, 3, 5, 7 } l y a qu u carré, 1, et dot les 4 races carrées sot 1, 3, 5, 7 Sot 3, et a remer avec (c est à dre mar qu est u carré modulo, et x ue race carrée de a modulo Il exste λ eter avec Remarquos que, usque a est mar, x auss est mar x a + λ (1 1 O vérfe mmédatemet que les eters, ±x, ±(x + 1, deux à deux dstcts modulo sot des races carrées de a modulo S λ est ar (1 motre que x est auss ue race carrée de a modulo +1 S λ est mar, x 1 x + 1, qu vérfe x 1 a λ + x + (λ + x + est ue race de a modulo +1 Utlsat les ots 1 et c dessus, s a 1 (mod 8, e artat d ue race carrée x de a modulo 8, ar exemle x 1, o costrut, our tout 3 u esemble { ±x, ±(x + 1 } dot les 4 élémets sot des races de a modulo Pour termer la démostrato l sufft de démotrer que chaque élémet du sous-esemble C de (Z/ Z formé des élémets cogrus à 1 modulo 8 admet au lus 4 races carrées Cosdéros l alcato surjectve (Z/ Z C x x M Deléglse Master Pro CCS

7 Cours de crytograhe 6 LES CARRÉS DANS (Z/NZ AVEC N QUELCONQUE Les mages récroques des élémets de C formet ue artto de l esemble (Z/ Z O vet de démotrer que chaque classe est de cardal au mos 4 Le ombre de classes, card C 3, est le quart du cardal de card (Z/ Z 1 Doc chaque classe a exactemet 4 élémets 6 Les carrés das (Z/Z avec quelcoque Théorème 10 Sot u eter, α 1 1 α α k k sa décomosto e facteurs remers, et sot a u eter remer avec Pour que a sot u carré modulo l faut et l sufft que, our tout, 1 k, a sot u carré modulo α Preuve : Dre que x a (mod c est dre que α 1 1 α α k k dvse x a Commes les ombres α 1 1,, α k k sot deux à deux remers etre eux, c est dre que x a est dvsble ar chacu de ces ombres, autremet dt x a (mod α 1 1 x a (mod α x a (mod ( x a (mod α k k Cec mlque que a est u carré modulo chacu des α Récroquemet s a est u carré modulo chacu des α, l exste, our chaque, 1 k u x tel que x a (mod α Par le théorème des restes chos, l exste u x tel que x x (mod α our tout O e dédut que, our tout, x x a (mod α C est dre que x est soluto du système fgurat à drote de (, et doc de x a (mod Exercces Exercce et 983 sot remers Calculez de deux maères dfféretes le symbole de Legedre ( : 1 E utlsat uquemet le symbole de Legedre E utlsat le symbole de Jacob Exercce Démotrez que la lo de récrocté quadratque eut auss s écrre, c état d alleurs la forme utlsée as Gauss, ( ( q ( 1 q 1 Exercce 3 ( +1 Sot remer mar Détermer et ( 1 M Deléglse 3 Master Pro CCS

8 Cours de crytograhe CHAPITRE LES CARRÉS DANS (Z/NZ Exercce 4 Démotrer, ar exemle lorsque m 15, les ots 1 et du théorème 6 e exhbat u eter a qu est as u carré modulo 15, tel que ( ( a m 1, et e outre a m a (m 1/ (mod m Exercce 5 Quels sot les remers our lesquels l équato x 3 (mod admet au mos ue soluto? Exercce 6 Motrez que les dvseurs remers de sot de la forme 4k + 1 Exercce 7 Pour quels remers l équato x 5 (mod a-t-elle des solutos? Exercce 8 Que eut o dre des dvseurs remers de 1 1? Et de 1 + 1? Exercce 9 Résolvez les équatos 1 x 15 (mod 77 x + 3 x (mod x + x (mod 15 Exercce 10 Sot remer, et a, b, c eters, a o multle de Motrer que le ombre de solutos ( de l équato ax + bx + c 0 das le cors F est 1 + D, où D b 4ac est le dscrmat de ax + bx + c Exercce 11 1 Pour quels remers l équato x + 6x (mod a-t-elle des solutos? Pour quels remers l équato x + x (mod a-t-elle des solutos? 3 Mêmes questos e remlaçat das les deux cas Pour quels remers ar Pour quels eters aturels Exercce 1 Sot f x + x + 9 Motrer que 1 f 0 (mod 8 admet deux solutos modulo 8 f 0 (mod 16 admet as de soluto M Deléglse 4 Master Pro CCS

9 Cours de crytograhe 6 LES CARRÉS DANS (Z/NZ AVEC N QUELCONQUE Exercce 13 Motrez que s q et 4q + 1 sot remers est u géérateur de (Z/Z Exercce 14 est u ombre remer de la forme Motrez que 1 (mod Exercce 15 Sot F + 1, avec 1 1 O suose remer ( (a Motrez que g est u géérateur de (Z/Z s et seulemet s g 1 (b Motrez que 3 est u géérateur de (Z/Z Ic o e suose as remer, mas seulemet que (mod Motrez que est remer Ce test de rmalté our les ombres de Fermat est le test de Pe Exercce 16 Sot a u élémet o ul de F O se roose de démotrer que, our x F, les évèemets x est u carré o ul et x + a est u carré o ( ul sot ( à eu rès x x + a déedats, c est à dre que le ombre des x F tels que 1 est evro 4 O ote doc A le ombre des eters x {0, 1,, 1} tels que ( ( x x + a 1 1 Das le cas où a 1 calculer A 7 1 [ ( ] [ ( ] x x + a O ose S Motrez que x0 ( ( a a S 4 A O est as rameé au calcul de S Motrez que 1 ( x(x + a S + 4 Pour 1 x 1, sot y l verse de x modulo Motrez que ( ( x(x + a 1 + ay 5 E dédure que S 1, us la valeur de A, et ef l ecadremet 5 4 x1 A 1 4 M Deléglse 5 Master Pro CCS

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

ANALYSE DES CORRESPONDANCES SIMPLES

ANALYSE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez MESURE DE LIAISON ENTRE DEUX VARIABLES QUALITATIVES KHI-DEUX Mesure de la laso etre deux varables qualtatves

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

CHAPITRE III PROBABILITES

CHAPITRE III PROBABILITES HAPITRE III PROBABILITES I re B math I chatre III Probabltés Table des matères OURS A) Aalyse combatore ) Les trages au sort ) Trages avec ordre et avec réétto. 3 3) Trages avec ordre et sas réétto. 4

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Calculs en chromatographie

Calculs en chromatographie Calculs e chroatographe éthode de la oralsato tere... 1 Coeffcet de répose assque relatf... 1 Calcul des pourcetages assques... 2 Calcul des pourcetages olares... 3 xeple d aalyse CG d ue substtuto copéttve

Plus en détail

Chaîne de Markov - Télétrafic - Files d'attente

Chaîne de Markov - Télétrafic - Files d'attente ITRODUCTIO UX TLCOMMUICTIOS Chaîe de Marov - Télétrafc - Fles d'attete Verso 5 Mchel Terré lectroque L terre@camfr lectroque B ITRODUCTIO UX TLCOMMUICTIOS Raels de robablté Le dmesoemet d'u réseau de Télécommucatos

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

sont distincts 2 à 2.

sont distincts 2 à 2. Lycée Thers CORRIGÉ TP PYTHON - 09 L algorthme des k-meas pour partager u uage de pots e u ombre doé de classes peu dspersées 1 - La méthode de Forgy [Qu. 1] 1) Cette double somme comporte termes pusque

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure. TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. L agrégato des préféreces...2 I. Le système de vote à la majorté...2 I.2 Vote par classemet...3 I.3 Codtos de décso socale et théorème d

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Historique de la fibre optique Les fontaines lumineuses de l antiquité

Historique de la fibre optique Les fontaines lumineuses de l antiquité stoque de la fbe optque Les fotaes lumeuses de l atquté Pcpe de la popagato de la lumèe? Pcpe du gudage plaae (1 Dmeso) Se place e codto de éfleo totale A 1 A 1 Gae g Gae g M < c Cœu c M > c Cœu c Fute

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER

M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER 1. Euclide, relation de Bézout, gcd Exercice 1. [DKM94,.14] Montrer que 6 n 3 n our tout entier n ositif. Exercice 2. [DKM94,.15]

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

1 ère partie : STATISTIQUE DESCRIPTIVE

1 ère partie : STATISTIQUE DESCRIPTIVE ère parte : STATISTIQUE DESCRIPTIVE CHAPITRE : COLLECTE DE L INFORMATION, TABLEAUX ET GRAPHIQUES. I. Défto et vocabulare Défto : la statstque est ue méthode scetfque qu cosste à réur des doées chffrées

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Exercices sur l échantillonnage

Exercices sur l échantillonnage TS Exercices sur l échatilloage Pour les itervalles de luctuatio asymtotique au seuil 95 %, o utilisera la ormule : u0,05 ; u0,05 ou, évetuellemet,,96 ;,96. 8 La roortio de aissaces d eats rématurés est

Plus en détail

COURS DE MATHEMATIQUE FINANCIERE A COURT ET LONG TERME Promotion : Première année de graduat

COURS DE MATHEMATIQUE FINANCIERE A COURT ET LONG TERME Promotion : Première année de graduat P R O F E S REPUBLIQUE DEMOCRATIQUE DU CONGO ENSEIGNEMENT SUPEREIEUR ET UNIVERSITAIRE INSTITUT SUPERIEUR DE GESTION INFORMATIQUE DE GOMA /I.S.I.G-GOMA DEVELOPPEMENT ISIG M A T I O N COURS DE MATHEMATIQUE

Plus en détail

Ingénierie de l'analyse des données

Ingénierie de l'analyse des données Igéere de l'aalyse des doées Jea-Lous Grard htt://www.u-carde.rtous/ocumetato/master/ia Pla de cours. Itroducto géérale..... Les Egytes atques savaet-ls edre?..... Ue autre llustrato... 3.3. Pla... 6.4.

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Incertitudes expérimentales

Incertitudes expérimentales U N I O N D E S P R O F E S S E U R S D E P H Y S I Q U E E T D E C H I M I E 995 Icerttudes érmetales par Fraços-Xaver BALLY Lcée Le Corbuser - 93300 Aubervllers et Jea-Marc BERROIR École ormale supéreure

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

6. RADIERS 6.1. GÉNÉRALITÉS

6. RADIERS 6.1. GÉNÉRALITÉS 6. RADIERS 6.. GÉNÉRALITÉS U raer est ue alle plae, évetuellemet ervurée, costtuat l'esemble es foatos 'u bâtmet. Il s'éte sur toute la surface e l'ouvrage. Ce moe e foato est utlsé as eux cas : lorsque

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

2013 LES DÉLAIS DE PAIEMENT. STATISTIQUES DE 2000 À 2012 EN NOMENCLATURE NAF rev. 2

2013 LES DÉLAIS DE PAIEMENT. STATISTIQUES DE 2000 À 2012 EN NOMENCLATURE NAF rev. 2 203 LES DÉLAIS DE PAIEMENT STATISTIQUES DE 2000 À 202 EN NOMENCLATURE NAF rev. 2 Javer 204 Itroducto Des séres statstques chroologques des délas de paemet et du solde du crédt teretreprses sot dspobles

Plus en détail

APPRENTISSAGE ARTIFICIEL («Machine-Learning»)

APPRENTISSAGE ARTIFICIEL («Machine-Learning») APPRENTISSAGE ARTIFICIEL («Mache-Learg») Fabe Moutarde Cetre de Robotque (CAOR) MINES ParsTech (Ecole des Mes de Pars) Fabe.Moutarde@mes-parstech.fr http://perso.mes-parstech.fr/fabe.moutarde Appretssage

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

e x dx = e x dx + e x dx + e x dx.

e x dx = e x dx + e x dx + e x dx. Chtr Foctos Gmm t foctos d Bssl Chtr Focto Gmm t foctos d Bssl Détrmto d l focto Gmm L focto Gmm st très sml à dédur à rtr d l tégrl d'eulr: Ctt tégrl st u focto d rmètr ; ll st rrésté r l symbol () t

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

L Analyse Factorielle des Correspondances

L Analyse Factorielle des Correspondances Aalyse de doées Modle 5 : L AFC M5 L Aalyse Factorelle des Corresodaces L aalyse factorelle des corresodaces, otée AFC, est e aalyse destée a tratemet des tableax de doées où les valers sot ostves et homogèes

Plus en détail

l équation ax n by n = 1

l équation ax n by n = 1 Uiversité Paris 7 Deis Diderot UFR de Mathématiques Mémoire de Master 2 Sous la directio de Marc Hidry U exemle d alicatio de techiques d aroximatio diohatiee : l équatio ax by = Lioel Poto lioel.oto@gmail.com

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Modes propres de vibration ; interprétation ondulatoire

Modes propres de vibration ; interprétation ondulatoire SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

1 Raisonnement. Vocabulaire ensembliste CHAPITRE

1 Raisonnement. Vocabulaire ensembliste CHAPITRE CHAPITRE 1 Raisonnement Vocabulaire ensembliste A. Éléments de logique.......................... 12 1. Construction de roositions....................... 12 2. Quantificateurs.............................

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Cécile Lardon. Professeur en classe préparatoire au lycée du Parc à Lyon. Jean-Marie Monier

Cécile Lardon. Professeur en classe préparatoire au lycée du Parc à Lyon. Jean-Marie Monier Mathématiques Méthodes et eercices ECS e aée Cécile Lardo Professeur e classe préparatoire au lycée du Parc à Lyo Jea-Marie Moier Professeur e classe préparatoire au lycée La Martiière-Moplaisir à Lyo

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Programmation. linéaire avecexcel. Christian Prins - Marc Sevaux. Groupe Eyrolles, 2011, ISBN : 978-2-212-12659-4

Programmation. linéaire avecexcel. Christian Prins - Marc Sevaux. Groupe Eyrolles, 2011, ISBN : 978-2-212-12659-4 Programmato léare avecexcel Chrsta Prs - Marc Sevaux Groupe Eyrolles, 20, ISBN : 978-2-22-2659-4 CHAPITRE 3 Emplos du temps et gesto de persoel 3. Itroducto La gesto du persoel est u élémet sesble de la

Plus en détail

RECUEIL DES METHODES INTERNATIONALES D'ANALYSES OIV Guide de validation Contrôle qualité

RECUEIL DES METHODES INTERNATIONALES D'ANALYSES OIV Guide de validation Contrôle qualité Gude de valdato Cotrôle qualté Gude pratque pour la valdato, le cotrôle qualté, et l estmato de l certtude d ue méthode d aalyse œologque alteratve (Résoluto Oeo 10/005) Sommare 1. OBJET... 5. PREAMBULE

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Pricing Avancé pour Exotiques FINKEYS FRANCE

Pricing Avancé pour Exotiques FINKEYS FRANCE Prcg Avacé pour Exotques Esegat Phlppe DUCHEMIN, Cosultat Formateur. www.fkeys.com (accès au cours) Cosultat : «Product Cotrol» CNP, chox d u outl Frot to Compta SOCIETE GENERAL SGCIB - Product Cotrol

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

REPUBLIUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTAIRE DES ETUDES SUPERIEURS ET DES RECHERCHES SCIENTIFIQUES

REPUBLIUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTAIRE DES ETUDES SUPERIEURS ET DES RECHERCHES SCIENTIFIQUES REPUBLIUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTAIRE DES ETUDES SUPERIEURS ET DES RECHERCHES SCIENTIFIQUES UNIVERSITE ABOU BAKR BELKAID TLEMCEN FACULTE DE TECHNOLOGIE DEPARTEMENT DE GENIE ELECTRIQUE

Plus en détail

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E). Chapitre 1 Tribus 1.1 Défiitios Soit E u esemble. O appelle classe de parties de E u sous-esemble o vide de P(E). Défiitio 1.1.1. Ue tribu A sur E est u sous-esemble o vide de P(E) tel que : (i) la partie

Plus en détail

Finance. Anaïs HAMELIN. Sujet 1

Finance. Anaïs HAMELIN. Sujet 1 Maser (AES Exames du er semesre 3/4 Face Aaïs HAMELI Sue urée : 3 H ocume(s auorsé(s : aucu Maérel auorsé : Calcularce auorsée (Mémore vde pour les calcularces graphques Cosges : - Les exercces so dépedas

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

FORMES MODULAIRES SURCONVERGENTES. par. Vincent Pilloni

FORMES MODULAIRES SURCONVERGENTES. par. Vincent Pilloni FORMES MODULAIRES SURCONVERGENTES ar Vicet Pilloi Résumé. Nous doos ue défiitio géométrique des formes surcovergetes de oids -adique quelcoque. Ceci ous ermet d obteir la théorie des familles -adiques

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

Exercices. de mathématiques de Math Spé. Archive complète. Lycée Henri-Poincaré, Nancy. Walter Appel. 58 rue Notre-Dame des Anges 54000Nancy

Exercices. de mathématiques de Math Spé. Archive complète. Lycée Henri-Poincaré, Nancy. Walter Appel. 58 rue Notre-Dame des Anges 54000Nancy Eercices de mathématiques de Math Spé Archive complète Voici quelques 35 eercices que j utilise das mes eseigemets e prépa U certai ombre d etre eu vieet directemet des orau de cocours ; sot alors otés

Plus en détail

Chapitre 3: TESTS DE SPECIFICATION

Chapitre 3: TESTS DE SPECIFICATION Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o

Plus en détail

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015 CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 5 avec corrigés V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Cleet, J. Esteba,

Plus en détail

Kaizen & Kanban. Réalisé par : ELBARAKA Abdelkader Club industrielle AIAC

Kaizen & Kanban. Réalisé par : ELBARAKA Abdelkader Club industrielle AIAC Kaize & Réalisé par : ELBARAKA Abdelkader Club idustrielle AIAC Itroducti o Itroductio: vidéo Kai ze coclusio 1 Itroducti o Kai ze La méthode du coclusio 2 Itroducti o Kai ze A- Les types d étiquettes

Plus en détail