Redresser une photo avec Paint Shop Pro

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Redresser une photo avec Paint Shop Pro"

Transcription

1 Redresser une poo aec Pain Sop Pro Définiions 'obje poograpié es supposé comporer un recangle, ou au moins deux segmens de droie parallèles, qu'il s'agi de redresser En effe, si la poo n'es pas prise de face ou aec un objecif à décenremen, ces figures son déformées sur l image C y C C C BG x e logiciel Pain Sop Pro (PSP) compore, parmi les ouils de déformaion à la disposiion de l'uilisaeur dans le menu «Image» : une foncion de mise en perspecie orizonale ou ericale ; cee foncion comprime un bord de l'image en laissan le bord opposé inac e en appliquan une compression proporionnelle enre les deux bords ; une foncion d inclinaison («obliquié») ericale ou orizonale ; cee foncion fai glisser deux bords opposés de l image le long d eux mêmes, d une même disance, en sens conraires, en appliquan un déplacemen proporionnel enre les deux bords : Ces ouils son exacemen ce qu'il fau pour effecuer un redressemen à peu de frais mais il fau déerminer le mode d'emploi pour obenir le résula oulu es ouils de PSP 'ouil «Perspecie» 'applicaion de la perspecie orizonale comprime le bord droi ou gauce de l'image auour de l'axe orizonal de symérie de l'image

2 G D En noan la aueur iniiale de l'image e G e D ses aueurs à gauce e G D à droie après déformaion, le aux de déformaion uilisé par PSP es Ce aux es négaif lorsque le bord gauce es comprimé 'applicaion de la perspecie ericale comprime le bord inférieur ou supérieur de l'image auour de l'axe erical de symérie de l'image H En noan la largeur iniiale de l'image e H e B ses largeurs en au e en bas après déformaion, le aux de H B déformaion uilisé par PSP es Ce aux es négaif lorsque le bord au es comprimé B PSP exprime les aux de déformaion en % Un aux égal à 100% signifie que le bord comprimé es rédui à un poin sur l'axe de symérie correspondan 'ouil «Obliquié» obliquié ericale fai glisser les bords ericaux Celle orizonale, les bords orizonaux PSP quanifie la déformaion par la mesure en degrés de l angle d inclinaison réalisé Pour l obliquié ericale, l angle es posiif lorsque le côé droi mone Pour l obliquié orizonale, l angle es posiif lorsque le bord au es déplacé ers la droie es angles applicables son compris enre 45 e +45 es raiemens à appliquer à l'image Perspecie e premier raiemen consise à rendre les bords opposés du «recangle» parallèles sur la poo (mais en les laissan encore inclinés dans un premier emps)

3 Dans la direcion orizonale, la déformaion à appliquer se déermine par x l examen des eceurs x xbg CC e C BGC don le produi BG ( x )( ybg xbg )( y y ecoriel a pour composane P ) orsque ce produi ecoriel es négaif, il fau comprimer le bord droi de l image équaion de la perspecie orizonale défini alors les nouelles coordonnées y (x,y ) d un poin (x,y) par y = y e x ' x ( x) Après déformaion, le produi 2 ecoriel des eceurs déformés es donc, après un calcul simple : P ' P ( ybg)( xy y) ( y y)( xbgybg x ) orsque le produi ecoriel es posiif, il fau comprimer le bord gauce de l image équaion de la perspecie orizonale défini dans ce cas les nouelles y coordonnées (x,y ) d un poin (x,y) par y = y e x ' x ( x)( 1) Après 2 déformaion, le produi ecoriel des eceurs déformés es alors : P ' P ( ybg )( x y y ) ( y y )( xbg ybg x y ) Pour que les deux eceurs soien colinéaires, il fau que le produi ecoriel après déformaion soi nul es deux formules obenues permeen donc de calculer le aux de déformaion nécessaire, selon le signe de P : si P < 0 : P ; y y )( x y x y ) ( y y )( x y x y ) ( BG BG BG si P > 0 : P ( y y )( x BG y x y ) ( y y )( x y x y ) Dans la direcion ericale, la déformaion à appliquer se déermine par xbg l examen des eceurs x CCBG e C C don le produi BG ( xbg )( y )( ybg y ecoriel a pour composane P ) orsque ce produi ecoriel es négaif, il fau comprimer le bord au de l image équaion de la perspecie orizonale défini alors les nouelles coordonnées x (x,y ) d un poin (x,y) par x = x e y' y ( y) Après déformaion, le produi 2 ecoriel des eceurs déformés es donc, après un calcul simple : P ' P ( xbg )( x y )( ybg xbg y x BG ) e, comme il doi êre nul, dans ce cas : BG

4 P ( xbg )( BG BG x y x ) ( x x )( y x y x ) orsque ce produi ecoriel es posiif, il fau comprimer le bord bas de l image équaion de la perspecie orizonale défini alors les nouelles coordonnées x (x,y ) d un poin (x,y) par x = x e y ' y ( y) Après déformaion, le produi 2 ecoriel des eceurs déformés es donc, après un calcul simple : P ' P ( xbg )( yx x )( yx ybgxbg ) e, comme il doi êre nul, dans ce cas : P ( xbg )( yx x )( yx ybgxbg ) Obliquié Selon le résula cercé, on coisi la perspecie à appliquer Ensuie, on applique l obliquié correspondane (de nom conraire : par exemple l obliquié ericale après la perspecie orizonale) angle d inclinaison se règle aisémen à l œil, en s aidan du bord de la boîe de dialogue, par exemple A noer, l ouil obliquié fai perdre une parie de l image ; si nécessaire, penser à agrandir le caneas aan de l uiliser Si l on souaie égalemen redresser l aure direcion, il fau recommencer la mesure e l applicaion de la procédure depuis le débu Remarque orsque le curseur es sur l image, PSP indique dans le bas de sa fenêre, à gauce, les coordonnées du poineur par rappor à l image e, à droie, les dimensions de l image Aec les noaions uilisées ici, il donne en premier les dimensions selon y (axe orizonal) e en second les dimensions selon x (axe erical)

5 Exemples d applicaion a our Sud de l abbaye aux ommes de Caen a poo iniiale présene une légère déformaion orizonale e une fore conergence ericale (figure 1) arciecure de la façade présene un recangle à redresser : C (161,581), C (706,599), C BG (75,1117), C (863,1140) (figure 2 ; dans une applicaion réelle, ne pas le dessiner!) e ableau EXCE programmé aec les formules éablies plus au prescri une mise en perspecie orizonale de 1% : or PSP ne sai pas appliquer un coefficien enre 3 e + 3% ; cee correcion n es donc pas prise en compe Par conre, la perspecie ericale recommandée de 59% rend les côés ericaux du recangle parallèles (figure 3) ; une obliquié de 3 complèe le raiemen (figure 4) Figure 1 = 915, =1371 Figure 2 Figure 3 Figure 4 a mise en perspecie ericale n ayan pas éé effecuée, une obliquié ericale de 2 appore la dernière ouce de redressemen Il ne rese plus qu à recadrer la our Il es à noer que, lorsqu un redressemen imporan es effecuée, l image subi un léger cinrage a connaissance des proporions réelles ou la présence d un cercle sur la poo permera de corriger l élongaion résiduelle en redimensionnan l image sans conserer la proporion

6 a olos d Aéna Pronaïa de Delpes Dans ce cas, seul es reenu le redressemen erical ; les deux segmens de droie ericaux coisis (angle de mur e axe de colonne dans la figure 2) ne formen pas un recangle ; le aux de perspecie orizonale prescri par le ableau de calcul n a donc pas de significaion ; seul doi êre exploié le aux de perspecie ericale =1063 =1589 C (195,1038) C (747,441) C BG (171,1269) C (789,1356) Perspecie ericale, aux : 32% ; pas d obliquié nécessaire

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Textures. François Faure. 2 Coordonnées de texture Modes de répétition Le problème des surfaces courbes... 5

Textures. François Faure. 2 Coordonnées de texture Modes de répétition Le problème des surfaces courbes... 5 Texures François Faure Résumé Table des maières 1 Inroducion 2 2 Coordonnées de exure 3 2.1 Modes de répéiion............................... 3 2.2 Le problème des surfaces courbes.......................

Plus en détail

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure TP SdF N 25 Modélisaion e opimisaion de la mainenance prévenive e correcive d un maériel soumis à usure Ce TP complèe le TP N 22 sur la modélisaion e l opimisaion de la mainenance d un maériel réparable

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol CH V Mouvemens I) Mouvemens e référeniel : Pour éudier un mouvemen, il fau définir : - le mobile (obje qui es en mouvemen) - le référeniel (sysème par rappor auquel le mobile se déplace) 1) Siuaion : Deux

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; T(M S/ %0 ) (S) O y (S) O y. Mécanique Cinématique Cinématique C2

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; T(M S/ %0 ) (S) O y (S) O y. Mécanique Cinématique Cinématique C2 Mécanique Cinémaique Cinémaique C bjecif : Définir, décrire e calculer la iesse ou l accéléraion d un poin d un solide. 1. Viesse CINEMATIQUE C Viesse e accéléraion 1.1. Noion de iesse Soi un solide en

Plus en détail

Exercice n HA Corrigé

Exercice n HA Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA 0101 - Corrigé Logo opimisé par J.-D.Bonour,

Plus en détail

1 ère L Les pourcentages

1 ère L Les pourcentages 1 ère L Les pourcenages Ce chapire se place dans le cadre de l informaion chiffrée. III. Calculer une valeur après un pourcenage d augmenaion e de diminuion (opéraeur associé à un pourcenage d évoluion)

Plus en détail

SECONDE PARTIE - ELECTRONIQUE -

SECONDE PARTIE - ELECTRONIQUE - ENS de Cachan Concours d enrée en 3 ème année pour la préparaion à l agrégaion de Génie Elecrique Session 2001 SECONDE PARTIE - ELECTRONIUE - Ce problème se propose d éudier le foncionnemen de l élecronique

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

CHAPITRE 4 LA VAR MONTE CARLO... 2

CHAPITRE 4 LA VAR MONTE CARLO... 2 CHAPITRE 4 LA VAR MONTE CARLO... I. PRINCIPE... A. Quel modèle uiliser?... B. Algorihme de simulaion... 3 II. EXEMPLE D APPLICATION... 4 A. Travail préliminaire... 4 B. Simulaion des rajecoires... 6 Algorihme...

Plus en détail

Première STG Chapitre 4 : taux d'évolution. page n

Première STG Chapitre 4 : taux d'évolution. page n Première STG Chapire 4 : aux d'évoluion. page n 1 On peu lire dans un journal : " Le prix de la able basse, qui es passé de 500 à 502, n'a praiquemen pas bougé. " e plus loin : " Hausse impressionnane

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque?

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque? Nom : Prénom : Conrôle de mahémaiques, Le mercredi 30 mai 2012 Exercice 1. [3 poins] 1) Parmi les cinq premières figures numéroées de a) à e) recopie sur a copie le numéro de celles qui son des polygones

Plus en détail

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps.

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps. Modélisaion des sysèmes mécaniques LA CINÉMATIQUE DU POINT Dae : Inroducion : La cinémaique es la parie de la mécanique qui éudie le mouvemen des corps, indépendammen des effors qui les produisen. Les

Plus en détail

3.2 La gestion des sélections

3.2 La gestion des sélections 3.2 La gesion des sélecions A- Désaciver une sélecion Sélecion - Désélecionner ou C D (PC) ou p D (Mac) u Lorsqu une sélecion a éé annulée, vous pouvez aciver la commande Resélecionner du menu Sélecion

Plus en détail

Le classement des nombres réels

Le classement des nombres réels UNITÉ 1 : DES NOMBRES RÉELS Le classemen des nombres réels naurels N 0,1,2,3,4,5,6,7... eniersrelaifs Z naurelsnégaifs 1, 2, 3... 3 raionnelsq décimaux 3.25, 0.06,,4.25, 2.7, 10.35... 2 réels R 1 complexesc

Plus en détail

Unité 6 : La proportionnalité numérique 3 ème ESO

Unité 6 : La proportionnalité numérique 3 ème ESO UITÉ 6 : LA PROPORTIOALITÉ UMÉRIQUE POUR DÉBUTER Il fau rappeler - Définiion de grandeur : Une grandeur es une caracérisique qui es mesurée, e la valeur es exprimée par un nombre. Le concep de grandeur

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

Exercices supplémentaires Série 1

Exercices supplémentaires Série 1 PHYSIQUE Phy-5042 Exercices supplémenaires Série 1 NE PAS ÉCRIRE SUR CE DOCUMENT Version du 24 noembre 2003 Rédigé par Séphane Laoie laoie.sephane@csdgs.qc.ca Dimension 2.1 1. Quel graphique représene

Plus en détail

COMPARATEURS ANALOGIQUES

COMPARATEURS ANALOGIQUES I/ RAPPEL COMPARATEURS ANALOGIQUES Page 1 Signal logique e signal On di qu'un signal élecrique es logique lorsqu'il. analogique V On di qu'un signal es analogique lorsque son évoluion (en général en foncion

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques CONCOURS COMMUNS POLYTECHNIQUES 00 Corrigé de la seconde épreuve de mahémaiques 1. On obien direcemen : H = 6 5 5 5 6 5 = I + 5 J avec J = 1 1 1 1 1 1. 5 5 6 1 1 1 J e H son symériques à coefficiens réels,

Plus en détail

IFSTTAR Bvd Newton Cité Descartes, Champs sur Marne F Marne La Vallée Cedex 2

IFSTTAR Bvd Newton Cité Descartes, Champs sur Marne F Marne La Vallée Cedex 2 Le 24 février 2014 Commission de Normalisaion Jusificaion des Ouvrages Géoechniques Desinaaires : Membres de la CNJOG PRESIDENT Jean-Paul VOLCKE SECRETARIAT Sébasien Burlon 01 81 66 81 07 Sebasien.Burlon@ifsar.fr

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

Réglage valeur moyenne

Réglage valeur moyenne P Cours : l insrumenaion élecrique A- Le généraeur de basses fréquences ou G.B.F - Présenaion uilisé : Réglage fréquence Réglage ampliude Réglage valeur moyenne Sweep : Possibilié de créer un signal de

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que PROPORTIONNALITE a) Définiion d une proporion a Quare nombres a, b, c e d éan non nuls, on di que c l une des condiions suivanes (équivalenes) es vérifiée : b d es une proporion lorsque Condiion 1 : Les

Plus en détail

CHAPITRE 1 : GENERALITES SUR LES ANTENNES

CHAPITRE 1 : GENERALITES SUR LES ANTENNES CAPITR 1 : GNRALITS SUR LS ANTNNS I DFINITION Une anenne es un disposiif qui assure la ransiion enre un guide d onde e l espace libre dans lequel ces ondes on se propager, ou inersemen II DIAGRAMM D RAYONNMNT

Plus en détail

Le Principe de PASCAL

Le Principe de PASCAL Hydraulique LES LOIS D HYDROSTATIQUE N 1/8 LA FORCE. On appelle FORCE oue acion qui end à modifier l éa d un corps. Elle s exprime en NEWTON (symbole N). La force es définie par son sens, son inensié,

Plus en détail

Équations différentielles du premier ordre

Équations différentielles du premier ordre Équaions différenielles du premier ordre Vous rouverez ici de brefs résumés e exemples sur les applicaions concrèes des équaions différenielles du premier ordre : variaion de empéraure désinégraion radioacive

Plus en détail

COURS ELE2700 ANALYSE DES SIGNAUX

COURS ELE2700 ANALYSE DES SIGNAUX ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE ÉLECTRIQUE AUTOMNE 20 COURS ELE2700 ANALYSE DES SIGNAUX SÉANCE #3 (TP2) FENÊTRES TEMPORELLES OBJECTIFS Éudier e comparer l effe de différenes fenêres

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

Solutionnaire Physique 1, Électricité et Magnétisme, Harris Benson LES CIRCUITS À COURANT CONTINU

Solutionnaire Physique 1, Électricité et Magnétisme, Harris Benson LES CIRCUITS À COURANT CONTINU Soluionnaire hysique, Élecricié e Magnéisme, Harris Benson Soluionnaire rédigé par Maxime Verreaul, professeur CHATE 7 LES CCUTS À COUANT CONTNU 7 FAUX. Le couran es le même en ou poin du circui. 7 Comme

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

TD Biomécanique 4. t vol t

TD Biomécanique 4. t vol t Exercice La fiure suiane représene la force ericale appliquée par un indiidu lors d un es de déene sur plae forme de force. Lors de ce es, l indiidu par arrêé. - -4-6 -8 - - -4-6 -8 - -..4.6.8. Calculer

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

1 Proportionnalité et représentation graphique

1 Proportionnalité et représentation graphique 1 Proporionnalié 1 Proporionnalié e représenaion graphique 1 a) proporionnalié e conséquences On di qu il y a proporionnalié dans un ableau lorsque l on peu passer d une ligne à l aure en muliplian par

Plus en détail

MODULATION D'ÉNERGIE, VARIATION DE VITESSE I/ INTRODUCTION, DÉFINITIONS

MODULATION D'ÉNERGIE, VARIATION DE VITESSE I/ INTRODUCTION, DÉFINITIONS Piloage, conrôle e comporemen des sysèmes - n 8 Page 1 MODULAION D'ÉNRGI, VARIAION D VISS I/ INRODUCION, DÉFINIIONS Cerains sysèmes nécessien, en exploiaion, une variaion de puissance. Celle-ci peu êre

Plus en détail

USTHB Faculté de Physique Année ère année ST Corrigé de la série cinématique Sections 16 à 30

USTHB Faculté de Physique Année ère année ST Corrigé de la série cinématique Sections 16 à 30 USTHB Faculé de Physique Année 011-01 1ère année ST Corrigé de la série cinémaique Secions 16 à 30 Hachemane Mahmoud (ushbs10@gmail.com) Monsieur A. Dib e Mademoiselle R. Yekken son remerciés pour leurs

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Logique combinatoire : Partie 1

Logique combinatoire : Partie 1 1. Inroducion Lorsqu'on exprime les variables de sories uniquemen en foncion des variables d'enrées, le problème à résoudre relève de la logique combinaoire. Auremen di à chaque combinaison des variables

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé CINETIQUE CHIMIQUE. Viesse de réacion en réaceur fermé. Généraliés sur la cinéique chimique L obje de la cinéique chimique es l éude de l évoluion au cours du emps d une réacion hermodynamiquemen possible.

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Evaluations socio-économiques et financière des projets de transports collectifs : méthode de calcul, paramètres et conventions

Evaluations socio-économiques et financière des projets de transports collectifs : méthode de calcul, paramètres et conventions 1 Juille 2001 Evaluaions socio-économiques e financière des projes de ranspors collecifs : méhode de calcul, paramères e convenions Période de l éude La période de l éude débue à l année de mise en service.

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Représenaion emporelle

Plus en détail

ECROUIR LE FLUAGE DES SOLS MOUS PAR REMBLAIS DE PRÉCHARGEMENT

ECROUIR LE FLUAGE DES SOLS MOUS PAR REMBLAIS DE PRÉCHARGEMENT Jubilé de François Schlosser, ENPC, 11 ocobre 216 ECROUIR LE FLUAGE DES SOLS MOUS PAR REMBLAIS DE PRÉCHARGEMENT par François Baguelin «Ecrouir» le fluage d un sol compressible par remblai de préchargemen

Plus en détail

CHAPITRE II : SYSTEMES SEQUENTIELS : LES BASCULES

CHAPITRE II : SYSTEMES SEQUENTIELS : LES BASCULES CAPITE II : YTEME EUENTIEL : LE BACULE I. Foncion mémoire élémenaire. Inroducion Un inerrupeur, qui commande l allumage e l exincion d une lampe élecrique es une mémoire mécanique. L informaion es conservée

Plus en détail

( Ot ) est la bissectrice de l angle xoy, donc xot et toy sont deux angles adjacents égaux.

( Ot ) est la bissectrice de l angle xoy, donc xot et toy sont deux angles adjacents égaux. 5 ème Chapire G4 PIRES D NGLES, SMME DES NGLES D UN TRINGLE. 1 I) ngles adjacens, bissecrice d un angle. 1) ngles adjacens. Df : Deu angle adjacens son deu angles aan leur somme e un côé en commun, e qui

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

m 1 On remarque des égalités de coefficients, donc une «bonne» stratégie est de faire apparaître des zéros.

m 1 On remarque des égalités de coefficients, donc une «bonne» stratégie est de faire apparaître des zéros. Tpe : Conrôle coninu en aphi Filière : MIS Parie d un suje MJ.Berin MIS 4 Mars / Doaine : algèbre linéaire Mos-clefs : arices, applicaions linéaires, valeurs propres, ssèe d équaions linéaires Noaion On

Plus en détail

Réaliser un diaporama avec MS PowerPoint

Réaliser un diaporama avec MS PowerPoint Réaliser un diaporama avec MS PowerPoin INTRODUCTION Microsof PowerPoin es le logiciel de présenaion assisée par ordinaeur (PAO) de la suie Microsof Office. A l insar d Impress (de la suie Open Office),

Plus en détail

2 Compléter un tableau de proportionnalité

2 Compléter un tableau de proportionnalité 1 Reconnaire un ableau de proporionnalié OJECTIF 1 DÉFINITION Il y a proporionnalié dans un ableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s obiennen en muliplian ceux de la première

Plus en détail

TUTORAT UE Physique CORRECTION Séance n 4 Semaine du 18/ 10 /2010

TUTORAT UE Physique CORRECTION Séance n 4 Semaine du 18/ 10 /2010 TUTORAT UE3 2010-2011 Physique CORRECTION éance n 4 emaine du 18/ 10 /2010 RMN 2 Pr. Zanca QCM n 1 : B-C Pour l angle de bascule : η=2πν 1 τ = γb 1 τ or γ= 2πν 0 B0 = 2πν0 car B 0 = 1T. η=2πν 0 B 1 τ =2π*42*10

Plus en détail

Première E.S. Lycée Desfontaines Melle. Pourcentages

Première E.S. Lycée Desfontaines Melle. Pourcentages Première E.S. Lycée Desfonaines Melle I. Inroducion Pourcenages Définiion : On considère deux quaniés Q e Q de même naure, exprimées dans la même unié. Dire que Q es égale à % de Q revien à dire que Q

Plus en détail

Démontrer qu'un point appartient à la médiatrice d'un segment

Démontrer qu'un point appartient à la médiatrice d'un segment émonrer q'n poin es le milie d'n segmen P 1 Si n qadrilaère es n alors ses diagonales se copen en ler milie. P 2 Si e ' son smériqes par rappor à alors es le milie d segmen [']. ' es n [] e [] se copen

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui

Plus en détail

Commande du plafonnier d'un véhicule. CO8.sin1. Rechercher et choisir une solution logicielle ou matérielle au regard de la définition d'un système.

Commande du plafonnier d'un véhicule. CO8.sin1. Rechercher et choisir une solution logicielle ou matérielle au regard de la définition d'un système. STI2D SIN V. Commande du plafonnier d'un véhicule. CO8.sin. Rechercher e choisir une soluion logicielle ou maérielle au regard de la définiion d'un sysème. BP / Clavier Sans conac IR / ILS A conac FC Capeur

Plus en détail

Sommaire de la séquence 11

Sommaire de la séquence 11 Sommaire de la séquence 11 Séance 1........................................................................................................ Je calcule des longueurs, des aires e des volumes....................................................

Plus en détail

Problème d'examen (Représentation triangulaire, ACP et élections)

Problème d'examen (Représentation triangulaire, ACP et élections) ISFA 2 année 2-21 Problème d'examen (Représenaion riangulaire, ACP e élecions) D. Chessel Les exercices (17-2) son indépendans du problème (1-16). 1. Quesions On considère la marice A à n = 14 lignes e

Plus en détail

Le transistor bipolaire

Le transistor bipolaire Le ransisor bipolaire onsiuion- Symbole 2 1. aracérisiques Foncionnemen 2 1.1. aracérisiques d enrée I =f(v E ) 2 1.2. aracérisiques de Transfer I =f(i ) 3 aracérisiques de sorie I =f(v E ) 4 1.4. Résumé

Plus en détail

Gérard Roland, Economie Politique Chapitre 23 CHAPITRE 23 LA CROISSANCE ECONOMIQUE 1. INTRODUCTION : LES CHIFFRES CLES DE LA CROISSANCE ECONOMIQUE

Gérard Roland, Economie Politique Chapitre 23 CHAPITRE 23 LA CROISSANCE ECONOMIQUE 1. INTRODUCTION : LES CHIFFRES CLES DE LA CROISSANCE ECONOMIQUE Gérard Roland, Economie Poliique Chapire 23 CHAPITRE 23 LA CROISSACE ECOOMIQUE Ce chapire consiue une inroducion aux héories de la croissance économique. Après un bref exposé des fais sylisés de la croissance

Plus en détail

Mathématiques discrètes Chapitre 2 : Théorie des ensembles

Mathématiques discrètes Chapitre 2 : Théorie des ensembles U.P.S. I.U.T., Déparemen d Informaique nnée 9- Mahémaiques discrèes Chapire : Théorie des ensembles. Définiions Définiion On appelle ensemble oue collecion d objes caracérisés par une propriéé commune.

Plus en détail

APPAREIL POUR ETUDE DE LA PRESSION HYDROSTATIQUE

APPAREIL POUR ETUDE DE LA PRESSION HYDROSTATIQUE APPAREIL PUR ETUDE DE LA PRESSIN HYDRSTATIQUE 1. INTRDUCTIN L effe de la pression ydrosaique a une grande imporance dans de nombreux domaines, noammen dans la consrucion navale, lors de la consrucion de

Plus en détail

Notion d oscillateur mécanique

Notion d oscillateur mécanique CHAPITRE 11 SYSTÈMES OSCILLANTS 1 Noion d oscillaeur mécanique 1. Définiion On appelle oscillaeur (ou sysème oscillan) un sysème pouvan évoluer, du fai de ses caracérisiques propres, de façon périodique

Plus en détail

TPn 21 Régulation de vitesse d un train Durée: 4 heures

TPn 21 Régulation de vitesse d un train Durée: 4 heures TEE Sciences e Technologies de l'indusrie e du Développemen Durable Dae Lycée Nicolas Apper OBJECTIFS Régulaion de la viesse d un rain TP 2 Séquence 2 Décoder un schéma élecrique Décoder un schéma bloc

Plus en détail

LA LOGIQUE SEQUENTIELLE

LA LOGIQUE SEQUENTIELLE Auomaique e Informaique Indusrielle LA LOGIQUE SEQUENTIELLE SOMMAIRE Tire Page I. Définiion (rappel) : Sysème séqueniel 2 II. Prise en compe du emps 2 a) foncion mémoire 2 b) foncion(s) reard(s), emporisaion

Plus en détail

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction Modélisaion e exrapolaion de l évoluion de la moralié française à parir de modèles sochasiques Analyse des qualiés prédicives de ces modèles Applicaions praiques Mémoire souenu pour l Insiu des Acuaires

Plus en détail

Révision Mécanique. 2 e but. Monticule 1 er but. 3 e but. Marbre. Vitesse (m/s) 20

Révision Mécanique. 2 e but. Monticule 1 er but. 3 e but. Marbre. Vitesse (m/s) 20 Révision Mécanique 1 Parmi les siuaions suivanes, lesquelles monren que l'obje ou la personne ne son soumis à aucune force résulane? 1. Un cyclise qui raleni.. Un vieillard qui es assis sur un banc dans

Plus en détail

Amplification de puissance

Amplification de puissance Académie de Marinique Préparaion Agrégaion Sciences Physiques B. Ponalier Amplificaion de puissance Objecifs Comparer les différenes classes d amplificaion du poin de vue: du foncionnemen du rendemen Classe

Plus en détail

MESURES CHRONOMETRIQUES

MESURES CHRONOMETRIQUES Chapire 8 I- FRQUNCMR : MSURS CRONOMRIQUS Le schéma de principe d un fréquencemère numérique es donné par la figure 36. Signal de fréquence f Circui de mise en Base de emps X() Y() & Compeur orloge RAZ

Plus en détail

M1 Economie : "colle" d économie industrielle

M1 Economie : colle d économie industrielle M Economie : "colle" d économie indusrielle Armel JACQUES novembre 0 Les calcularices son auorisées ; en revanche les appareils permean de communiquer (éléphone porable ou aures) son inerdis. Concurrence

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

Les boites. Algo1. 22 octobre 2015

Les boites. Algo1. 22 octobre 2015 Les boies Algo1 22 ocobre 2015 1 Inroducion Le fablab de l ensimag me à disposiion des chercheurs e des éudians une découpeuse laser 1. La découpeuse laser prend en enrée un fichier svg, conenan des chemins

Plus en détail

Cinétique Chimique. Cinétique simple. Besançon, Pharmacie 1 ère Année. E. Cavalli - UFR SMP - UFC

Cinétique Chimique. Cinétique simple. Besançon, Pharmacie 1 ère Année. E. Cavalli - UFR SMP - UFC Cinéique Chimique Cinéique simple Besançon, Pharmacie ère nnée E. Cavalli - UFR SMP - UFC I - Inroducion Cinéique Chimique - Obje e inérê de la cinéique chimique Cinéique simple E. Cavalli - UFR SMP -

Plus en détail

TB 360 TB 360. Entrée 1. Entrée 2. Entrée 3. Entrée 4. Maintenance

TB 360 TB 360. Entrée 1. Entrée 2. Entrée 3. Entrée 4. Maintenance enrées/sories série TB logiciel d applicaion 4 enrées marche / arrê famille : Inpu ype : Binary inpu, 4-fold TB 360 Environnemen TB 360 Enrée 1 Enrée 2 sories 230 V Enrée 3 Enrée 4 Mainenance visualisaion

Plus en détail

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur.

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur. Chapire 1 Eude des ensions élecriques ; Naure de la ension du seceur. On a vu que la ension produie par un alernaeur dans une cenrale élecrique changeai ou le emps. On ne peu donc pas se conener de brancher

Plus en détail

LA THEORIE DE L'ECHANTILLONNAGE : LE THEOREME DE SHANNON

LA THEORIE DE L'ECHANTILLONNAGE : LE THEOREME DE SHANNON LA HEORIE DE L'ECHANILLONNAGE : LE HEOREME DE SHANNON 5 0 5 0 5 oue communicaion se fai par l inermédiaire de signaux, qui peuven êre acousiques (parole, e sons en général), élecromagnéiques (radio), élecriques

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

ÉLECTROCINÉTIQUE CHAP 00

ÉLECTROCINÉTIQUE CHAP 00 ÉLECTROCINÉTIQUE CHAP 00 Filrage d'une ension riangulaire par un passe-bande On considère un filre de foncion de ransfer : f 0 =2kHz e de coefficien de qualié Q=0.. Déerminer la naure du filre 2. Tracer

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

ETUDE DE LA FONCTION ACQUERIR (CAPTEUR & CONDITIONNEUR DU SIGNAL)

ETUDE DE LA FONCTION ACQUERIR (CAPTEUR & CONDITIONNEUR DU SIGNAL) ETUDE DE LA FONCTION ACQUERIR (CAPTEUR & CONDITIONNEUR DU SIGNAL) ACQUISITION DE LA POSITION DU CYCLE La posiion du cycle es délivrée par un capeur à effe Hall linéaire déecan 3 posiions disinces de la

Plus en détail

Les fonctions logiques & l algèbre de Boole

Les fonctions logiques & l algèbre de Boole Les foncions logiques & l algèbre de Boole 1 - Algèbre de Boole Hisorique : Georges BOOLE, philosophe e mahémaicien anglais, publia en 1854 un essai sur les raisonnemens logiques poran sur les proposiions

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

Logique séquentielle Fonction Mémoire

Logique séquentielle Fonction Mémoire ciences de l Ingénieur Page 96 1 Inroducion Logique combinaoire : Logique séquenielle Foncion Mémoire Logique séquenielle : Exemple : Télérupeur, commande TO de machine ouil, GAFCET 2 Foncion mémoire élecromécanique

Plus en détail

SERIES CHRONOLOGIQUES

SERIES CHRONOLOGIQUES SERIES CHRONOLOGIQUES On appelle série chronologique ou chronique une série d'observaions échelonnées dans le emps. Les inervalles enre deux mesures peuven êre quelconques. En général, ils son de même

Plus en détail

Macroéconomie. La croissance économique

Macroéconomie. La croissance économique Macroéconomie La croissance économique Plan du chapire La croissance économique en chiffres Le modèle de Solow : modèle de croissance exogène rôle de l accumulaion du capial, de l épargne e du progrès

Plus en détail

Gérard Roland, Economie Politique Chapitre 23 CHAPITRE 23 LA CROISSANCE ECONOMIQUE 1. INTRODUCTION : LES CHIFFRES CLES DE LA CROISSANCE ECONOMIQUE

Gérard Roland, Economie Politique Chapitre 23 CHAPITRE 23 LA CROISSANCE ECONOMIQUE 1. INTRODUCTION : LES CHIFFRES CLES DE LA CROISSANCE ECONOMIQUE Gérard Roland, Economie Poliique Chapire 23 CHAPITRE 23 LA CROISSACE ECOOMIQUE Ce chapire consiue une inroducion aux héories de la croissance économique. Après un bref exposé des fais sylisés de la croissance

Plus en détail

1 Représentation des fonctions élémentaires de l'électronique

1 Représentation des fonctions élémentaires de l'électronique EN1 Foncions e composans élémenaires de l élecronique Foncions élémenaires de l'élecronique Les foncions élémenaires de l'élecronique son celles que l'on rerouve régulièremen dans les différenes applicaions

Plus en détail

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht)

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht) Corrigé des exercices de l examen du 3 janvier 7 (Les N de page fon référence au livre «Physique» de E. Hech) Q1. Deux charges poncuelles de +5 µc e +1 µc se rouven sur l axe des x aux poins des coordonnées

Plus en détail

Proposé par MADAK Page 1/11

Proposé par MADAK Page 1/11 Chaîne d informaion ) rucure de la chaîne d informaion Maière d œuvre enrane AGIR Déches e peres Consignes de l opéraeur Maière d œuvre sorane Dans une chaîne foncionnelle, la chaîne d informaion perme:

Plus en détail

C est lui qui va fixer la rapidité de la boucle vitesse. Nous invitons le lecteur à se reporter à la fig 13.

C est lui qui va fixer la rapidité de la boucle vitesse. Nous invitons le lecteur à se reporter à la fig 13. 1.3/ Régulaeur Proporionnel C es lui qui va fixer la rapidié de la boucle viesse. 1.3.1/ Schéma du régulaeur P Nous invions le leceur à se reporer à la fig 13. 1.3.2/ Foncionnemen Le monage perme l ajusage

Plus en détail