MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N"

Transcription

1 ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N A N N É E

2 Objecifs: 1. L équaion différenielle d un mouvemen Forcé. Les différenes soluions du problème 3. Le phénomène de résonance 4. Quelques applicaions

3 Définiions: Les vibraions mécaniques son à l origine d une grande parie des problèmes indusriels. Ces vibraions son symbolisées par un ensemble d oscillaeurs consiués de masse ; de ressors e d amorisseurs. On défini alors une oscillaion forcée, ou sysème en mouvemen sous l acion d une force exérieure, Figure 1.4 : Schéma d un mouvemen forcé

4 Modélisaion mahémaiques: On calcule le Lagrangien pour le sysème forcé comme sui: 1 1, kx mx E E x x L p c L équaion de mouvemen es de la forme:. F x x L x L d d kx x L mx x L Avec:

5 Finalemen, on obien L équaion de mouvemen comme sui: mx kx. x F mx x kx F C es une équaion différenielle linéaire inhomogène avec second membre, Elle adme deux soluions: o Une soluion générale e o Une soluion pariculière

6 Le mouvemen forcé es exprimé en présence de la force de froemen visqueuse comme sui: q q q F m Avec: e m k m Où F es appelée la foncion exciaion exérieure., :son respecivemen le faceur d amorissemen e la pulsaion propre du sysème

7 La soluion q de l équaion différenielle ; représene la réponse du sysème face à l acion exérieure, qui es calculée par la somme de deux hermes: q q q g Où q g e q p représenen respecivemen la soluion générale e la soluion pariculière de l équaion différenielle, Il fau signaler qu au débu du mouvemen q représene le régime ransioire. Au fil du emps la soluion homogène devien négligeable devan la soluion pariculière ; à ce momen on a: le régime permanen. Ainsi, la soluion oale dans ce cas, sera de la forme suivane: q q p p

8 Figure.4 : Superposiion du régime ransioire e du régime permanen

9 Résoluion: Dans le cas où l exciaion es sinusoïdale de ype: F F cos Re Fe j La soluion oale s écri alors comme sui: q q Acos p Où la consane A représene l ampliude de la soluion oale e le déphasage. On cherche la soluion de l équaion différenielle sous forme complexe : q q p Re Ae j

10 Avec Alors: l ampliude s écri sous la forme complexe comme sui: j F Ae j 4 F A Arg En module En phase j Ae j q j Ae q

11 L éude des variaions du module de l ampliude se fai par: d A d A ce effe on éudie les variaions de la foncion hω : 4 h avec d dh On obien ainsi, deux pulsaions: 8 4 d dh Avec : 1 r

12 Après ; on calcule la deuxième dérivée de la foncion hω; on obien: d h d On éudie le signe de la deuxième dérivée pour déerminer le maximum e le minimum, Pour la première pulsaion Ω=Ω 1 on a: '' h 1 A 1 D où la pulsaion Ω=Ω 1 présene un minimum pour l ampliude A, Pour la deuxième pulsaion Ω=Ω on a : '' h A 1 1 D où la pulsaion Ω=Ω présene un maximum pour l ampliude A

13 Donc pour la pulsaion Ω=Ω r on obien la réponse maximale du sysème. On a dans ce cas le phénomène de résonnance. A la fréquence de résonnance l ampliude s exprime comme sui: D où A A r r max max r F F m m 4 F r Pour des rès faibles amorissemens ; l ampliude maximale es égale à : A r F avec max

14 La figure 3.4 illusre la variaion du rappor de l ampliude en foncion du rappor de la fréquence pour différenes valeur de ξ La figure 4.4 représene la variaion de la phase en foncion du rappor de la fréquence pour différens valeurs de ξ

15 Phénomène de résonnance:

16

17

18 On défini aussi : o La largeur de la bande passane 1 Où Ω 1, Ω son des pulsaions déduies par l inersecion de la courbe de l ampliude de la réponse du sysème AΩ e la droie Amax r o Le faceur de qualié Q pour un faible amorissemen: r Q 1

19 Pour des Oscillaions élecriques: On considère le circui oscillan R.L.C alimené par une source de ension sinusoïdale U el que : U U e i La figure 5.4 illusre le schéma du circui oscillan R.L.C en série alimené par une source de ension U : Figure 5.4 : Circui oscillan R.L.C alimené par Une source de ension exérieure

20 Le bilan des ensions s écri : U Ri C q d di L ap ind Sachan que le couran i pendan un emps d appore une charge el que : d dq i On obien alors l équaion différenielle du mouvemen comme sui : U C q Rq q L On remarque que cee équaion es équivalene à l équaion d un mouvemen oscillaoire forcé comme sui m F x m k x m x L U LC q q L R q

21 On peu conclure que l analogie enre le sysème mécanique e le sysème élecrique es de la forme suivane: 1 F U R e k c x q m L ap ind Dans le cas d une exciaion F quelconque mais périodique de période T. Elle peu s écrire sous la forme de série de Fourier comme sui : T avec n b n a a F n n n sin cos 1 T T n T n T d F T b e d n F T a d F T a sin cos 1,, Où les coefficiens son déerminés comme sui:

22 Applicaions echniques: On considère un sysème de récepion radio modélisé par un circui R, L ind, C ap en série e alimené par une source de ension sinusoïdale d inensié: u u cos Figure 1.4 : Circui R.L.C en série

23 Le circui es en série, on peu le schémaiser comme sui : Figure 13.4 : Circui R,L,C équivalen en série L impédance équivalene oale es égale : Z ~ R j L éq ind C 1 ap

24 Le module du couran s écri: I u Z ~ éq R L u ind C 1 ap Le module du couran es maximum pour la valeur de: I max u R L ind On obien alors la valeur de la pulsaion correspondane: C 1 ap 1 r L C ind ap

25 r :es appelée la pulsaion de résonance qui ne dépend que de l inducance e de la capacié La bande passane es défini: 1, 1 Son déerminées en résolvan l équaion paramérique suivane: I max R L u ind C 1 ap 1 R L ind

26 Le faceur de qualié s écri: Remarques: L Q ind R On consae que la fréquence de résonnance ne dépend pas de la résisance R, Par conre la bande passane e le faceur de qualié varien en foncion de la résisance, Pour une bonne applicaion echnique du sysème, c es-à-dire avoir une rès bonne récepion du signal; il fau que la résisance du circui soi faible

27

28 Effe POGO: L'effe POGO es, en mécanique des srucures, un phénomène oscillaoire longiudinal insable qui peu se produire dans les éages à ergols liquides d'un lanceur, généran des chocs pouvan déruire le lanceur ou sa charge. Ce effe es provoqué par des flucuaions de poussée du moeur, qui engendren des vibraions de srucure e des colonnes du carburan liquide, qui à leur our se répercuen sur l'alimenaion du moeur. Lorsque ce cycle de perurbaions enre en résonance, les oscillaions augmenen e peuven déruire les srucures. Le nom provien du jeu appelé POGO-sick. Ce effe déruisi plusieurs fusées e saellies!!!!!

29 Figure 7.4 : Mécanisme renconré dans un réservoir de liquide Soumis à des vibraions Figure 6.4 : Le joue POGO-Sick

30 Considérons le sysème mécanique suivan: mx x kx x F e x Sachan que F représene l exciaion permanene e x ; v représenen les condiions iniiales en posiion e en viesse. Pour une exciaion permanene de forme sinusoïdale ; on a: F F sin v La soluion de l équaion différenielle es de la forme: F x m sin

31 On remarque que la soluion prend une valeur infinie lorsque Ω=ω d où l appariion du phénomène de résonance de POGO Figure 8.4 : Evoluion emporelle de x

32 Aures Exemples: On peu cier un aure exemple du phénomène de résonnance. Il s agi d un venilaeur accroché au plafond d une pièce ournan à une viesse de roaion ω. Il apparaira dans ce cas le phénomène de résonance si le mode propre des vibraions du plafond es rès proche de la pulsaion ω ; e se raduira par un brui désagréable.

33 Ce qu il fau reenir! L oscillaion forcé dans le cas général es régie par l équaion différenielle: q q q Il exise deux régimes : Le régime ransioire : La soluion oale du sysème es: q g, q p F m q q q représenen respecivemen la soluion générale la soluion pariculière Le régime permanen : Caracérisé par le phénomène : «La résonance» la soluion du sysème es de la forme: q q g p p Il fau signaler que la force exérieure absorbe les peres du sysème due aux forces de froemens,

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

B. OSCILLATIONS, ONDES ET LUMIERE. 1. Introduction. ! Importance des phénomènes périodiques

B. OSCILLATIONS, ONDES ET LUMIERE. 1. Introduction. ! Importance des phénomènes périodiques B. OSCILLATIONS, ONDES ET LUMIERE 1. Inroducion Un oscillaeur es un sysème qui effecue des mouvemens d aller-reour de par e d aure d une posiion moyenne, par un mouvemen plus ou moins régulier. Si les

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonne Maser GSI - Capeurs Chaînes de Mesures 1 Plan du Cours Propriéés générales des capeurs Noion de mesure Noion de capeur: principes, classes, caracérisiques

Plus en détail

1 ière Partie: VIBRATIONS

1 ière Partie: VIBRATIONS ière Parie: VIRTIONS haire 5: Mouveen à lusieurs degrés de liberé Dr Fouad OUKI HENE E P S T T E M E N N N É E 5-6 Objecifs:. es équaions différenielles d un ouveen coulé. es différenes soluions du roblèe.

Plus en détail

Notion d oscillateur mécanique

Notion d oscillateur mécanique CHAPITRE 11 SYSTÈMES OSCILLANTS 1 Noion d oscillaeur mécanique 1. Définiion On appelle oscillaeur (ou sysème oscillan) un sysème pouvan évoluer, du fai de ses caracérisiques propres, de façon périodique

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Signal 4 Les oscillateurs amortis

Signal 4 Les oscillateurs amortis Signal 4 Les oscillaeurs amoris Lycée Polyvalen de Monbéliard - Physique-Chimie - TSI 1-2016-2017 Conenu du programme officiel : Noions e conenus Circui RLC série e oscillaeur mécanique amori par froemen

Plus en détail

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B =

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B = 1. Couplage par inerie e amorisseur accordé a b α m k F F x 0 0 (a Bâimen de masse sans le disposiif d amorissemen Les forces qui s appliquen au bâimen son : - la force due aux rafales de ven, - la force

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3.2 Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3. Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Le transistor bipolaire

Le transistor bipolaire Le ransisor bipolaire onsiuion- Symbole 2 1. aracérisiques Foncionnemen 2 1.1. aracérisiques d enrée I =f(v E ) 2 1.2. aracérisiques de Transfer I =f(i ) 3 aracérisiques de sorie I =f(v E ) 4 1.4. Résumé

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht)

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht) Corrigé des exercices de l examen du 3 janvier 7 (Les N de page fon référence au livre «Physique» de E. Hech) Q1. Deux charges poncuelles de +5 µc e +1 µc se rouven sur l axe des x aux poins des coordonnées

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES I DEFINITIONS (n) Une équaion différenielle es une équaion de la forme F(,,,,, ) 0 où es une foncion inconnue de e n fois dérivable n es l ordre de l équaion II EQUATIONS DU PREMIER

Plus en détail

SECONDE PARTIE - ELECTRONIQUE -

SECONDE PARTIE - ELECTRONIQUE - ENS de Cachan Concours d enrée en 3 ème année pour la préparaion à l agrégaion de Génie Elecrique Session 2001 SECONDE PARTIE - ELECTRONIUE - Ce problème se propose d éudier le foncionnemen de l élecronique

Plus en détail

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ )

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ ) SESSION 1998 Page 1/5 Examen : BTS Coef. : 2 Spécialié : MECANIQUE ET AUTOMATISME INDUSTRIEL Durée : 2h Epreuve : U.32 SCIENCES PHYSIQUES Code : MSE 3 SC ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES Sommaire I- Equaions différenielles du premier ordre I-1- Résoluion des équaions du ype : a f () + f() = g() I-- Exemple de résoluion

Plus en détail

ÉLECTROCINÉTIQUE CHAP 00

ÉLECTROCINÉTIQUE CHAP 00 ÉLECTROCINÉTIQUE CHAP 00 Filrage d'une ension riangulaire par un passe-bande On considère un filre de foncion de ransfer : f 0 =2kHz e de coefficien de qualié Q=0.. Déerminer la naure du filre 2. Tracer

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Chapitre 14. Circuits résistifs et réactifs. Sommaire. Introduction. Circuits résistifs et réactifs

Chapitre 14. Circuits résistifs et réactifs. Sommaire. Introduction. Circuits résistifs et réactifs Circuis résisifs e réacifs Chapire 14 Circuis résisifs e réacifs Sommaire Elémens résisifs e réacifs Comporemen d une résisance en régime alernaif sinusoïdal Comporemen d un condensaeur en régime alernaif

Plus en détail

La fonction générer un signal rectangulaire

La fonction générer un signal rectangulaire Sie Inerne : www.gecif.ne Discipline : Génie Elecrique La foncion générer un signal recangulaire I Idenificaion de la foncion Générer un signal élecrique consise à produire des variaions de ension don

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

Ouvre portail. 1. Présentation du système

Ouvre portail. 1. Présentation du système Ouvre porail TD 1. Présenaion du sysème L ouvre-porail auomaisé éudié perme l ouverure e la fermeure d un porail chez les pariculiers de façon auomaique ou semiauomaique. L ouvre porail es ariculé sur

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Représenaion emporelle

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Secion : S Opion : Sciences de l ingénieur Discipline : Génie Elecrique Caracérisiques des signaux élecriques Domaine d applicaion : raiemen du signal ype de documen : Cours Classe : Première Dae : I Définiion

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3 PHYSIQUE APPLIQUÉE Durée : 4 heures Coefficien 3 Le problème éudie l enraînemen d un venilaeur conrôlan le irage d une chaudière de fore puissance équipan une usine de pâe à papier. La régulaion de empéraure

Plus en détail

DIPÔLE CONDENSATEUR-DIPÔLE RC

DIPÔLE CONDENSATEUR-DIPÔLE RC HAPITE P7 DIPÔLE ONDENSATEUDIPÔLE I) DIPÔLE ONDENSATEU I.1. Définiion e symbole I.2. harge e décharge d un condensaeur I.3. Inerpréaion I.4. apacié d un condensaeur I.5. Énergie emmagasinée par un condensaeur

Plus en détail

Équations différentielles du premier ordre

Équations différentielles du premier ordre Équaions différenielles du premier ordre Vous rouverez ici de brefs résumés e exemples sur les applicaions concrèes des équaions différenielles du premier ordre : variaion de empéraure désinégraion radioacive

Plus en détail

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé CINETIQUE CHIMIQUE. Viesse de réacion en réaceur fermé. Généraliés sur la cinéique chimique L obje de la cinéique chimique es l éude de l évoluion au cours du emps d une réacion hermodynamiquemen possible.

Plus en détail

Distribution de l énergie

Distribution de l énergie Disribuion de l énergie S si Cours 1. La foncion «DISTRIBUER» L énergie fournie par l alimenaion, qu elle soi élecrique ou pneumaique, doi êre disribuée aux acionneurs du sysème. Cee disribuion d énergie

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

Les filtres passe-haut

Les filtres passe-haut Les filres passe-hau Je ais ener ici de ous expliquer le foncionnemen d un filre passe-hau. Nous allons oir dans l ordre : - le schéma ype - l éude de la ransmiance - l éude du diagramme de Bode - l uilié

Plus en détail

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol CH V Mouvemens I) Mouvemens e référeniel : Pour éudier un mouvemen, il fau définir : - le mobile (obje qui es en mouvemen) - le référeniel (sysème par rappor auquel le mobile se déplace) 1) Siuaion : Deux

Plus en détail

Redressement commandé

Redressement commandé Redressemen commandé Exercice 1 On donne ci-dessous le chronogramme de la ension aux bornes de la charge u C.( 1 V / div ) La fréquence du signal u issue du ransformaeur es de 5 Hz. De plus, on donne E

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

Solutionnaire Physique 1, Électricité et Magnétisme, Harris Benson LES CIRCUITS À COURANT CONTINU

Solutionnaire Physique 1, Électricité et Magnétisme, Harris Benson LES CIRCUITS À COURANT CONTINU Soluionnaire hysique, Élecricié e Magnéisme, Harris Benson Soluionnaire rédigé par Maxime Verreaul, professeur CHATE 7 LES CCUTS À COUANT CONTNU 7 FAUX. Le couran es le même en ou poin du circui. 7 Comme

Plus en détail

Amplification de puissance

Amplification de puissance Académie de Marinique Préparaion Agrégaion Sciences Physiques B. Ponalier Amplificaion de puissance Objecifs Comparer les différenes classes d amplificaion du poin de vue: du foncionnemen du rendemen Classe

Plus en détail

1 ) Organisation simplifiée

1 ) Organisation simplifiée Chapire B.2.4 Machine synchrone 1 ) Organisaion simplifiée Une machine synchrone es un converisseur réversible, elle peu foncionner son générarice (alernaeur), le cas le plus fréquen, son moeur. 1.1) Symboles

Plus en détail

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan.

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan. Cas du circui I. Un exemple d applicaion d un circui : un composan du sysème d alimenaion en gazole d une ogan. xrai du suje IBAN 2006 a Dacia ogan, conçue par le consruceur français enaul es produie au

Plus en détail

CHAP. 5 : LES CONDENSATEURS

CHAP. 5 : LES CONDENSATEURS CHAP. 5 : LES CONDENSATEURS I. Descripion e symboles Un condensaeur es un composan consiué par, appelés séparés sur oue l'éendue de leur surface par un milieu nommé. Le es de faible épaisseur e il s exprime

Plus en détail

1 Représentation des fonctions élémentaires de l'électronique

1 Représentation des fonctions élémentaires de l'électronique EN1 Foncions e composans élémenaires de l élecronique Foncions élémenaires de l'élecronique Les foncions élémenaires de l'élecronique son celles que l'on rerouve régulièremen dans les différenes applicaions

Plus en détail

TPn 21 Régulation de vitesse d un train Durée: 4 heures

TPn 21 Régulation de vitesse d un train Durée: 4 heures TEE Sciences e Technologies de l'indusrie e du Développemen Durable Dae Lycée Nicolas Apper OBJECTIFS Régulaion de la viesse d un rain TP 2 Séquence 2 Décoder un schéma élecrique Décoder un schéma bloc

Plus en détail

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION ANALYSE DES SYSTÈMES ASSERVIS 7. Caracérisaion des sysèmes asservis 7.. Srucure des sysèmes asservis Un sysème asservi linéaire peu se représener par le schéma 7.. On y rerouve, une chaîne d acion qui

Plus en détail

II. Observation d une seule courbe à l oscilloscope

II. Observation d une seule courbe à l oscilloscope PC - Lycée Dumon D Urville TP 1 : uilisaion de l oscilloscope numérique I. Compéences à acquérir Les compéences évaluées au cours de ce TP son: - Uiliser un GBF - Uiliser un oscilloscope : Afficher des

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

Les hacheurs à liaison directe

Les hacheurs à liaison directe es hacheurs à liaison direce I. Hacheur série (Buck) Exercice I n considère le monage ci conre : a ension d alimenaion es égale à 200 V, la fréquence de découpage es noée f (période ) e le rappor cyclique

Plus en détail

COMPARATEURS ANALOGIQUES

COMPARATEURS ANALOGIQUES I/ RAPPEL COMPARATEURS ANALOGIQUES Page 1 Signal logique e signal On di qu'un signal élecrique es logique lorsqu'il. analogique V On di qu'un signal es analogique lorsque son évoluion (en général en foncion

Plus en détail

La réponse d un système linéaire en questions

La réponse d un système linéaire en questions La réponse d un sysème linéaire en quesions Version juille 00 Quesions La réponse d un sysème linéaire en quesions _1_ Un sysème es caracérisé par la ransmiance : jω) = 3 + 5jω quelle es l équaion différenielle

Plus en détail

CONCOURS ARTS ET MÉTIERS ParisTech - ESTP - POLYTECH. Épreuve de Sciences Industrielles PSI. Durée 5 h AVERTISSEMENT

CONCOURS ARTS ET MÉTIERS ParisTech - ESTP - POLYTECH. Épreuve de Sciences Industrielles PSI. Durée 5 h AVERTISSEMENT 159 CONCOURS ARTS ET MÉTIERS ParisTech - ESTP - POLYTECH Épreuve de Sciences Indusrielles PSI Durée 5 h Si, au cours de l épreuve, un candida repère ce qui lui semble êre une erreur d énoncé, d une par

Plus en détail

Production - Transport et Distribution d Energie

Production - Transport et Distribution d Energie Le Minisère de l'enseignemen Supérieur e de la Recherche Scienifique Universié Viruelle de Tunis Réalisé par : Mme Souad Chebbi Aenion! Ce produi pédagogique numérisé es la propriéé exclusive de l'uvt.

Plus en détail

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur REGIME TRANSITOIRE Inroducion Lorsqu on ferme un circui pour le mere en foncion, les courans e les ensions meen un cerain emps à s éablir. C es le régime ransioire. Ce chapire fai l éude des composans

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

Réponse d un dipôle RL à un échelon de tension

Réponse d un dipôle RL à un échelon de tension éonse d un diôle L à un échelon de ension Tire Descriion emarques 1- Le diôle L es une associaion en série d une bobine e d un conduceur ohmique (ou résisor) : I- Inroducion 2- L échelon de ension : es

Plus en détail

Le Principe de PASCAL

Le Principe de PASCAL Hydraulique LES LOIS D HYDROSTATIQUE N 1/8 LA FORCE. On appelle FORCE oue acion qui end à modifier l éa d un corps. Elle s exprime en NEWTON (symbole N). La force es définie par son sens, son inensié,

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur.

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur. Chapire 1 Eude des ensions élecriques ; Naure de la ension du seceur. On a vu que la ension produie par un alernaeur dans une cenrale élecrique changeai ou le emps. On ne peu donc pas se conener de brancher

Plus en détail

1 ière Partie: VIBRATIONS

1 ière Partie: VIBRATIONS 1 ière Partie: VIBRATIONS Chapitre 3: Mouvement amorti à un degré de liberté Dr Fouad BOUKLI HACENE E P S T T L E M C E N A N N É E 1 5-16 Objectifs: 1. L équation différentielle d un mouvement amorti.

Plus en détail

CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE U-32 PHYSIQUE APPLIQUÉE

CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE U-32 PHYSIQUE APPLIQUÉE Session 2014 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE E3 Sciences Physiques U-32 PHYSIQUE APPLIQUÉE Durée : 2 heures Coefficien : 2,5 Maériel auorisé : - Toues les calcularices

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

COURS ELE2700 ANALYSE DES SIGNAUX

COURS ELE2700 ANALYSE DES SIGNAUX ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE ÉLECTRIQUE AUTOMNE 20 COURS ELE2700 ANALYSE DES SIGNAUX SÉANCE #3 (TP2) FENÊTRES TEMPORELLES OBJECTIFS Éudier e comparer l effe de différenes fenêres

Plus en détail

MODULATION D'ÉNERGIE, VARIATION DE VITESSE I/ INTRODUCTION, DÉFINITIONS

MODULATION D'ÉNERGIE, VARIATION DE VITESSE I/ INTRODUCTION, DÉFINITIONS Piloage, conrôle e comporemen des sysèmes - n 8 Page 1 MODULAION D'ÉNRGI, VARIAION D VISS I/ INRODUCION, DÉFINIIONS Cerains sysèmes nécessien, en exploiaion, une variaion de puissance. Celle-ci peu êre

Plus en détail

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps.

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps. Modélisaion des sysèmes mécaniques LA CINÉMATIQUE DU POINT Dae : Inroducion : La cinémaique es la parie de la mécanique qui éudie le mouvemen des corps, indépendammen des effors qui les produisen. Les

Plus en détail

E4.2 Circuits alimentés en tension alternative

E4.2 Circuits alimentés en tension alternative Manip. Elec. ircuis Elec 4 - Manip. Elec.4 ircuis en ension alernaive E4. Bu de la manipulaion e bu de la manipulaion es l'éude de circuis alimenés en ension alernaive e comprenan des associaions de résisances,

Plus en détail

Commande d un moteur à courant continu

Commande d un moteur à courant continu Commande d un moeur à couran coninu 1. Généraliés Le hacheur es un disposiif classé dans la caégorie des converisseurs saiques d énergie coninu - coninu. l a pour rôle de ransférer l'énergie d'une source

Plus en détail

La transformée de Laplace

La transformée de Laplace a ransformée de alace Méhode mahémaique ayan our objecif: Conourner la difficulé de résoluion des équaions différenielles Offrir une résoluion algébrique Très bien adaée à l élecronique Commen le cours

Plus en détail

Exercice n HA Corrigé

Exercice n HA Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA 0101 - Corrigé Logo opimisé par J.-D.Bonour,

Plus en détail

Étude d un chariot de golf électrique (corrigé)

Étude d un chariot de golf électrique (corrigé) élec PÉDAGOGIE Concours Cenrale-Supélec 2003 Filière TSI Sciences indusrielles Éude d un chario de golf élecrique (corrigé) La prédéerminaion des caracérisiques élecriques d une machine ournane débue oujours

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Réseau Continu. Mcc. Charge. v DRL. v H. c.o c.f. C.P.G.E-TSI Les hacheurs 2006/2007

Réseau Continu. Mcc. Charge. v DRL. v H. c.o c.f. C.P.G.E-TSI Les hacheurs 2006/2007 C.P.G.E-S es hacheurs 2006/2007 es hacheurs. nrodion : e Hacheur es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Réseau Coninu

Plus en détail

LES ONDULEURS Convertisseurs DC/AC

LES ONDULEURS Convertisseurs DC/AC Chapire VI - Les onduleurs - LES ONDULEURS Converisseurs DC/AC I- Inroducion : L éude va porer sur les onduleurs : monophasés, de ension :Source d enrée (DC) = Source de Tension Source de sorie (AC) =

Plus en détail

LES COMPOSANTS PASSIFS

LES COMPOSANTS PASSIFS HD:sers:pauex:Deskop:T- docs du sie:omposans passifs.doc OMOANT AF es résisances Définiion as des inerrupeurs ouver e fermé ésisance dynamique d'un dipôle quelconque oefficien de résisivié d'un maériau

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

C est lui qui va fixer la rapidité de la boucle vitesse. Nous invitons le lecteur à se reporter à la fig 13.

C est lui qui va fixer la rapidité de la boucle vitesse. Nous invitons le lecteur à se reporter à la fig 13. 1.3/ Régulaeur Proporionnel C es lui qui va fixer la rapidié de la boucle viesse. 1.3.1/ Schéma du régulaeur P Nous invions le leceur à se reporer à la fig 13. 1.3.2/ Foncionnemen Le monage perme l ajusage

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

Comat Contrôleur de Moteur CMC1

Comat Contrôleur de Moteur CMC1 Coma Conrôleur de Moeur CMC1 1 Propriéés Alimenaion DC 12 24 V Couran moeur 10 A en service permanen, 20 A à cour erme Rampes d accéléraion e décéléraion réglables Indicaion de sau e d erreur par DEL Ani-cour-circui

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

Chapitre VII : Dispersion, absorption et paquet d onde

Chapitre VII : Dispersion, absorption et paquet d onde Spéciale PSI - Cours "Physique des ondes" 1 Phénomènes linéaires de propagaion unidimensionnels dispersifs Objecifs : Chapire VII : Dispersion, absorpion e paque d onde Phénomènes de dispersion e d absorpion

Plus en détail

ELECTRICITE : PNEUMATIQUE : RESSOURCES MEI

ELECTRICITE : PNEUMATIQUE : RESSOURCES MEI ELECTRICITE : PNEUATIUE : HYDRAULIUE : ECANIUE : RESSOURCES EI SA0/C Du 29/08/02 Le freinage des moeurs asynchrones Page : /8 Documens de références : Aucuns Définiions : Aucunes odificaions : Ind.: Dae

Plus en détail

2/20 1) L e L s di ff f érent n s t ypes de ystèmes 2) L e L s s ystèmes as servis 3) S i S gnau x c anon on que qu s d ent n rée 4) C r C itères de

2/20 1) L e L s di ff f érent n s t ypes de ystèmes 2) L e L s s ystèmes as servis 3) S i S gnau x c anon on que qu s d ent n rée 4) C r C itères de 2/20 1) Les différens ypes de sysèmes 2) Les sysèmes 3) canoniques d enrée 4) Crières de qualié 5) Sabilié 6) Précision 7) Rapidié 8) Amorissemen 1) Les différens ypes de sysèmes 3/20 Vous avez di «sysème»???

Plus en détail

GRANDEURS PERIODIQUES

GRANDEURS PERIODIQUES GRANDEURS PERIODIQUES I. GRANDEURS VARIABLES 1. NOAIONS Nous représenons par une lere minuscule la valeur insananée d'une grandeur élecrique variable (inensié de couran i, ension u). La valeur maximale

Plus en détail

Mathématiques M1205. Harmonisation des connaissances et des outils pour le signal. Hugues GARNIER

Mathématiques M1205. Harmonisation des connaissances et des outils pour le signal. Hugues GARNIER Mahémaiques M25 Harmonisaion des connaissances e des ouils pour le signal Hugues GARNIER Déparemen Réseaux & Télécommunicaions IUT Nancy-Brabois Conenu indicaif Harmonisaion des connaissances e des ouils

Plus en détail

EXERCICES : TORSION (Version du 23 mai 2016 (10h48))

EXERCICES : TORSION (Version du 23 mai 2016 (10h48)) EXERCICES : TORSION (Version du mai 016 (10h48))! 6.01. Déerminer le diamère d de l arbre d une machine de 149. kw ournan à la viesse de 10 /min. On suppose que la conraine d uilisaion en orsion 0 N mm.

Plus en détail

I. Mesure de température et chaîne de transmission optique

I. Mesure de température et chaîne de transmission optique IRSCPA BTS INFORMATIQUE INDUSTRIELLE Session 1998 Epreuve de : Physique Appliquée Durée : 3 heures Coefficien :3 Les amplificaeurs opéraionnels son ous considérés comme idéaux. Un formulaire es fourni

Plus en détail

TP 7 : Numérisation d un signal : quantification et traitement numérique

TP 7 : Numérisation d un signal : quantification et traitement numérique Parie I : Élecronique TP TP 7 : Numérisaion d un : quanificaion e raiemen numérique I Inroducion Lors du précéden TP, nous avons éudiée une éape de la numérisaion d un : l éape d échanillonnage. Il ne

Plus en détail