Vecteurs de variables aléatoires réelles Généralisation des propriétés de l espérance de la variance Dans tout le cours n désigne un entier naturel 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Vecteurs de variables aléatoires réelles Généralisation des propriétés de l espérance de la variance Dans tout le cours n désigne un entier naturel 2"

Transcription

1 Vecteurs de varables aléatores réelles Gééralsato des proprétés de l espérace de la varace Das tout le cours désge u eter aturel a) Lo d u vecteur aléatore à valeurs das ) Défto La lo d u -uplet ou d u vecteur, de varables aléatores réelles défes sur le même espace probablsé, TP, est doée par la focto F défe sur par : ) Los margales,..., x,..., x, F x,..., x P x,..., Pour tout vecteur, de varables aléatores réelles défes sur le même espace probablsé, TP, et pour tout eter,, L applcato F : est appelée lo margale de x P x Cette applcato F est la focto de répartto de la varable aléatore 3) Caractérsato de la lo d u vecteur aléatore dscret La lo d u vecteur, de varables aléatores réelles dscrètes défes sur le même espace probablsé, TP, est caractérsée par la doée de l applcato : P... : x,..., x P x Remarque : Pour tout vecteur, de varables aléatores dscrètes défes sur le même espace probablsé, TP, et pour tout eter,, L applcato P : x P x 4) Proprété (admse) est appelée lo margale de S deux vecteurs, ety, Y,..., Y de varables aléatores défes sur le même espace probablsé, TP, ot même lo et s g est ue focto cotue sur à valeurs das alors les varables aléatores g et,,..., g Y, Y,..., Y ot même lo

2 5) Esperace d ue somme de varables aléatores Soet deux varables aléatores et Y défes sur le même espace probablsé, TP, S ety admettet chacue ue espérace, alors Yadmet ue espérace et o a E Y E E Y (léarté de l espérace) Gééralsato S, est u vecteur de varables aléatores réelles défes sur le même espace probablsé, TP, admettat chacue ue espérace alors... admet ue espérace et E... E... E, O peut auss gééralser certaes proprétés de l espérace à toutes les varables aléatores au programme a) Postvté S ue varable aléatore admet ue espérace et s presque sûremet, alors E b) Crossace S deux varables aléatores et Y défes sur le même espace probablsé,,p admettet ue espérace et s Y presque sûremet (c est à dre P Y ou Y ) alors E E Y P Coséquece : S deux varables aléatores dscrètes et Y défes sur le même espace probablsé,,p admettet ue espérace et s Y presque sûremet (c est à dre P Y ), alors E Y E c) Exstece d ue espérace par domato S deux varables aléatores et Y défes sur le même espace probablsé,,p vérfet Y presque sûremet et s Y admet ue espérace, Alors admet ue espérace et das ce cas, o a E E Y 6) Idépedace mutuelle de varables aléatores réelles Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, Les varables aléatores..., sot mutuellemet dépedates s et seulemet s x,..., x, F x,..., x P x F x,...,

3 7) Caractérsatos de l dépedace mutuelle a) Caractérsato Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, Les varables aléatores..., sot mutuellemet dépedates s et seulemet s pour tous tervalles,..., b) Caractérsato I I de, P I P I Les varables aléatores..., sot mutuellemet dépedates s et seulemet s toute famlle d évèemets A,..., A... T T est ue famlle d évèemets mutuellemet dépedats Rappel : O otet la trbu ou -algèbre egedrée par les évèemets x pour tout réel x c) Caractérsato de l dépedace mutuelle de varables aléatores dscrètes Sot u vecteur, de varables aléatores réelles dscrètes défes sur le le même espace probablsé, TP, Les varables aléatores dscrètes..., sot mutuellemet dépedates s et seulemet s x,..., x..., P x P x d) Idépedace mutuelle d ue sute fe de varables aléatores réelles dscrètes Sot ( ) ue sute de varables aléatores dscrètes défes sur le même espace probablsé. O dt que ( ) ue sute de varables aléatores dépedates s toute sous-sute fe extrate de cette sute est formée de varables aléatores mutuellemet dépedates. 3

4 B. Lemme des coaltos et coséqueces Le programme utlse le mot «lemme» Le lemme est u résultat termédare sur lequel o s'appue pour codure à u théorème (ou de pluseurs théorèmes) plus mportat. ) Lemme des coaltos (adms) Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, et sot p, S les varables aléatores..., sot (mutuellemet) dépedates, toute varable aléatore focto de,..., p est dépedate de toute varable aléatore focto de,..., p Exemples S et Y sot deux varables aléatores dépedates défes sur le même espace probablsé, alors Les varables aléatores ety sot dépedates Les varables aléatores ety sot dépedates Les varables aléatores e et Y sot dépedates S, Y et Z sot tros varables aléatores dépedates défes sur le même espace probablsé, alors Les varables aléatores Y et Z sot dépedates Les varables aléatores Y et Z sot dépedates Les varables aléatores max YZsot, dépedates e et ) Espérace du produt de varables aléatores dépedates S ety sot deux varables aléatores dépedates admettat chacue ue espérace, alors. E Y E E Y Yadmet ue espérace et o a Gééralsato : Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, S les varables aléatores..., sot (mutuellemet) dépedates et admettet chacue ue espérace alors... E... E... E admet ue espérace et 3) Varace d ue somme de varables aléatores dépedates S ety sot deux varables aléatores dépedates admettet chacue ue varace, alors Y V Y V V Y admet ue varace et o a 4

5 Gééralsato : Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, S les varables aléatores..., sot (mutuellemet) dépedates et admettet chacue ue varace alors... V... V... V admet ue espérace et 4) Stablté par la somme a) Stablté de la lo bomale Rappel : Soet et Y sot deux varables aléatores dépedates défes sur le même espace probablsé B, p Y B m, p Y B m, p S et alors Gééralsato : Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, S les varables aléatores..., sot (mutuellemet) dépedates et s,, B m, p... B m... m, p alors Cas partculer : Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, S les varables aléatores..., sot (mutuellemet) dépedates et s B p alors B p,,..., La somme de varables aléatores de Beroull dépedates et de même paramètre B, p p (ou de même espérace p ) sut la lo bomale b) Stablté de la lo de Posso Rappel : Soet et Y sot deux varables aléatores dépedates défes sur le même espace probablsé S P Y P Y P et alors Gééralsato : Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, S les varables aléatores..., sot (mutuellemet) dépedates et s P alors... P...,, 5

6 5) Somme de varables dépedates de lo pett gamma Rappel : stablté de la lo par la somme Soet ety deux varables aléatores à desté dépedates défes sur le même espace probablsé S et s Y alors Y Gééralsato : Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, S les varables aléatores..., sot (mutuellemet) dépedates et s alors......,, Coséqueces mmédates : Soet et Y sot deux varables aléatores dépedates défes sur le même espace probablsé S E Y E Y et s alors Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, S les varables aléatores..., sot (mutuellemet) dépedates et s,, E alors... Remarque : smulato à l ade de la focto rad d ue lo avec l Y O a vu (cours d formatque) s Y U, alors Z sut la lo expoetelle de paramètre : doc Z l Y E. * fucto =gamma() s= for =: s=s-log(-rad()) ed =s edfucto 6

7 Remarque : Lo d Erlag (méthode à coaître) Ager Krarup Erlag (978-99) mathématce daos S les varables aléatores..., sot (mutuellemet) dépedates et s,, E O sat que pour tout réel, E Y E C est-à-dre auss Y E Y E Doc s E alors, par multplcato par, E,, Et S o ote S, o a, La focto de répartto F de la varable aléatore S x, F x S pusque,,, S est telle que S x, F x P x P x G x où G est la focto de répartto de Z qu a pour desté la focto g défe sur par g x s x x x e x s O vérfe que la focto F est la focto de répartto d ue varable aléatore à desté E effet F est cotue et C sur, et sur,, de plus lm F x, F g x dx, F cotue à drote e comme toute focto de répartto Doc S est ue varable aléatore à desté x Je preds pour desté la focto f défe sur f x par s x x x g x x e x e s x!! (lo d Erlag) 7

8 Coséquece : smulato d ue lo de Posso à l ade de la focto rad Rappel (vor page 7) : s les varables aléatores..., sot (mutuellemet) dépedates et s,, E S o ote S, o a S, et la varable S est ue varable aléatore à desté Je preds pour desté la focto f défe sur par f x s x x x e x! s O trodut la varable aléatore N égale au plus grad eter aturel, tel que S avec par coveto N s (alors,, S ) O a N S car N égal à ce qu se résume S Traval prélmare Motros que, sgfe que le plus grad des tel que S est au mos P S e t Utlsos la formule de Taylor avec reste tégral : e e dt!!! u u!! E posat u tdas l tégrale, e e du E dvsat chaque membre par e, u u!! O effectue mateat le chagemet de varable v v!! e e dv e e du u v sotu v, O a doc falemet e PS et doc Coséqueces :! Motros alors que, P N e P N P S e! Doc! P N P N P N e, Pour P N P N P N e, P S e!!! 8

9 (Vrae pour pusque P N P N P P e e ) La varable N sut la lo de Posso de paramètre Smulato : O cherche doc le plus grad, tel que S E otat, pour tout,, U U : o a, O cherche doc le plus grad, l plus grad tel que l U sot U U E (smulato de chaque ) l U tel que ce qu revet à chercher le O peut motrer faclemet que s U U alors U, U, e 6) Somme de varables dépedates de lo ormale Rappel : Soet ety deux varables aléatores à desté dépedates défes sur le même espace probablsé N m, Y N m, Y N m m, S et alors Gééralsato : Sot u vecteur, de varables aléatores défes sur le même espace probablsé, TP, S les varables aléatores..., sot (mutuellemet) dépedates et s,, N m, alors... N m... m ;... 9

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles L Meto Iformatque UE Probabltés Chaptre 3 : Varables aléatores réelles Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer, Serge Solovev Sot (, A, P) Ω et X : Ω R ue varable aléatore. I. Varable

Plus en détail

Chapitre II : Notion de mesure : Définition : 3 Remarques : 3 Définition : 3 Définition : 3 Définition : 3 Exemple : 4 Définition : 4 2.

Chapitre II : Notion de mesure : Définition : 3 Remarques : 3 Définition : 3 Définition : 3 Définition : 3 Exemple : 4 Définition : 4 2. Chaptre II : Noto de mesure 3 2. : Défto : 3 Remarques : 3 Défto : 3 Défto : 3 Défto : 3 Exemple : 4 Défto : 4 2.2 : Proprétés : 4 Proprété : 4 Proprété 2 : 4 Proprété 3 : 4 Proprété 4 : 4 Proprété 5 :

Plus en détail

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez Corrgé de CCIP 2000 par Perre Veullez Das tout le problème, désge u eter aturel o ul. O cosdère ue ure U coteat boules umérotées de à. O tre ue boule au hasard das U. O ote k le uméro de cette boule. S

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements :

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements : wwwelmerouajmdocom Statstques II Sc Éco & Gesto S r M El Meroua Chaptre : roaltés I Itroducto : -Epreuve ou expérece : O appelle épreuve ou expérece ue certae acto que l o peut répéter pluseurs fos ar

Plus en détail

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie Los de probabltés lées aux trages de boules das ue ure Approche sodage : échatlloage et estmato das ue populato fe Das le ouveau programme de secode, retrée 2009, sot scrtes les otos d'tervalle de fluctuato

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

1/7 Notes de cours en calcul des probabilités (JJ Bellanger) I : Espaces Probabilisés

1/7 Notes de cours en calcul des probabilités (JJ Bellanger) I : Espaces Probabilisés /7 otes de cours e calcul des probabltés (JJ Bellager I : spaces Probablsés I : SPACS PROBABILISS I.-xpérece aléatore Itutvemet ue expérece aléatore est ue expérece dot o e peut pas prévor le résultat

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables.

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables. COUPLE DE VARIABLES ALEATOIRES O cosdère deux varables aléatores et. O amerat coatre s l y a fluece etre ces deux varables. I Coule de varables dscrètes : 1) Lo ote : Soet et deux varables dscrètes, à

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

ESPACES VECTORIELS FAMILLES DE VECTEURS

ESPACES VECTORIELS FAMILLES DE VECTEURS ESPACES VECTORIELS FAMILLES DE VECTEURS A. ESPACES VECTORIELS 1) Défto O aelle esace vectorel sr o esace vectorel o esace vectorel réel tot esemble E m : 1) D e lo de comosto tere, aelée addto et otée

Plus en détail

LOI NORMALE ET LOIS DERIVEES

LOI NORMALE ET LOIS DERIVEES Prcpes et Méthodes de la Bostatstque Chaptre 5 LOI NORMALE ET LOIS DERIVEES A-LA LOI NORMALE Présetato La dstrbuto ormale, dte ecore de Laplace-Gauss, est pour des rasos qu apparaîtrot plus lo, la plus

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 003 EPREUVE SPECIFIQUE FILIERE MP MAHEMAIQUES 1 Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la plus grade mportace à la clarté, à la précso et à la cocso de la

Plus en détail

5. Variables aléatoires simultanées

5. Variables aléatoires simultanées 5. Varables aléatores smultaées 5.1 Coule de varables aléatores Défto 1 Pour tout dce das 1, sot X ue varable aléatore. O dt que X X 1 X est ue varable aléatore de dmeso. Nous ous téresseros rcalemet aux

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

CHAPITRE VI. THÉORÈME DU CHANGEMENT DE VARIABLE. pour tout borélien B U. En particulier, on a λ (A) = µ ( φ 1 (A)) pour tout borélien A V, soit V U

CHAPITRE VI. THÉORÈME DU CHANGEMENT DE VARIABLE. pour tout borélien B U. En particulier, on a λ (A) = µ ( φ 1 (A)) pour tout borélien A V, soit V U CHAPITE I. THÉOÈME D CHANGEMENT DE AIABLE.. Itégrato par chagemet de varable... Itroducto. Soet, deux ouverts de et φ : u homéomorphsme de sur. Notos x (resp. y ) la varable de (resp. de ) et λ = dy la

Plus en détail

CORRIGÉ ESSEC 2008 Scientifique

CORRIGÉ ESSEC 2008 Scientifique CORRIGÉ ESSEC 28 Scetfque Premère parte 1. a) O vérfe asémet que est be ue applcato de das (pour tout polyôme P, (P) est be u polyôme) et qu elle est léare ( (P,Q) 2, λ, (λp+q)=λ (P)+ (Q)). Doc : est u

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression L Meto Iformatque UE Probabltés Chaptre 4 : Smulato - Régresso Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer I- Smulato de varables aléatores. Itroducto Das certaes expéreces «réelles», où le

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins.

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins. Résumé statstque.6 Le coeffcet de corrélato Corrélato etre deux composats: pod/talle d'u dvdu. r = å å =1 x - xy - y å x - x y - y =1 =1 La valeur se stuera etre -1 corrélato égatve/versée et 1corrélato

Plus en détail

PRO 1 EXPRO010 EXPRO019

PRO 1 EXPRO010 EXPRO019 Exercces résolus de mathématques. PRO 1 EXPRO010 EXPRO019 http://www.matheux.be.tf Jacques ollot 1 avrl 03 www.matheux.be.tf - PRO 1-1 - EXPRO010W Ue ure cotet boules blaches ( 4) et 10 boules ores. O

Plus en détail

NOTATIONS ET FORMULAIRE

NOTATIONS ET FORMULAIRE Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 1/5 PROTOCOLE SUR U ECHA TILLO NOTATIONS ET FORMULAIRE Esemble des sujets de l échatllo S { s 1 ; s ;.; s } (1) Varable

Plus en détail

Correction des exercices du TD2

Correction des exercices du TD2 orrecto des exercces du TD Rael : des ades vous sot foures sur le ste «www.utc.fr /~mt/» à la f des fchers acrés aux chatre de cours. N héste as à les ulter our refare les exercces avat de regarder la

Plus en détail

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES SOMMAIRE. Normes sur u espace vectorel E 2.. Défto d'ue orme. Cter l'égalté tragulare reversée. 2.2. Normes usuelles

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres Ift 4 Chaptre 7 Itroducto au valeurs propres et au vecteurs propres Ift4 Chaptre 7 Défto : S A est ue matrce de, alors u vecteur o ul est dt vecteur propre de A s A est appelé valeur propre de A, et vecteur

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!!

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!! Cours : Statstques I. Itroducto Classe de ère S O a vu que our caractérser ue sére statstque, o utlse des : - aramètres de tedace cetrale : - la moyee ; - la médae. Ils ermettet d dquer la «osto» de la

Plus en détail

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance Parte I : Gesto de portefeulles actos Chaptre 3 Gesto de Portefeulle Moyee-arace Gesto de Portefeulle D. Msae edemet d ue acto Cette parte est cosacrée à u apport mportat de la théore facère modere qu

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

DEVOIR EN TEMPS LIBRE A RENDRE LE 17 /02/11 ECS 2

DEVOIR EN TEMPS LIBRE A RENDRE LE 17 /02/11 ECS 2 DEVOIR EN TEPS LIBRE A RENDRE LE 7 /0/ ECS EX : : Le but de ce poblème (dot les tos pates sot dépedates) est l'étude du temps passé das ue mae pa u usage quad u ou pluseus guchets sot à la dsposto du publc,

Plus en détail

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats.

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats. rbre de déombremet et arbre de probablté Pla du documet. O présete tout d'abord la règle du produt pour les arbres de déombremet avec, e cas partculer, le cardal d'u produt cartése d'esembles fs.. O présete

Plus en détail

Séries de Fourier 12-1

Séries de Fourier 12-1 Séres de Fourer 1-1 Sommare 1. Applcato de classe C 1 par morceaux 1 1.1. Applcato de classe C 1 par morceaux 1 1.. Applcato -pérodque C 1 par mcx. 1 1.3. pérato sur les applcatos C 1 par mcx 1. Sére de

Plus en détail

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2 - Varables aléatores et dstrbutos - Chaptre : Varables aléatores et dstrbutos. Varable aléatore.... Focto de répartto....3 Focto de masse et de desté....4 Dstrbuto cojote de varables aléatores...5.4. Dstrbuto

Plus en détail

N O M B R E S C O M P L E X E S.

N O M B R E S C O M P L E X E S. T le S 00/005 Ch9 Nombres complexes J TAUZIEDE N O M B R E S C O M P L E X E S I- L ENSEMBLE C DES NOMBRES COMPLEXES Ecrture algébrque des ombres complexes Comme o a motré l suffsace de l esemble Q par

Plus en détail

. L'ensemble des diviseurs communs à a 1. est fini et admet donc un plus grand élément.

. L'ensemble des diviseurs communs à a 1. est fini et admet donc un plus grand élément. PGCD, PPCM ds Z Théorème de Bézout - Applctos PGCD, PPCM DANS Z THEOREME DE BEZOUT APPLICATIONS PGCD Proposto Soet,,, L'esemble des dvseurs commus à,, est f et dmet doc u plus grd élémet Démostrto Soet,,,

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 005 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto

Plus en détail

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction : Statstque 3 ème Maths Ma 00 A LAATAOUI I Itroducto : La statstque est ue scece ayat pour objet l étude des phéomèes socau surtout ceu doat leu à des varatos ou ceu e pouvat être suffsammet maîtrsés que

Plus en détail

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES " Hajeb Laayoun "

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES  Hajeb Laayoun Sére d'exercces *** 4 ème Maths Lycée Secodare Al ouaou LES N COMPLEXES " Hajeb Laayou " I / L esemble des ombres complexes : Défto : O appelle esemble des ombres complexes, et o ote C, l esemble des ombres

Plus en détail

M : Zribi. 4 ème Maths Chapitre 1. 1) Ensemble des nombres complexes : Activité 1:

M : Zribi. 4 ème Maths Chapitre 1. 1) Ensemble des nombres complexes : Activité 1: LSMarsa Elradh 1) Esemble des ombres complexes : Actvté 1: Résoudre das IN pus das Z l équato 5+x=1 ; résoudre das Z pus das Q l équato 3x=2 ; résoudre das Q pus das IR l équato : x²=2 Résoudre das IR

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

IR homogène de degré α ( α IR ). (0.5 pt.)

IR homogène de degré α ( α IR ). (0.5 pt.) Javer 05 ( heures et 0 mutes) a) Sot IN 0 \ {} Défr : sous-esemble boré de IR sous-esemble covee de IR b) Soet les sous-esembles suvats de IR : A [-4,0] [0,] B {(,y) IR : + y 9} Représeter graphquemet,

Plus en détail

PROBABILITÉS - VARIABLES ALÉATOIRES

PROBABILITÉS - VARIABLES ALÉATOIRES PROBABILITÉS - VARIABLES ALÉATOIRES Itroducto Das le cours sur les probabltés ous avos trodut la oto d uvers U et lu avos attacé ue focto probablté P. Das beaucoup d applcatos pratques la oto d uvers,

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble E des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

Les nombres complexes

Les nombres complexes haptre 6 termale S Les ombres complexes 1 hstorque et créato : N Z ID Q R es esembles ot été costruts au fl de l hstore grâce à u même problème : certaes équatos ot des solutos das u esemble doé mas d

Plus en détail

SCHEMA DE BERNOULLI ET LOI BINOMIALE. EXEMPLES

SCHEMA DE BERNOULLI ET LOI BINOMIALE. EXEMPLES SCHEMA DE BERNOULLI ET LOI BINOMIALE EXEMPLES Nveau : termale Pré-requs : Espace probablsé Varable aléatore réelle sur u espace probablsé f Lo de probablté de X Espérace mathématque Varace O se place das

Plus en détail

Niveau 7C 05 février Solution. L x y z ( utilisation du théorème de. (x y z) x y z 2xy 2xz 2yz

Niveau 7C 05 février Solution. L x y z ( utilisation du théorème de. (x y z) x y z 2xy 2xz 2yz Olympades Natoales de Mathématques 07 Sélectos régoales er tour Nveau 7C 05 févrer 07 Durée 3 h Exercce (4 pots) ) Vérfer que, pour tous réels x, y, z o a : (x y z) x y z xy xz yz. Soluto ) La somme des

Plus en détail

PRINCIPES DES STATISTIQUES INFERENTIELLES

PRINCIPES DES STATISTIQUES INFERENTIELLES Chaptre 3 PRINCIPES DES STATISTIQUES INFERENTIELLES Bases de la statstque féretelle PLPSTA0 0 Chaptre 3 1. Problématque. Objectfs des statstques féretelles.1 Estmato poctuelle. Estmato par tervalles.3

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18 1 U commerçat a relevé le motat des dépeses e euros de chaque clet au cours d ue semae. Motat des dépeses Clets [0 ; 50[ 72 x x - x ) - x )² -x ) ² [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200

Plus en détail

(respectivement M n,1 ( )) l espace vectoriel réel

(respectivement M n,1 ( )) l espace vectoriel réel Les calculatrces sot autorsées **** NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto S u caddat est ameé à reérer ce qu eut lu sembler être ue erreur d'éocé,

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES Sesso févrer 009 BREVET DE TECHNICIEN SUPERIEUR «COMPTABILITE ET GESTION DES ORGANISATIONS» EPREUVE DE MATHEMATIQUES Durée : heures Coeffcet : Matérel et documets autorsés : L usage des strumets de calcul

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

Espaces probabilisés.

Espaces probabilisés. Espaces probablsés Chaptre 6 : cours complet Itroducto Défto : Défto 2 : Défto 3 : uvers évèemet aléatore évèemets mpossbles, certas, compatbles 2 Espaces probablsés fs Défto 2 : Défto 22 : Théorème 2

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

Partie I - Suites et intégrales

Partie I - Suites et intégrales SESSION 16 Cocours commu Cetrale MATHÉMATIQUES. FILIERE MP I.A - Étude d ue itégrale à paramètres Partie I - Suites et itégrales I.A - 1 Soit φ : [, + [ ], + [ R de sorte que pour tout réel x, fx = Φx,t.

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

III GRANDEURS MOLAIRES

III GRANDEURS MOLAIRES Chaptre III GRNDEURS MOLIRES Gradeurs molares - Gradeur molare d u corps pur ou d u age de corps purs Sot u système thermodyamque costtué de moles d u même composé, o assoce à ue gradeur extesve de ce

Plus en détail

CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ

CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ CHAPITRE Les carrés das (Z/Z Das ce chatre o s téresse à l esemble des carrés das le cors Z/Z, mas auss das certas aeaux Z/Z avec o remer O todut le symbole de Legedre qu caractérse les carrés O trodut

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

1. Test d indépendance du KHI-2

1. Test d indépendance du KHI-2 1. Test d dépedace du HI- Ecrre ue focto qu réalse le test d dépedace du kh-. Etrée : x et y, deux vecteurs, de type factor Sorte : statstque de test, degrés de lberté, p-value Idcatos : Vous devez vérfer

Plus en détail

Nombres complexes Sessions antérieures

Nombres complexes Sessions antérieures ème aée Maths Nombres complexes Sessos atéreures Aée scolare 9 - A LAATAOUI Exercce N (SP) Das le pla complexe P rapporté à u repère orthoormé ( Ouv ; ; ) o cosdère les pots A et B d affxes respectves

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

PROBABILITÉS ET STATISTIQUE POUR L ENSEIGNEMENT SECONDAIRE

PROBABILITÉS ET STATISTIQUE POUR L ENSEIGNEMENT SECONDAIRE PROILITÉS ET STTISTIQUE POUR L ENSEIGNEMENT SECONDIRE Ce documet a été rédgé à l occaso d u stage de formato cotue de professeurs de mathématques de trosème et secode e décembre 009 à Toulouse, sute à

Plus en détail

.Il existe dans C un nombre non réel, noté i, vérifiant i 1

.Il existe dans C un nombre non réel, noté i, vérifiant i 1 Esemble C des ombres complexes 4 ème mth HHmmoud Feth )Forme lgébrque d u ombre complexe : Il exste u esemble oté C, de ombres ppelés ombre complexe, tel que : C cotet IR ; C est mu d ue ddto et d ue multplcto

Plus en détail

Inversion de Möbius et principe d inclusion-exclusion

Inversion de Möbius et principe d inclusion-exclusion Iverso de Möbus et prcpe d cluso-ecluso Bruo Wckler Prérequs : coeffcet bomal ; ombres premers ; dcatrce d Euler (dspesable) ; algèbre léare et/ou matrcelle (dspesable) ; séres covergetes (dspesable).

Plus en détail

6- Tests statistiques - 1. Chapitre 6 : Tests d hypothèses

6- Tests statistiques - 1. Chapitre 6 : Tests d hypothèses 6- Tests statstques - Chaptre 6 : Tests d hypothèses 6. Costructo d u test et règle de décso... 6. ussace d u test...3 6.3 Quelques tests d hypothèses...4 6.3. Test sur la moyee d ue dstrbuto ormale de

Plus en détail

3- LES TIRAGES PROBABILISTES D'ECHANTILLONS

3- LES TIRAGES PROBABILISTES D'ECHANTILLONS 3- LES TIRAGES PROBABILISTES D'EHATILLOS Das de ombreuses alcatos ratques du calcul des robabltés, o retrouve u ou luseurs des schémas de trages robablstes d'échatllos que ous allos exoser. Le cadre gééral

Plus en détail

Texte Filtre de Kalman-Bucy

Texte Filtre de Kalman-Bucy Page 1. Texte Filtre de Kalma-Bucy 1 e modèle U avio se déplace etre Paris et odres. Il suit ue trajectoire théorique appelée trajectoire omiale dot les coordoées sot coues de tous. a trajectoire de l

Plus en détail

M ( ) n,p. Chapitre 15 Matrices et systèmes linéaires. I Généralités. Dans tout le chapitre K désigne le corps R ou C.

M ( ) n,p. Chapitre 15 Matrices et systèmes linéaires. I Généralités. Dans tout le chapitre K désigne le corps R ou C. PSI 1 hatre 15 Matrces et systèmes léares Das tout le chatre K désge le cors R ou I Gééraltés 1 Défto Défto : Ue matrce est u tableau d élémets de K coteat lges et coloes Notatos : U matrce A est otée

Plus en détail

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n 1 Notes de cours de l'isima, premère aée http://wwwsmafr/ leborge Méthode des modres carrés : melleure approxmato léare Glles Leborge 31 ma 2005 Table des matères 1 Rappel de dérvato 1 2 Cas 1-D 2 21 Les

Plus en détail

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

Espaces vectoriels (et affines).

Espaces vectoriels (et affines). Esaces vectorels (et affes) Cha 04 : cours comlet Esaces vectorels réels ou comlexes (Su) Défto : K-esace vectorel Défto 2 : K-algèbre Théorème : exemles Défto 3 : combaso léare de vecteurs Défto 4 : sous-esace

Plus en détail

EXERCICES DE. Serveur d'exercices 1/22

EXERCICES DE. Serveur d'exercices 1/22 Sceces.ch EXERCICES DE TOPOLOGIE Serveur d'exercces /22 Sceces.ch EXERCICE.. Auteur : Rube Rcchuto (09.08.04, rube@sceces.ch) Mots Clés :Théorème de Bare et cardal de Éocé : Doer ue preuve topologque du

Plus en détail

Familles sommables. Marc SAGE. 18 novembre Familles positives Dé nitions... 6

Familles sommables. Marc SAGE. 18 novembre Familles positives Dé nitions... 6 Famlles sommables Marc AGE 8 ovembre 24 Table des matères Famlles postves 2. Dé tos................................................. 2.2 utes exhaustves............................................ 2.3

Plus en détail

NOMBRES COMPLEXES EXERCICES CORRIGES

NOMBRES COMPLEXES EXERCICES CORRIGES Cours et exercces de mathématques NOMRES COMPLEXES EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; Exercce. Calculer, et = ; = ; = ; 5 006 009 E dédure

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

Chapitre 1. Résumé d une distribution statistique

Chapitre 1. Résumé d une distribution statistique Chaptre. Résumé d ue dstrbuto statstque.. Cocepts de base de la statstque descrptve Populato = O appelle populato assocée à ue épreuve l esemble des résultats possbles d ue «épreuve». E statstques, le

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1.

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1. NOMBRES COMPLEXES - EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; = ; = ; = ; 5 = Exercce. Calculer, et E dédure la valeur de 006 et de 009, pus les

Plus en détail

Chapitre : Équilibre général de Walras

Chapitre : Équilibre général de Walras Écoome et maagemet Lcece Mcroécoome 3 Aée 04-05 Chaptre : Équbre gééra de Waras Robert Jorda Agets de 'écoome : aucue fuece dvdueemet Système de prx : permettat de réaser des échages Codusat à u état réasabe

Plus en détail

( (p, q) IN 2 ) A p A q = A p+q ( (p, q) IN 2 ) (A p ) q = A pq ( k IN) (A ) k = (A k ) ( k IN) Dét (A k ) = (Dét A) k

( (p, q) IN 2 ) A p A q = A p+q ( (p, q) IN 2 ) (A p ) q = A pq ( k IN) (A ) k = (A k ) ( k IN) Dét (A k ) = (Dét A) k Algèbre Chaptre 6 Les matrces carrées Hypothèses : est u eter strctemet postf I est la -matrce uté I La trace d ue matrce carrée La trace d ue -matrce est la somme de ses termes dagoaux O ote la trace

Plus en détail

ELEMENTS PROPRES D'UN ENDOMORPHISME

ELEMENTS PROPRES D'UN ENDOMORPHISME lémets rores d' edomorhsme LMNTS PROPRS D'UN NDOMORPHISM * désge K esace vectorel de dmeso fe N Sos esaces stables défto Soet edomorhsme de, F sos esace vectorel de O dt qe F est stable ar s F F S F est

Plus en détail

Alain MORINEAU

Alain MORINEAU www.deeov.com Ala MORINEAU Cet artcle est ue reprse et u extrat de l artcle «Note sur la Caractérsato Statstque d'ue Classe et les Valeurs-tests», publé das la revue Bullet Techque du Cetre de Statstque

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice 1 - Loi d u dé truqué - Deuxième aée - 1. X pred ses valeurs das {1,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque

Plus en détail

TD10. Loi des grands nombres, théorème central limite.

TD10. Loi des grands nombres, théorème central limite. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD10. Loi des grads ombres, théorème cetral limite. 1. Soit (U ) 1 ue suite de variables aléatoires

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple.

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple. Théorie des tests : Rappel très simplifié sur u exemple. Aexe I Test de l efficacité d u remède sur des malades atteit d u rhume. p 0 : probabilité de guérir das les huit jours avec u placebo p 1 : probabilité

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail