Fonctions numériques Proportionnalité

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Fonctions numériques Proportionnalité"

Transcription

1 Foncions numériques Proporionnalié I Foncions numériques 1 ) Définiion e noaions Définir une foncion f qui à x associe y c es donner une formule mahémaique qui perme pour oue valeur donnée de x soi de dire que y n exise pas (dans ce cas la valeur de x n apparien pas au domaine de définiion de f) soi de déerminer y de façon unique. Exemple : soi f la foncion qui à x associe y valan 2 Noaions possibles : 1 x 4 f : 3 de 0,2) 0,2 ou f(3) = 0,2 (on di que 0,2 es l image de 3 e on di que 3 es un anécéden Pour cee foncion f(-2) e f(2) n exisen pas. Remarque : Une foncion peu êre définie par plusieurs formules mahémaiques à condiion que soi clairemen précisée quelle formule on doi employer selon l inervalle auquel apparien la valeur de x (on parle alors de foncion définie par morceaux). Exemple : Un représenan reçoi mensuellemen un fixe de 800 e une commission égale à 10% des venes réalisées à condiion que celles-ci dépassen Si on noe x le monan en des venes mensuelles réalisées par le représenan e y la valeur en de son salaire alors y es foncion de x e on a : si x 3000 alors y = 800 si x > 3000 alors y = 0,1x ) Représenaion graphique d une foncion Soi une foncion qui à x associe y. A chaque valeur de x pour laquelle y exise on peu faire correspondre un poin d abscisse x e d ordonnée y dans un repère bien choisi (se donner un repère c es se donner deux axes gradués). L ensemble de ous les poins obenus s appelle la représenaion graphique de la foncion. Exemple : Reprenons l exemple précéden. La représenaion de la foncion qui à x associe y es : y : valeur du salaire mensuel en x : monan des venes mensuelles en

2 3 ) Cas pariculiers qu il fau bien connaîre (foncion linéaires e foncions affines) a) Si y = ax alors la foncion qui à x associe y es appelée foncion linéaire e sa représenaion graphique es une droie qui passe par l origine du repère. C es un ype de foncion pariculièremen imporan car on verra plus loin que ceci correspond au cas où deux grandeurs son proporionnelles. b) Si y = ax+b alors la foncion qui à x associe y es appelée foncion affine e sa représenaion graphique es une droie. Remarque : Si b = 0 on rerouve y = ax donc les foncions linéaires son des cas pariculiers de foncions affines. c) Représenaions graphiques des foncions linéaires e des foncions affines: y x y x

3 II Proporionnalié 1 ) Remarque préalable La noion de proporionnalié peu êre inroduie en uilisan des suies (on défini ce que son deux suies de nombres proporionnelles) ou en uilisan des ableaux (on défini ce qu es un ableau de proporionnalié) ou en uilisan des grandeurs (on défini ce que son deux grandeurs proporionnelles). Dans le cadre de ce cours, on choisi, d uiliser des grandeurs. 2 ) Définiion On noe x la mesure d une première grandeur e y la mesure d une deuxième grandeur. On di que la deuxième grandeur es proporionnelle à la première s il exise une foncion linéaire f (donc une foncion du ype x ax ) qui perme de passer de la mesure x de la première grandeur à la mesure y de la deuxième grandeur. Dans ce cas on di que a es le coefficien de propoionnalié. Exemple concernan un acha de pommes : «Poids» des pommes en kg Prix des pommes en ,5 7, ,5 Si on appelle x le «poids» des pommes en kg e y le prix des pommes en, on a (dans ce exemple où on suppose que le prix es uniforme c es-à-dire qu il n y a pas, par exemple, de réducion pour un acha imporan) : y = 1,5 x Dans ce exemple, le prix des pommes es proporionnel au «poids» des pommes. Remarque : Le coefficien de proporionnalié 1,5 es ici le prix uniaire (en /kg).

4 3 ) Propriéés Exemple de grandeurs proporionnelles : Le salaire (si on es payé à l heure) es proporionnel à la durée du ravail. Exemples de grandeurs non proporionnelles : Le poids d un individu donné n es pas proporionnel à sa aille Propriéé n 1 x Durée du ravail (en heures) 4 12 y Salaire (en euro) Age (en années) 2 6 Poids (en kilogrammes) ( / h) es le coefficien de proporionnalié Remarque : la foncion qui à x associe y es la foncion linéaire x 8 x Propriéé n 2 : Durée du ravail (en heures) Salaire (en euro) Age (en années) 2 6 Poids (en kilogrammes) Il s agi de la propriéé de linéarié pour la muliplicaion par un nombre : f(kx) = kf(x) 3 3 Propriéé n 3 : Durée du ravail (en heures) Age (en années) Salaire (en euro) Poids (en kilogrammes) Il s agi de la propriéé de linéarié pour l addiion : f(x 1 + x 2 ) = f(x 1 ) + f(x 2 ) + + Propriéé n 4 : Si on fai un graphique les poins son ous sur une même droie passan par l origine. Remarques: a) On peu écrire : Si je ravaille 4 heures, je gagne 32 :4 Si je ravaille 1 heure, je gagne 32 : 4 = 8 5 Si je ravaille 5 heures, je gagne 5 8 = 40 b) On peu uiliser un auomaisme appelé Si on fai un graphique les poins ne son pas ous sur une même droie passan par l origine. a) Si j ai 2 ans, je pèse 8 kg Si j ai 1 an, je pèse 8 : 2 = 4 kg b) On ne peu pas uiliser le "produi en croix" ? 4 x? = 5 x 32

5 Remarques concernan l expression «règle de rois» La significaion précise de l expression «règle de rois» peu varier d un aueur à l aure mais, dans ous les cas, ce qui es sous-jacen c es la procédure de «passage par l unié» suivane :. 4 pommes coûen 2. 1 pomme coûe 4 fois moins donc coûe pommes coûen 5 fois plus donc coûen On appelle assez souven, me semble--il, «règle de rois» le fai de produire rapidemen le résula final 25 sans nécessairemen écrire des explicaions. 4 Mais cee procédure peu garder du sens si on produi ce résula de la manière suivane : On pense e/ou on di : «4 pommes coûen 2». On écri le nombre 2. On pense e/ou on di : «1 pomme coûe 4 fois moins». On complèe ce qu on a commencé d écrire : 2 4. On pense e/ou on di : «5 pommes coûen 5 fois plus». On complèe ce qu on a commencé d écrire : 25 4

6 4 ) Pourcenages a) Pourcenages pour décrire une siuaion (exemples) : Premier exemple : dans une classe de 32 élèves il y a 12,5 % de filles. Nombre de filles : 32 12,5 100 = 4 Deuxième exemple : dans une classe de 32 élèves il y a 8 filles. Première présenaion possible des calculs : 8 Pourcenage de filles : = 0,25 = 25% 32 Deuxième présenaion possible des calculs : 8 Pourcenage de filles : 100 % = 0,25 100% = 25 % 32 Troisième exemple : b) Pourcenages pour décrire une évoluion : Si des prix augmenen de %, les nouveaux prix son proporionnels aux anciens e le coefficien de proporionnalié es égal à Exemple : un obje qui coûai 32 va coûer après augmenaion de 25 % 32 ( ) soi 32 1,25 soi (aenion : on a muliplié l ancien prix par 1,25 pour rouver direcemen le nouveau prix mais si on avai voulu calculer l augmenaion on aurai muliplié l ancien prix par 0,25)

7 Si des prix diminuen de %, les nouveaux prix son proporionnels aux anciens e le coefficien de proporionnalié es égal à Exemple : un obje qui coûai 32 va coûer après diminuion de 25 % 32 (1-25 ) soi 32 0,75 soi (aenion : on a muliplié l ancien prix par 0,75 pour rouver le nouveau prix mais si on veu calculer seulemen l augmenaion on muliplie l ancien prix par 0,25) On peu aussi reenir les formules suivanes : Si une quanié es muliplié par c avec c > 1, cee quanié augmene de (c - 1) 100% Si une quanié es muliplié par c avec c < 1, cee quanié diminue de (1 - c) 100% Pour rouver un pourcenage d augmenaion ou de diminuion, on peu présener les calculs ainsi : Un prix passe de 130 à 133, ,38 = 1,026 donc le prix es muliplié par 1,026 donc le prix augmene de (1,026-1) 100 % donc le 130 prix augmene de 2,6 %. Un prix passe de 140 à 139, ,16 = 0,994 donc le prix es muliplié par 0,994 donc le prix diminue de (1-0,994) 100 % donc le 140 prix diminue de 0,6 %.

8 7 ) Complémens concernan les regisres uilisés pour parler de la proporionnalié Regisre de la langue naurelle Regisre symbolique Chaque heure, un véhicule parcour soixane kilomères. d 60 Soixane kilomères son parcourus par un véhicule chaque heure. d d d d Regisre des ableaux de valeurs 1 Chaque regisre dispose de sa propre grammaire (règles de formaion des écris admissibles dans ce regisre) 10 d Passage d un écri à un aure dans un même regisre (selon des règles inernes au regisre) Passage d un regisre à l aure (selon des procédures plus ou moins expliciées) Regisre des représenaions graphiques carésiennes

CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine.

CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine. CHAPITRE 5 Foncion linéaire. Proporionnalié. Foncion affine. (Voir : 4 ème, chapire 5 ; 3 ème, chapires 3, 13.) I) Foncion linéaire A) Définiion a désigne un nombre relaif connu e fié. Définiions : La

Plus en détail

FONCTIONS NUMERIQUES PROPORTIONNALITE

FONCTIONS NUMERIQUES PROPORTIONNALITE FONCTIONS NUMERIQUES PROPORTIONNALITE I DEFINITION En français, dans une phrase du type «la taille est fonction de l âge», «est fonction de» signifie «dépend de». En mathématiques la notion de fonction

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

Graphiquement, les deux grandeurs sont directement proportionnelles car le

Graphiquement, les deux grandeurs sont directement proportionnelles car le 1 1. Acivié 1 : Allongemen du ressor Exercice 1 L Variaion de ll'allongemen du en ressor foncion en foncion du poids du poids (cm) allongemen (cm) 1 9 8 7 6 5 4 3 2 1 D après les informaions fournies par

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

1 ère L Les pourcentages

1 ère L Les pourcentages 1 ère L Les pourcenages Ce chapire se place dans le cadre de l informaion chiffrée. III. Calculer une valeur après un pourcenage d augmenaion e de diminuion (opéraeur associé à un pourcenage d évoluion)

Plus en détail

Unité 6 : La proportionnalité numérique 3 ème ESO

Unité 6 : La proportionnalité numérique 3 ème ESO UITÉ 6 : LA PROPORTIOALITÉ UMÉRIQUE POUR DÉBUTER Il fau rappeler - Définiion de grandeur : Une grandeur es une caracérisique qui es mesurée, e la valeur es exprimée par un nombre. Le concep de grandeur

Plus en détail

1 Proportionnalité et représentation graphique

1 Proportionnalité et représentation graphique 1 Proporionnalié 1 Proporionnalié e représenaion graphique 1 a) proporionnalié e conséquences On di qu il y a proporionnalié dans un ableau lorsque l on peu passer d une ligne à l aure en muliplian par

Plus en détail

2 Compléter un tableau de proportionnalité

2 Compléter un tableau de proportionnalité 1 Reconnaire un ableau de proporionnalié OJECTIF 1 DÉFINITION Il y a proporionnalié dans un ableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s obiennen en muliplian ceux de la première

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Intégrales Généralisées

Intégrales Généralisées Inégrales Généralisées Eercice. Monrer la convergence e calculer la valeur des inégrales : I = 3 e d ; I = + d ln() ; I 3 = ( + ) d Allez à : Correcion eercice Eercice. Les inégrales généralisées suivanes

Plus en détail

RESOUDRE UNE EQUATION

RESOUDRE UNE EQUATION THEME 0 : EGALITES EQUATIONS() RESOUDRE UNE EQUATION. ACTIVITE : «Egaliés e opéraions : quelles son les règles?» 0 0 0 fig. fig. fig. fig. : On ne change pas l égalié lorsque l on ajoue un même obje sur

Plus en détail

S5 Info-MIAGE 2011-2012 Mathématiques Financières Compléments sur les intérêts composés

S5 Info-MIAGE 2011-2012 Mathématiques Financières Compléments sur les intérêts composés Universié de Picardie Jules Verne Année 2011-2012 UFR des Sciences Licence menion Informaique parcours MIAGE - Semesre 5 Mahémaiques Financières COMPLEMENTS SUR LES INTERETS COMPOSES Les inérês considérés

Plus en détail

Chapitre I Grandeur scalaires, grandeurs vectorielles, différentielles, différentielles vectorielles et équations différentielles

Chapitre I Grandeur scalaires, grandeurs vectorielles, différentielles, différentielles vectorielles et équations différentielles Chapire I Grandeur scalaires, grandeurs vecorielles, différenielles, différenielles vecorielles e équaions différenielles I. Inroducion Une affirmaion scienifique es une affirmaion adhéré, prouvée comme

Plus en détail

Chapitre 4. Série de Fourier. 4.1 Série de Fourier

Chapitre 4. Série de Fourier. 4.1 Série de Fourier Chapire 4 Série de Fourier On a vu commen analyser des circuis don l enrée es une source sinusoïdale. Mais commen faire si la source n es pas sinusoïdale? Es-ce qu on peu quand même uiliser la foncion

Plus en détail

2. Tensions et courants alternatifs

2. Tensions et courants alternatifs 2.1 Définiions 2.1.1 Tension coninue Une ension coninue es une ension qui ne change pas avec le emps. diagramme d'une ension coninue: u() 2.1.2 Tension alernaive Une ension alernaive es une ension qui

Plus en détail

Introduction de la loi normale centrée réduite

Introduction de la loi normale centrée réduite Ce documen de formaion es desiné au enseignans. Il se conforme au insrucions du programme de mahémaiques des classes de Terminales (2). Sa lecure nécessie la connaissance des variables aléaoires discrèes,

Plus en détail

Le classement des nombres réels

Le classement des nombres réels UNITÉ 1 : DES NOMBRES RÉELS Le classemen des nombres réels naurels N 0,1,2,3,4,5,6,7... eniersrelaifs Z naurelsnégaifs 1, 2, 3... 3 raionnelsq décimaux 3.25, 0.06,,4.25, 2.7, 10.35... 2 réels R 1 complexesc

Plus en détail

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que PROPORTIONNALITE a) Définiion d une proporion a Quare nombres a, b, c e d éan non nuls, on di que c l une des condiions suivanes (équivalenes) es vérifiée : b d es une proporion lorsque Condiion 1 : Les

Plus en détail

CONCOURDS D ADMISSION 2000 MATHÉMATIQUES. DEUXIÈME ÉPREUVE FILIÈRE PC (Durée de l épreuve : 3 heures)

CONCOURDS D ADMISSION 2000 MATHÉMATIQUES. DEUXIÈME ÉPREUVE FILIÈRE PC (Durée de l épreuve : 3 heures) 00 MATH. II - PC ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

Réglage valeur moyenne

Réglage valeur moyenne P Cours : l insrumenaion élecrique A- Le généraeur de basses fréquences ou G.B.F - Présenaion uilisé : Réglage fréquence Réglage ampliude Réglage valeur moyenne Sweep : Possibilié de créer un signal de

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

Chapitre 1.3 La vitesse instantanée

Chapitre 1.3 La vitesse instantanée Chapire.3 La iesse insananée La iesse dans un graphique de posiion On peu obenir une iesse moyenne en foncion du emps en effecuan un calcul de pene. Puisqu une pene es une rappor enre une ariaion selon

Plus en détail

LES APPREILS DE MESURE EN COURANT ALTERNATIF

LES APPREILS DE MESURE EN COURANT ALTERNATIF Chapire 4 LES APPEILS DE MESUE EN COUAN ALENAIF I- PAAMEES CAACEISIQUES D UN SIGNAL ALENAIF : Un signal alernaif es caracérisé par sa forme ( sinus, carré, den de scie, ), sa période ( fréquence ou pulsaion

Plus en détail

La fonction génération d un signal rectangulaire

La fonction génération d un signal rectangulaire Secion : S Opion : Sciences de l ingénieur Discipline : Génie Élecrique La foncion généraion d un signal recangulaire Domaine d applicaion : raiemen du signal ype de documen : ours lasse : erminale Dae

Plus en détail

Concours Mines-Ponts 2001 PC/PSI - Sujet 2 - Corrigé

Concours Mines-Ponts 2001 PC/PSI - Sujet 2 - Corrigé Concours Mines-Pons PC/PSI - Suje - Corrigé Cee correcion a éé rédigée par Frédéric Bayar e es disponible à l adresse suivane : hp://mahweb.free.fr Si vous avez des remarques à faire, ou pour signaler

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

RELATIONS FONCTIONNELLES. I Généralités

RELATIONS FONCTIONNELLES. I Généralités Universié d'angers : LSEN relaions foncionnelles p. Parie A : Proporionnalié RELATIONS FONCTIONNELLES I Généraliés / Définiion : Soien deux suies de nombres réels : (x ;x ;x ;x 4 ) e (y ;y ;y ;y 4 ). Ces

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Equations différentielles

Equations différentielles Equaions différenielles Généraliés Une équaion différenielle es une relaion enre une variable réelle (par eemple ), une foncion qui dépend de cee variable (par eemple y) e un cerain nombre de ses dérivées

Plus en détail

POURCENTAGES. 1 ) x = L'alumine représentant 24% de la bauxite, 5 250kg de bauxite permettront d'obtenir 1260 kg d'alumine.

POURCENTAGES. 1 ) x = L'alumine représentant 24% de la bauxite, 5 250kg de bauxite permettront d'obtenir 1260 kg d'alumine. POURCENTAGES Pourcenage de proporion Exercice 1 La bauxie es un minerai renferman de l'alumine dans la proporion de 24%. Par élecrolyse de l'alumine, on obien de l'aluminium dans la proporion de 53%. 1

Plus en détail

Première STG Chapitre 4 : taux d'évolution. page n

Première STG Chapitre 4 : taux d'évolution. page n Première STG Chapire 4 : aux d'évoluion. page n 1 On peu lire dans un journal : " Le prix de la able basse, qui es passé de 500 à 502, n'a praiquemen pas bougé. " e plus loin : " Hausse impressionnane

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Le Principe de PASCAL

Le Principe de PASCAL Hydraulique LES LOIS D HYDROSTATIQUE N 1/8 LA FORCE. On appelle FORCE oue acion qui end à modifier l éa d un corps. Elle s exprime en NEWTON (symbole N). La force es définie par son sens, son inensié,

Plus en détail

Première E.S. Lycée Desfontaines Melle. Pourcentages

Première E.S. Lycée Desfontaines Melle. Pourcentages Première E.S. Lycée Desfonaines Melle I. Inroducion Pourcenages Définiion : On considère deux quaniés Q e Q de même naure, exprimées dans la même unié. Dire que Q es égale à % de Q revien à dire que Q

Plus en détail

Chapitre 1. La cinématique. 1.1 Définitions

Chapitre 1. La cinématique. 1.1 Définitions Chapire 1 La cinémaique La cinémaique es la descripion mahémaique du mouvemen, souven considérée comme la base de la physique. Le mouvemen le plus fondamenal auquel on puisse penser es la chue libre. Expérimenée

Plus en détail

Suites : Résumé de cours et méthodes

Suites : Résumé de cours et méthodes Suites : Résumé de cours et méthodes Généralités ne suite numérique est une liste de nombres, rangés et numérotés : à l entier 0 correspond le nombre noté 0 à l entier correspond le nombre noté à l entier

Plus en détail

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation INGOD Charloe MEYE Anne DAEAU Mayeul 22 GESSET omain éponse Temporelle d'un circui C dégradé en régime quelconque : foncions inégraion e dérivaion Philippe GUY 23-24 INGOD Charloe MEYE Anne DAEAU Mayeul

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

Généralités sur les signaux

Généralités sur les signaux Cours raiemen de Signal AII Chapire : La ra nsormée de Laplace Généraliés sur les signaux I. Inroducion Le raiemen du signal es une discipline indispensable de nos jours. Il a obje l'élaboraion ou l'inerpréaion

Plus en détail

) 2) Les prix unitaires de chaque matériau sont représentés pour le premier semestre par la matrice P 1 :

) 2) Les prix unitaires de chaque matériau sont représentés pour le premier semestre par la matrice P 1 : Exercice 1 Opéraions sur les marices Pour la réalisaion de ses chaniers, une enreprise de gros-œuvre du bâimen achèe, auprès de deux fournisseurs A e B, le béon (en m 3, les briques (en nombre de palees

Plus en détail

Evaluations socio-économiques et financière des projets de transports collectifs : méthode de calcul, paramètres et conventions

Evaluations socio-économiques et financière des projets de transports collectifs : méthode de calcul, paramètres et conventions 1 Juille 2001 Evaluaions socio-économiques e financière des projes de ranspors collecifs : méhode de calcul, paramères e convenions Période de l éude La période de l éude débue à l année de mise en service.

Plus en détail

Carte d'acquisition Dossier ressource

Carte d'acquisition Dossier ressource Care d'acquisiion BTS Sysèmes Phooniques TP AMOS Care USB 6009 BTS SP1 Page 1 sur 9 Care d'acquisiion BTS Sysèmes Phooniques 1. Présenaion 1.1 inroducion Une care d'acquisiion es un accessoire uilisé dans

Plus en détail

Appliquer un pourcentage de t %, c'est multiplier par 100. c'est-à-dire 0,24 ; 53% c'est

Appliquer un pourcentage de t %, c'est multiplier par 100. c'est-à-dire 0,24 ; 53% c'est Première L Pourcenages : cours 1. Pourcenage de proporion Exercice 1 La bauxie es un minerai renferman de l'alumine dans la proporion de 24%. Par élecrolyse de l'alumine, on obien de l'aluminium dans la

Plus en détail

3) Logique séquentielle

3) Logique séquentielle 3) Logique séquenielle able des maières Définiions 2. Logique séquenielle................................. 2.2 Chronogramme................................... 2.3 Niveau logique vs fron...............................

Plus en détail

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES Sommaire I- Equaions différenielles du premier ordre I-1- Résoluion des équaions du ype : a f () + f() = g() I-- Exemple de résoluion

Plus en détail

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé CINETIQUE CHIMIQUE. Viesse de réacion en réaceur fermé. Généraliés sur la cinéique chimique L obje de la cinéique chimique es l éude de l évoluion au cours du emps d une réacion hermodynamiquemen possible.

Plus en détail

ESD : Loi exponentielle

ESD : Loi exponentielle Aueur du corrigé : Gilber Julia ESD 2008 0702 : Loi exponenielle Averissemen : ce documen a éé réalisé avec la version 14 de TI-Nspire Fichier associé : esd2008_0702ns 1 Le suje L exercice proposé au candida

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

Fréquence et signaux

Fréquence et signaux Fréquence e signaux On désigne par signal la variaion, emporelle par exemple, d une grandeur physique comme la empéraure, l éclairemen, la conraine mécanique, l inensié d un son, la ension élecrique ec...

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n'es pas nécessairemen le graphe d'une foncion ; c'es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

I ) Ces affirmations sont-elles vraies ou fausses? 1- La taille d une personne varie proportionnellement à son poids. 2- Pour l essence, le prix à

I ) Ces affirmations sont-elles vraies ou fausses? 1- La taille d une personne varie proportionnellement à son poids. 2- Pour l essence, le prix à 1- Encore un tri de problèmes 2- Le segment, 1 ère approche 3- La règle de trois 4- Définition, propriétés, procédures induites, programmes 2008, repères 5- Suggestion d une progression 6- Exemples illustrés

Plus en détail

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou ELECRICIE Analyse des signaux e des circuis élecriques Michel Piou Chapire 9 Valeur moyenne des signaux périodiques. Ediion //24 able des maières POURQUOI E COMMEN?... 2 INERE DE LA NOION DE VALEUR MOYENNE....2

Plus en détail

M1 Economie : "colle" d économie industrielle

M1 Economie : colle d économie industrielle M Economie : "colle" d économie indusrielle Armel JACQUES novembre 0 Les calcularices son auorisées ; en revanche les appareils permean de communiquer (éléphone porable ou aures) son inerdis. Concurrence

Plus en détail

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur REGIME TRANSITOIRE Inroducion Lorsqu on ferme un circui pour le mere en foncion, les courans e les ensions meen un cerain emps à s éablir. C es le régime ransioire. Ce chapire fai l éude des composans

Plus en détail

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI UNIVERSIE PARIS OUES, NANERRE LA DEFENSE UFR SEGMI Année universiaire 202 203 Cours d économérie L3 Economie Cours de Valérie MIGNON D de Benoî CHEZE e David GUERREIRO Exercice : Données en coupe D Inroducion

Plus en détail

Mathématiques discrètes Chapitre 2 : Théorie des ensembles

Mathématiques discrètes Chapitre 2 : Théorie des ensembles U.P.S. I.U.T., Déparemen d Informaique nnée 9- Mahémaiques discrèes Chapire : Théorie des ensembles. Définiions Définiion On appelle ensemble oue collecion d objes caracérisés par une propriéé commune.

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Retour aux bases de la photographie Partie 1 L' EXPOSITION

Retour aux bases de la photographie Partie 1 L' EXPOSITION Parie 1 - Secion 1.5 Reour aux bases de la phoographie Parie 1 L' EXPOSITIO Secion 1.5 Synhèse Exposiion Indices de Luminaion IL (EV) 1 Synhèse des valeurs Rappel des échelles normalisées des différens

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

La fonction générer un signal rectangulaire

La fonction générer un signal rectangulaire Sie Inerne : www.gecif.ne Discipline : Génie Elecrique La foncion générer un signal recangulaire I Idenificaion de la foncion Générer un signal élecrique consise à produire des variaions de ension don

Plus en détail

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol CH V Mouvemens I) Mouvemens e référeniel : Pour éudier un mouvemen, il fau définir : - le mobile (obje qui es en mouvemen) - le référeniel (sysème par rappor auquel le mobile se déplace) 1) Siuaion : Deux

Plus en détail

FONCTIONS DE RÉFÉRENCE

FONCTIONS DE RÉFÉRENCE Fonctions affines Fonctions de référence Seconde Fonctions affines. Activité Trois tais T, T et T proposent les tarifs suivants : T : de prise en charge, puis 0,0 du kilomètre ; T : de prise en charge,

Plus en détail

Chapitre V : Torsion simple.

Chapitre V : Torsion simple. Torsion simple. Cours RD / A.U : 2012-2013 Chapire V : Torsion simple. Objecifs Pré-requis Elémens de conenu Déerminer la répariion des conraines dans une secion de poure solliciée à la orsion. Vérifier

Plus en détail

I. La lumière et ses propriétés

I. La lumière et ses propriétés Module 3 : L opique : Vocabulaire Ampliude (f) Hyperméropie (f) Propagaion (f) reciligne Axe (m) principal Image (f) réelle Réfléchi Concave Image (f) viruelle Réflexion (f) Convexe Incidence (f) Réflexion

Plus en détail

MQ22 TP n 3 : Essai de torsion

MQ22 TP n 3 : Essai de torsion TP n 3: Essai de orsion MQ TP n 3 : Essai de orsion Bu : Le bu de ce TP es de déerminer le module d élasicié ransversale de Coulomb (G). Pré-requis : On effecue une coupe de l éprouvee. On éudie ensuie

Plus en détail

Sommaire de la séquence 11

Sommaire de la séquence 11 Sommaire de la séquence 11 Séance 1........................................................................................................ Je calcule des longueurs, des aires e des volumes....................................................

Plus en détail

I) A quoi sert une fonction affine?

I) A quoi sert une fonction affine? FICHE METHODE sur les FONCTIONS AFFINES I) A quoi sert une fonction affine? a). Il a actuellement 3 euros d économies et en ajoute 5 par semaine! Comment varient ses économies en fonction du nombre x de

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui

Plus en détail

B. Graphique et proportionnalité : Introduction. I. Fonction et graphique d une fonction. I. Fonction et graphique d une fonction

B. Graphique et proportionnalité : Introduction. I. Fonction et graphique d une fonction. I. Fonction et graphique d une fonction B. Graphique et proportionnalité : Introduction Fonction et graphique d une fonction Tableaux de valeurs et fonctions Lorsque les valeurs de deux grandeurs X et Y sont mises en relation on obtient une

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

( ) = 20 + 10 e x. x x x 1 2. lim 10e = 0. 2. Étudier les variations de la fonction f et dresser son tableau de variations.

( ) = 20 + 10 e x. x x x 1 2. lim 10e = 0. 2. Étudier les variations de la fonction f et dresser son tableau de variations. Corrigé Parie A La foncion f es définie sur l inervalle [ ; + [ par f ( ) ( ) = + e On noe C la courbe représenaive de la foncion f dans un repère orhonomal ( Oi,, j) cm) (unié graphique Éudier la limie

Plus en détail

LES APPREILS DE MESURE EN COURANT ALTERNATIF

LES APPREILS DE MESURE EN COURANT ALTERNATIF Chapire 4 LES APPREILS DE MESURE EN COURANT ALTERNATIF I- PARAMETRES CARACTERISTIQUES D UN SIGNAL ALTERNATIF : Un signal alernaif es caracérisé par sa forme (sinus, carré, den de scie, ), sa période (

Plus en détail

Problème d'examen (Représentation triangulaire, ACP et élections)

Problème d'examen (Représentation triangulaire, ACP et élections) ISFA 2 année 2-21 Problème d'examen (Représenaion riangulaire, ACP e élecions) D. Chessel Les exercices (17-2) son indépendans du problème (1-16). 1. Quesions On considère la marice A à n = 14 lignes e

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

LA MESURE DU CAPITAL ET DE LA PRODUCTIVITÉ DANS LES TRANSPORTS : LE CAS DU TRANSPORT AÉRIEN

LA MESURE DU CAPITAL ET DE LA PRODUCTIVITÉ DANS LES TRANSPORTS : LE CAS DU TRANSPORT AÉRIEN LA MESURE DU CAPITAL ET DE LA PRODUCTIVITÉ DANS LES TRANSPORTS : LE CAS DU TRANSPORT AÉRIEN Bernard CHANE KUNE, Nanno MULDER 1 e Philippe POUDEVIGNE Le capial es un faceur de producion clef dans le domaine

Plus en détail

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque?

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque? Nom : Prénom : Conrôle de mahémaiques, Le mercredi 30 mai 2012 Exercice 1. [3 poins] 1) Parmi les cinq premières figures numéroées de a) à e) recopie sur a copie le numéro de celles qui son des polygones

Plus en détail

Echantillonnage d un signal : principe et conditions à satisfaire.

Echantillonnage d un signal : principe et conditions à satisfaire. Page 1 Echanillonnage d un signal : principe e condiions à saisfaire. I. Inroducion. L acquisiion d une grandeur analogique par l inermédiaire d une care d acquisiion possédan plusieurs enrées analogiques

Plus en détail

1 Représentation des fonctions élémentaires de l'électronique

1 Représentation des fonctions élémentaires de l'électronique EN1 Foncions e composans élémenaires de l élecronique Foncions élémenaires de l'élecronique Les foncions élémenaires de l'élecronique son celles que l'on rerouve régulièremen dans les différenes applicaions

Plus en détail

Statistiques. 1 Introduction-vocabulaire. 2 Effectifs cumulés-fréquences. 3 Etude de deux exemples. Seconde

Statistiques. 1 Introduction-vocabulaire. 2 Effectifs cumulés-fréquences. 3 Etude de deux exemples. Seconde 1 Introduction-vocabulaire Les premières études statistiques étaient des recensements démographiques : on en a conservé le vocabulaire. L ensemble sur lequel porte l étude statistique s appelle la population.

Plus en détail

Problème de contrôle optimal en temps minimal pour un avion contraint en phase de montée

Problème de contrôle optimal en temps minimal pour un avion contraint en phase de montée Problème de conrôle opimal en emps minimal pour un avion conrain en phase de monée D.Goubina, en collaboraion avec O.Cos, J.Gergaud Journées SMAI-MODE 2016 23-25 mars, Toulouse Sommaire Conexe Éude géomérique

Plus en détail

LOIS FONDAMENTALES EN COURANT CONTINU

LOIS FONDAMENTALES EN COURANT CONTINU Chapire : LOS FONMENTLES EN CONT CONTN u cours de ce chapire, nous apprendrons à connaîre les grandeurs fondamenales que son le couran e la ension, à éablir e à appliquer les lois fondamenales dies des

Plus en détail

1) Déterminer en utilisant la représentation graphique donnée :

1) Déterminer en utilisant la représentation graphique donnée : EXERCICES SUR LES FONCTIONS AFFINES ET LINÉAIRES Exercice 1 Un chef de chantier vient d acheter un récipient isotherme pour tenir sa boisson au chaud. Le graphique ci-contre figure sur le carton d emballage.

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

Introduction. In 1938, Claude Shannon, a montré l utilisation de l algèbre de Boole dans l étude des circuits à base de relais.

Introduction. In 1938, Claude Shannon, a montré l utilisation de l algèbre de Boole dans l étude des circuits à base de relais. Inroducion. Les circuis numériques (digiau, logiques) de la parie maérielle de la machine à informaion son conçus e leurs comporemens analysés en uilisan une branche des mahémaiques appelée Algèbre de

Plus en détail

Redresser une photo avec Paint Shop Pro

Redresser une photo avec Paint Shop Pro Redresser une poo aec Pain Sop Pro Définiions 'obje poograpié es supposé comporer un recangle, ou au moins deux segmens de droie parallèles, qu'il s'agi de redresser En effe, si la poo n'es pas prise de

Plus en détail

La définition naturelle de la transformée de Fourier d une distribution T, devrait

La définition naturelle de la transformée de Fourier d une distribution T, devrait Chapire 12 Transformée de Fourier des disribuions 12.1 Inroducion La définiion naurelle de la ransformée de Fourier d une disribuion T, devrai êre ϕ D, < F(T ), ϕ >= < T, F(ϕ) > Mais il y a un problème

Plus en détail

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; (S) M 1. O y (S) O y. Mécanique Cinématique Cinématique C2

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; (S) M 1. O y (S) O y. Mécanique Cinématique Cinématique C2 écanique Cinémaique Cinémaique C bjecif : Définir, décrire e calculer la iesse ou l accéléraion d un poin d un solide. 1. Viesse CINEATIQUE C Viesse e accéléraion 1.1. Noion de iesse Soi un solide en mouemen

Plus en détail

Chapitre IV : Les fonctions du premier degré

Chapitre IV : Les fonctions du premier degré Chapitre IV : Les fonctions du premier degré A. GÉNÉRALITÉS SUR LES FONCTIONS 1. Lecture d un graphique La température extérieure de ce 1 juillet à Norberville est donnée par le graphique suivant : 1 À

Plus en détail

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire Cours de mahémaiques appliquées à la nance Produi scalaire, orhogonalié Séparaion des convexes e lemme de Farkas Applicaion: évaluaion par arbirage en déerminise Caherine Bruneau Année 2009-2010 1 Produi

Plus en détail

CHAPITRE 4 LA VAR MONTE CARLO... 2

CHAPITRE 4 LA VAR MONTE CARLO... 2 CHAPITRE 4 LA VAR MONTE CARLO... I. PRINCIPE... A. Quel modèle uiliser?... B. Algorihme de simulaion... 3 II. EXEMPLE D APPLICATION... 4 A. Travail préliminaire... 4 B. Simulaion des rajecoires... 6 Algorihme...

Plus en détail

VALANT NOTE D INFORMATION. CONTRAT D ASSURANCE VIE N V.012-05 libellé en euros et/ou en unités de compte

VALANT NOTE D INFORMATION. CONTRAT D ASSURANCE VIE N V.012-05 libellé en euros et/ou en unités de compte VALANT NOTE D INFORMATION CONTRAT D ASSURANCE VIE N V.012-05 libellé en euros e/ou en uniés de compe Le conra PANTHEA es un conra d assurance vie individuel de ype mulisuppors. Le conra prévoi le paiemen

Plus en détail

Elec 3 : Circuit RLC

Elec 3 : Circuit RLC Travaux Praiques de physique Elec 3 : ircui R Version du 8/3/6 Plan Rappels Théoriques ircuis R e R ircui «idéal» ircui R en ension coninue ircui R en ension sinusoïdale, résonance Applicaions Manipulaion

Plus en détail

COURS ELE2700 ANALYSE DES SIGNAUX

COURS ELE2700 ANALYSE DES SIGNAUX ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE ÉLECTRIQUE AUTOMNE 20 COURS ELE2700 ANALYSE DES SIGNAUX SÉANCE #3 (TP2) FENÊTRES TEMPORELLES OBJECTIFS Éudier e comparer l effe de différenes fenêres

Plus en détail

Coordonnées Équation de droites

Coordonnées Équation de droites Coordonnées Équation de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Coordonnées dans le plan 2 1.1 Repères coordonnées d un point.................................... 2 1.2

Plus en détail

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur.

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur. Chapire 1 Eude des ensions élecriques ; Naure de la ension du seceur. On a vu que la ension produie par un alernaeur dans une cenrale élecrique changeai ou le emps. On ne peu donc pas se conener de brancher

Plus en détail

I - Variation et suites

I - Variation et suites I - Variaion e suies Résulas d apprenissage généraux décrire e effecuer des opéraions sur des ableaux pour résoudre des problèmes, en uilisan des ouils echnologiques, si nécessaire produire e analyser

Plus en détail

Circuits séquentiels complexes

Circuits séquentiels complexes ircuis séqueniels complexes Réalisé à parir des bascules élémenaires, des foncions logiques séquenielles plus élaborées que ces dernières son inégrées dans des circuis Nous nous inéresserons ici pariculièremen

Plus en détail